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Confronting left-right symmetric models with electroweak precision data
at the Z peak
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In view of the recent and future electroweak precision data accumulated at the CERN LEP and
the SLC, we systematically analyze possible new physics efFects that may occur in the leptonic
sector within the context of SU(2)RxSU(2)l. xU(l)~ I, theories. It is shown that nonobservation of
fIavor-violating Z-boson decays, lepton universality in the decays Z ~ Il, and universality of lepton
asymmetries at the Z peak form a set of complementary observables, yielding severe constraints
on the parameter space of these theories. Contributions of new-physics efFects to Rz = I'(Z -+
bb)/I'(Z ~ hadrons) are found to give interesting mass relations for the flavor-changing Higgs scalars
present in these models.

PACS number(s): 13.38.Dg, 12.60.Cn

I. INTRODUCTION

The Large Electron Positron collider (LEP) at CERN
and the Stanford Linear Collider (SLC) are powerful
e+e machines operating at the Z peak, which can con-
front theoretical predictions of the minimal standard
model (SM) with experimental results to a high accu-
racy. A full analysis of all the electroweak precision data
including those of the year 1995 will either establish the
SM up to the one-loop electroweak level or signal the
onset of new physics. In this context, analyzing elec-
troweak oblique parameters [1] has become a common
strategy to test the viability of models beyond the SM.
The electroweak oblique parameters are sensitive physi-
cal quantities, when the new-physics interactions couple
predominantly to TV and Z bosons. However, it is im-
perative to explore additional observables that could be
particularly sensitive to other sectors of the SM.

In this paper, we will study a new set of comptemen-
tary leptonic observables and explicitly demonstrate the
severe limitations that they can impose on model build-
ing of three-generation extensions of the SM. The set
of observables comprises Havor-changing leptonic decays
of the Z boson [2, 3], universality-breaking parameters
Ub, for the diagonal decays Z ~ ll [4], and universality-
violating parameters EAt, i, based on leptonic asymme-
tries measured at LEP and/or SLC [5]. For the sake of
illustration, we will consider a minimal left-right sym-
metric model (LRSM) [6] described in Sec. II. Such a
model can naturally generate vector —axial (V —A) as well
as V + A fIavor-dependent Zll couplings leading to new
physics effects that can be probed via the leptonic ob-
servables mentioned above. This set of observables will
be discussed, in some detail, in Sec. III. Explicit cal-
culations and related technical details will be relegated

to Appendixes A and B. In Sec. IV, we will present
numerical estimates for the aforementioned leptonic ob-
servables within the kamework of a minimal LRSM and
investigate their potential of effectively constraining this
model. Furthermore, attention will be paid to possible
LRSM contributions to Bg. Section V contains our con-
clusions.

II. THE LRSM

where the subscript PS denotes the Pati-Salam gauge
group [7]. We will, however, focus our analysis on the
LRSM described in [6].

In the LRSM, right-handed neutrinos together with
the right-handed charged leptons form three additional
weak isodoublets in a three-generation model. The clas-
sification of the quark sector proceeds in an analogous
way. To be specific, the assignment of quantum num-
bers to fermions under the gauge group SUR(2) x SU(2)L,
xU(l)ti I, is arranged as

(0, 1/2, —1),

(1/2, 0, —1), (2 1)

Left-right symmetric theories based on the gauge group
SU(2)RxSU(2)l. x U(1)~ r, [7, 6] were motivated from
the fact that the spontaneous breakdown of gauge and
discrete symmetries can be accomplished on the same
footing. Such models can naturally arise &om SO(10)
grand unified theories via the breaking pattern [7, 8]

SO(10) m SU(4)ps x SU(2)n x SU(2)1,
m SU(3), x SU(2)R x SU(2)L, x U(1)~ I, m SM,

(0, 1/2, 1/3),
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where the prime on the fermionic fields simply denotes
weak eigenstates. In order to break the left-right gauge
symmetry down to U(1), [6], we have to introduce one
Higgs bidoublet

(2 3)

that transforms as (1/2*, 1/2, 0) and two complex Higgs
triplets

& ~+/K»~++
4 —4/~~)

&~+/v»++
(2 4)

with quantum numbers (0, 1,2) and (1,0, 2), respectively.
For simplicity, we will consider that only (gPi) = ~i/~2
and (6&) = v~/~2 acquire vacuum expectation values

I

(VEV's). In the Born approximation [9], this can be
accomplished by imposing invariance of the general Higgs
potential under a judicious discrete symmetry D of the
bidoublet 4 and the Higgs triplets Ag R [10]. In fact,
we will concentrate on case (d) of Ref. [11], to which
the reader is referred for more details. In case (d), it
is (hl) = (Pz) = 0 at the tree level, implying that the
charged gauge bosons TVL and TVR represent also physical
states with masses ML ——M~ and. MR, respectively. The
massive neutral gauge bosons ZL and ZR mix one another
with a small mixing angle of order v2i/v& 10 . To
a good approximation, we will therefore neglect ZL-ZR
mixing eB'ects in our calculations.

Such a minimal LRSM allows the presence of baryon-
lepton- [(B—L)-]violating operators in the Yukawa sec-
tor. In fact, the (B —L)-violating interactions are intro-
duced by the triplet fields LL R and give rise to Majorana
mass terms mM, , in the following way:

2vR
(2 5)

Here, c;~ stands for the usual Levi-Civita tensor and all
the parameters h, ~

= 1 if left-right symmetry is forced
explicitly. However, a phenomenological analysis of muon
and 7 decays shows that h,z (( 1 [ll]. As a result, 8&+ and
b&+ loop effects have been found to be negligible [12].

In case (d), the neutrino mass matrix takes the general
seesaw-type form

M
(mTD mM) ' (2 6)

where M is (6 x 6)-dimensional matrix. In Eq. (2.6),
m~ is a Dirac mass term associated with the SU(2)1,
breaking and connects the left-handed neutrinos with the
right-handed. ones. Relevant theoretical and phenomeno-
logical aspects related to such neutrino mass models may
be found in Ref. [13]. The matrix M can always be di-
agonalized by a unitary 6 x 6 matrix U according to
the common prescription U M U = M . After diag-
onalization, one gets six physical Majorana neutrinos n,.
through the transformations

(2.7)

The first n~ = 3 neutral states v; (= n, for i = 1, . . . , n~)
are identified with the known n~ light neutrinos, while
the remaining n~ mass eigenstates N~ (—:n~+ for j
1, . . . , n&) are heavy Majorana neutrinos predicted by
the model. In addition to the leptonic sector, the quark
sector of such an extension contains non-SM couplings of
the fermionic fields to the gauge and Higgs bosons. Part
of the LRSM couplings has been listed in Refs. [9, 11,14].
The relevant Feynman rules and an additional discussion

are given in Appendix A.
Adopting the conventions of Ref. [13], the interactions

of the Majorana neutrinos n; and charged leptons l; with
the gauge bosons W& (= W+) and Zr, are correspond-
ingly mediated by the mixing matrices

B,, = ) Vi„Uf~* and C,, = ) Uf„Uf,*,
k=1 k=1

(2.8)

with l = 1, . . . , n~ and i, j = 1, . . . , 2nG. By analogy,
there exist mixing matrices B&,. and C, given by

2fl ~
ggR ) VRUvs

k=nb+1

2AQ

and C, = ) UI"„UP,
*

k=nb+1

(2.9)

which are responsible for the couplings of TVR and ZR to
charged leptons and Majorana neutrinos. In Eqs. (2.8)
and (2.9), the unitary n~ x n~ matrices V and V are
responsible for the diagonalization of the charged lepton
mass matrix via biunitary transformations.

Because of the specific structure of M" in Eq. (2.6),
the Qavor-mixing matrices B and C satisfy a number
of identities that may be found in [15]. These identi-
ties, which result from the requirement of unitarity and
renormalizability of the theory, turn out to be very use-
ful in deriving model-independent relations between the
mixings B&, , C, . and heavy neutrino masses. In a two-
generation-mixing model, we have [16, 17]

LBlN1

p1/4 8~l
LB,N (2.10)/1+ pi/2

where p = m2& /m& (& 1) is a mass ratio of the two
heavy Majorana neutrinos N1 and N2 present in such
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2A+

(sI')' = ) lB„l' =
l
mtD, m~

l

M )ii
(2.ii)

Furthermore, the mixings CN N are determined by

1/2P
N1N1 ] + 1/2P

).(sI,')'
i=1

a model, and 8L' are light-heavy-neutrino lepton-fmavor

(LF) mixings defined as [18]

(si'), (sr" ) & 0.010, (s;-)' & O. O4O,

high Dirac SU(2)r, -breaking components are allowed to
be present in M and only the ratio m~/m~ ( sP )
gets limited by a global analysis of low-energy data. Re-
cently, such an analysis has been performed in Ref. [20],
in which the combined efFect of all possible effective oper-
ators of the charged- and neutral-current interactions is
considered. Although a careful analysis can provide some
model-dependent caveats, we will, however, consider the
following conservative upper bounds for the LF mixings:

L
N2 N2

1

y + pl/2 ) (sr')
i=1 (si')2(si") & 1 x 10 (2.»)

Ni Ng N2 Ni
I L

nG.

i=1
(2.12)

At this stage, it should be noted that M" of Eq. (2.6)
takes the known seesaw form [19] in case m~ )) mgj.
Nevertheless, this mass-scale hierarchy can dramatically
be relaxed in a two-family seesaw-type model, in which
light-neutrino masses can radiatively be induced in agree-
rnent with experimental upper bounds [13]. The light-
heavy neutrino mixings sL of such scenarios can, in prin-
ciple, scale as s& m~/m~ rather than the known
seesaw relation s& gm„, /mdiv. This implies that

2AQ

) BLBR
i=1
~Le + CiR

22 u

=0, ) BR BR C
l=l

(2.14)

In a two-generation-mixing model, Eq. (2.14) together
with Eq. (2.9) can be used to obtain the mixings

For example, the last constraint in Eq. (2.13) comes &om
the nonobservation of decays of the type p ~ ep, eee, or
the absence of p — e conversion events in nuclei.

In LRSM's, the mixing matrices B,C, B, and C
obey the useful relations

R +NN~ Bl N
———slnOR 1 —CN N,

BL1N2 = —cos OR
R

L ((1 —C~ iv )(1 —C~ iv ) —lCiv iv
'L sin OR

l Ni Ni )

RB, N = slnOR Ni Ng
L

Ni Ni

'L cos OR
&(1 —Ci'v, iv, )(1 —Cri, iv, ) —lCiv, x, l'&

)
(2.i5)

Consequently, the leptonic sector of this two-generation
scenario depends only on five free parameters: the masses
of the two heavy Majorana neutrinos mN, and mN,
(or equivalently miv, and p), the mixing angles (s&*)
which are, however, constrained by upper limits given in
Eq. (2.13), and an unconstrained Cabibbo-type angle OR.

III. SLC AND LEP OBSERVABLES

In this section, we will define more precisely the frame-
work of our calculations. In the limit of vanishing charged
lepton masses, the amplitude responsible for the decay
Z —+ lll2 can generally be parametrized as

Gg2
7i = squi, pi. [gI.'"PI. + gR "PR]&i, ~

2c~

where g is the usual SU(2)1, electroweak coupling con-
stant, s~& is the Z-boson polarization vector, u (v) is the

Dirac spinor of the charged lepton lj (l2), PI, (PR)
[1 —(+)p5]/2, and c = 1 —s = M~/M&. In Eq. (3.1),
we have defined

l 1 l 2 l g l y l2
~L,R ~L,R + ~L,R&

gR= V«L —2

gi = v«( — ')
(3.2)

Lilac ~ PR~R 2&

Lilac

where «, s, bgI' R (= 8g& R) are obtained beyond the
Born approximation and are renormalization scheme de-
pendent. It should be noted that pL, 8 introduce uni-
versal oblique corrections [1], whereas bg& R are flavor
dependent. Obviously, an analogous expression will be
valid for the decay Z ~ bb, as soon as b-quark mass
eKects can be neglected.

It is convenient to reexpress the Havor-dependent elec-
troweak corrections in terms of the loop functions I l l

and I'L
L

Lil2 ~ ~L~L 2 lila &
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The nonoblique loop functions I'&
&

and I
& &

depend on
whether the underlying theory is of V—A or V+A nature.
In Appendix B, we have analytically derived the loop
functions I'&

&
and I'&

&
in the context of LRSM's. It is

then straightforward to obtain the branching ratio for the
possible decay of the Z boson into two different charged
leptons through the expression

(3.3)

(l, l, ) r(Z +lily-) —I'(Z m l2l2)

r(z-+l, l, ) + r(z-+ l,l, )

gi(~gi —~gi) + gR(~gR —bgR)

(gi)' + (gR)'
= U,",'"'(I,) + U,",'")(a),

—U"'"'(PS)

(3.4)

where Ub, (PS) characterizes known phase-space cor-(~.~.)

rections coming ft.om the nonzero masses of the charged
leptons lq and l2 that can always be subtracted, and

with o. = g /4vr. Such an observable is constrained by
LEP results to be, e.g. , B(z ~ er) & 10 s [21].

Another observable that has been introduced in [4] is

the universality-breaking parameter Ub,
' ' . To leading

(~.~.) .
order of perturbation theory, Ub,

' ' is given by

the other hand, if one assumes that the accuracy in the
measurement of AL, R is correct, one could then interpret
the experimental sensitivity to Az, R as a stronger upper
bound on new physics with ~4A,

~

& 4%%uo. Furthermore,
ongoing SLC experiments are measuring the observable

&L,R(f) = Ao(e&'e+ ~ ff)pB —Ao(eRe+ ~ ff)pn
Ao (eL e+ m ff)pn + Ao (eRe+ m ff)pR

3 'P, A—f.
4

(3.8)

The forward-backward left-right asymmetry for individ-
ual Qavors represents an interesting alternative either to
constraining or establishing possible deviations from SM
lepton universality.

Leptonic asymmetries (or equivalently forward-
backward asymmetries) can also play a crucial role to
constrain new physics. Here, we will be interested in
experiments at LEP/SLC that measure the observable

I'(Z ~ l l) —I'(Z m l l) (g")' — (g")'
r(Z ~ ll) (gll)2 + (gll)2

(gl, ) —(gR) + 2(gLSgr —gRSgR)
(gb'+ (gR)'+ 2(gi~gi+ gR gR)

In view of the recent discrepancy of more than 20 be-
tween the experimental results of AI, R at SLC and A,
at LEP, we will study the nonuniversality parameter of
leptonic asymmetries [5]:

(gk)'+ (gR)'
I,

(
l )2 ~ (

l )2 s lyly lgl2)&

(gi)'+ (gR)'

(3.5)

Al, —Al,
Al, + Al,

U(lg l2) (L) —U(l&lg ) (B) U(lgl2)
(sM) bi br br
l

(3.10)

l

(, ), (, ), Re( l l, —rl l, ). (3. )

To make contact with the corresponding observable given
in [21], we derive the relation

I'(Z + ll) (ll )

r(z ~ ill~)
= 2Ub, +1.

The results of a combined analysis at LEP and/or SLC
regarding lepton universality at the Z resonance can be
summarized [22, 23] as follows:

~U(',"~ &5 x1O-'
A ('P ) = 0.143 + 0.010

A, (V ) = 0.135 + 0.011,

ApB ——0.0170 + 0.0016

AI, R(SLC) = 0.1637 + 0.0075.

(sM: o),
(SM: 0.143),

(SM: 0.0153),
(3.7)

In parentheses, we quote the theoretical predictions ob-
tained in the SM. Note that A, should equal the left-right
asymmetry AI, R measured at the SLC. From (3.7), one
can deduce ZA, —10%%uo, when comparing the mea-
surement of A at LEP with that of A, at SLC. On

where Al may be given by the SM value in Eq. (3.7).(sM)

At this point, it should be stressed that requiring

Ub,
' ' ——0 does not necessarily imply AAl, l, = 0. As we(l&l2)

will later see, in LRSM's one can naturally encounter the
possibility in which Ub, (L) —Ub, (R) while AAl, l, be-

comes sizable. Moreover, the physical quantities Ub,
' '

and AAl, l, do not depend explicitly on universal elec-
troweak oblique parameters, especially when the latter
ones may poorly constrain such three-generation scenar-
ios [4].

Another observable which will still be of interest is

I'(Z m bb)

I'(Z +hadrons)-
= 0.2202 + 0.0020 (SM: 0.2158). (3.11)

Rl, = 0.22 1 + 0.78%'I, (ml) —0.06&p( ) (ml)

(3.12)

If the measurement at LEP is correct, Rg turns out to
be about 2o. off from the theoretical prediction of the
minimal SM. New physics contributions to Rp can be
conveniently calculated through [24]
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where V'b (mq) and Ap~s~l (mq) contains the mq-(SM)

dependent parts of the vertex and oblique corrections,
respectively. Practically, only V'z l(mq) gives signifi-
cant negative contributions to Bb, which behave, in the
large top-mass limit, as [25]

(s~) 20cl 8 m&
2 2

(3.13)

If there are new physics eKects contributing to
(mq), these can be estimated by(SM)

n gl Re[1 &&(mq) —I'&&(0)] + g&Re[I't, &(mq) —I'P&(0)]
2~ (gb' + (gh)'

(3.14)

where gl ——1 —2s /3 and g&
———2s /3. In the next sec-

tion, we will analyze numerically the size of new physics
efFects expected in LRSM.

IV. NUMEHICAI B.ESULTS AND DISCUSSION

Since there is a large number of free parameters that
could vary independently in the LRSM, we have fixed
to typical values all of them except one each time and
investigated the behavior of our observables as a func-
tion of the remaining kinematic variable. More explic-
itly, we have found that bR+ quantum corrections to
the efFective ZLRlR coupling shown in Fig. 1 are very
small, since M&++ & 5 TeV for phenomenological rea-

sons [11]. The very same lower mass bound should

obey the Havor-changing scalars gP2" [= Re(gz)/~2] and
Po2' [= Im($2o)/~2] [ll]. However, the mass difference be-
tween the two flavor-changing scalars should not be too
large because the latter would lead to large negative con-
tributions to Bg (we will discuss the consequences from
a large mass-difFerence realization between the flavor-
changing scalars at the end of this section). In our es-
timates, we have assumed that Pz" and gP2' are nearly
degenerate and heavier than 5 TeV. In such a case, loop
efFects involving flavor-changing scalars are found to be
vanishingly small.

In order to increase the predictability of our LRSM but
still keep our analysis on a general basis, we shall consider
a two-generation mixing scenario. Then, the free param-
eters of our minimal model are the LF mixings (sP)
[which are, however, constrained, to some extent, by up-
per bounds given in Eq. (2.13)], the two heavy neutrino
masses m~, and m~, (which have been taken to be at the
same mass scale m~), the masses of the charged gauge
boson MR and its orthogonal associate scalar Mh, and
a Cabibbo-type angle OR that rotates the right-handed
charged leptons to the corresponding mass eigenstat;es.

In Figs. 2(a—d), we present plots of B(Z m e r+ +
e r ) as a function of m~, M~, Mh, , and 0~ while keep-
ing fixed the remaining kinematic parameters each time.
In Fig. 2(a), we see the characteristic quadric, m~/M~,
dependence of the branching ratio [3, 15]. The dashed,
dotted, and dash-dotted lines represent results coming
purely from the SU(2)R sector for (sl ) = 0.040, 0.030,

and 0.020, respectively. The solid lines i, ii, and iii corre-
spond to a complete computation for the three difFerent
LF mixings mentioned above. If we assume some typ-
ical values for the rest of the parameters, i.e. , MR
0.4 TeV, Mh ——30 TeV, and 0R —— 0, we find that
B(Z -+ e r+ + e+r ) & 2. 10 for m~ = 3 TeV. Al-
though the size of new physics efFects may be probed at
LEP, the reported value is still B(Z ~ er) ( 10,and it
does not yet impose rather severe constraints on the pa-
rameter space of the theory. This conclusion is also sup-
ported by Figs. 2(b—d). In Fig. 2(c), it is worth observ-
ing the logarithmic dependence of the branching ratio on
the mass ratio Mg/M~, which can also render the decay
channel Z ~ er measurable. In Fig. 2(d), one can fur-
ther see the strong dependence of B(Z ~ e 7.++ e+r )
on 0R. However, a similar, though complementary, be-
havior will be found to be present in the observables Ub,
and AA.

We now proceed by examining numerically the de-
pendence of t;he universality-breaking parameter Ub,
as a function of various kinematic variables shown in
Figs. 3(a—d). Again, we observe the nondecoupling be-
havior of the heavy neutrino mass in the observable
Ub, [4], which is closely related to potentially large
SU(2)L, Dirac mass terms, mD, present in our model [15].
The size of new physics becomes significant for m, ~ & 3
TeV, i.e., Ub, 4—5 x 10 . In Fig. 3(b), we see that
the value of Ub, decreases rapidly as MR increases. In
Fig. 3(c), we remark again on the logarithmic depen-
dence of Ub, on Mz/M&. In our estimates, we have used
a Cabibbo-type angle 0R ——45', which turns out to be
a rather moderate value as is displayed in Fig. 3(d). As
has been mentioned above, the electroweak corrections
originating genuinely from the SU(2)~ sector depend on
the angle 8~. Looking at Fig. 3(d), one can readily see
that the choice 0R ——45 gives smaller efFects of nonuni-
versality in the leptonic partial widths of the Z boson. If
we had chosen OR ———45, in such a case we would have
obtained much stronger combined bounds on the mass
parameters and LF mixings.

One may get the impression that new-physics efFects
can be minimized by selecting 0R to lie in a specific range.
This is, however, not true, since the universality-breaking
parameter AA~, ~, will play a complementary role as is
shown in Figs. 4(a—d). In Fig. 4, we list the results af-
ter adding both contributions coming from SU(2)L, and
SU(2)~ gauge sectors. Thus, we may be sensitive up to
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m~ ( 1.5 TeV for (sz )2 = 0.04 and (sz')2 = 0.01 [see
Fig. 4(a)]. In Fig. 4(b), we display the decoupling effect of
a very heavy WR. In Fig. 4(c), we find again the logarith-
mic enhancement caused by the nondegeneracy between
W& and h,+. In addition, it should be noted that inter-
esting phenomenology can only arise for relatively light
W~ bosons, i.e. , M~ ( 1 TeV. The latter observation can
also be verified from Fig. 4(d), in which AA is drawn as
a function of 0~ for M~ ——0.4, 0.6, and 0.8 TeV. Fur-
thermore, one can recognize the complementary role that
&(& m lil2), Ub» and AA play as far as 0~ is concerned,
when comparing Figs. 2 (d), 3(d), and 4(d). For exam-
ple, the choice 0~ = —45' would make AA more difficult

to observe, whereas Ub„becomes larger for this value of
0~. Of course, scenarios where M~ is at the TeV scale
may not be compatible with Kg-Ks phenomenology if
we assume an exact left-right symmetry in the Yukawa
sector of the model. Nevertheless, in LRSM's that pos-
sess nonmanifest or pseudomanifest left-right symmetry,
such a constraint is not valid any longer [26].

In the following, we will try to address the question
of whether there exist possibilities of inducing positive
contributions to Bb within our LRSM. As has already
been noticed in Sec. III, only positive contributions to
Rb are of potential interest, which will help to achieve a
better agreement between theoretical prediction and the
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experimental value of Bg. In the LRSM, we Grst consider
the Feynman graphs 1(m) and 1(n), where the external
leptons are replaced by b quarks and virtual down-type
quarks are running in the place of charged leptons. The
interaction Lagrangians of the flavor-changing scalars iti2o'

and qP&' with the d, s, b quarks can be obtained by
Eq. (A17) after making the obvious replacements. These
couplings are enhanced, as they are proportional to the
top-quark mass. In fact, the Havor-changing scalars gen-
erate effective Zbb couplings of both V—A and V + A
nature. In the limit M&0, M&0' )& Mz, the effective
Zbb couplings take the simple form

R [I'bb(, ) —Ebb(0)]

where Ag and Al are defined in Appendix 8 after
Eq. (Bl). The analytic function in the parentheses of the
right-hand side (RHS) of Eqs. (4.1) and (4.2) is always
positive and equals zero when the two scalars Po2',

are degenerate. Substituting Eqs. (4.1) and (4.2) into
Eq. (3.14), one finds that the SM value of Bb gets further
decreased. This leads automatically to the restriction

R [r,",(m, ) —r,",(O)]

m2

M~o. M@0, . (4 3)

The mass relation (4.3) has been used throughout our
numerical estimates.

Other quantum corrections that could help to produce
positive contributions to Bb are due to diagrams similar
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to Figs. 1(h) and l(d), which involve the t and b quarks.
Indeed, an analogous calculation gives

Re[1'bb(m~) —I'bb(o)] = ——
I v~b I'

2 &pep

( Ab + ACC Ab
X ln

( 2(Ab —
ACC) ACC

(4.4)
However, the RHS of Eq. (4.4) is proportional to sp2

M~~/M&~ yielding a rather small effect. If we insist on
caiiceling the negative SM vertex correction V'AM(m~)
through the contribution (4.4), we find the highly unnat-
ural mass ratio

Mg
e

M~

The latter also demonstrates the difhculty to obtain ra-
diatively positive contributions to Bb within the LRSM.
In Ref. [27], it has been indicated that Zc, -Zcc mixing

efFects may produce contributions of either sign to Rb.
We will not pursue this topic here. Instead, we review
in short the theoretical situation for a possible positive
increase of Rb, as it has been predicted in various exten-
sions of the SM so far.

In the minimal supersymmetric (SUSY) SM, Rb can,
in principle, receive a positive shift coming kom the large
Yukawa coupling of the charged Higgsino to the scalar t
and b quarks [28]. Rb can also get enhanced &om large
~anP scenarios [28, 29]. However, considering a num-
ber of constraints originating Rom B(b ~ sp) measure-
ments, relic abundances of the lightest SUSY particle,
the net SUSY effect on Rb is considerably reduced and
Rb is found to be 0.2166, which is still about 1.5o be-
low the experimental value given in Eq. (3.11) [30]. In
this context, a wide class of extended techicolor theories
gives rise to a negative shift to Bb [29]. An interesting
exception to this feature is specific technicolor models, in
which fermion masses are generated radiatively via mix-
ing of technibaryons [31].
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V. CONCLUSIONS

We have shown that lepton-flavor-violating Z-boson
decays, lepton universality in the decays Z —+ Ll, and uni-
versality of lepton asymmetries at LEP/SLC represent a
set of complementary observables and can hence impose
severe limitations on model building in the leptonic sec-
tor. For our illustrative purposes, we have considered a
LRSM with two-generation mixing. We have found that
the observables B(Z ~ lql2), Ub', ",and AA~, ~, are sensi-
tive to different parameter-space regions of this minimal
scenario. For instance, if (s& ) = 0.03, (s& )

2 = 0.01,
M~ ——0.4 TeV, and Mh ——30 TeV, then heavy neutrinos
are found to have masses that do not exceed 2 TeV for
any value of the Cabibbo-type angle 0~. On the other
hand, constraints on new physics from Bb prefer scenarios
in which flavor-changing scalars are degenerate in mass.

It may be worth remarking again the fact that LRSM's
can naturally predict Ub, 0, for some choice of pa-
rameters, which could naively be interpreted that lepton

universality is preserved in nature. As has been shown
in this paper, universality violation can manifest itself
in lepton asymmetries AA~, ~, as well. This is, however,
not an accidental feature of the LRSM but may have a
general applicability to unified models, such as supersym-
metric extensions of the SM [5]. In general, such theories
can naturally generate both nonuniversal V—A and V+ A
Zf f couplings, yielding effects that may be detected by
current experiments at LEP and SLC.
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APPENDIX A: FEYNMAN RULES IN THE LRSM

Although some of the Feynman rules required in our
problem were given in Refs. [9, ll], we list all the rele-
vant Feynman rules and Lagrangians governing the inter-
actions of the gauge and Higgs bosons with leptons and
neutrinos, as well as the trilinear couplings of the bosons.
The covariant derivative acts on the Higgs multiplets as
follows:

2

ZL, (r)w&&(p)w&&(q):ig —f&„g(q, r, p),
C~

2

ZI,„(r)Gl+ (p) WI „(q): i g —Mg —g„,c~
2 2

Zl.„(r)GR (p) WR„(q): xg M
~pen

ZL,„(r)h+ (p) W~„(q): i g —M~ g„—„,
C~

(As)

(A6)

(A7)

Z,„(r)Wi~(p)Wi~(q): ig c f„„—„(q, r, p), (A3)

DI C' =O„c'+ x—o WL, ~@ —i 4'8. WR„) (Al)

D„b,~ I. ——cj„A~ L, +i ' [o.w~ 1.„,An I.]

+ig'B„LR L,

where o.; are the known 2 x 2 Pauli matrices, and gL
[g~] are the SU(2)L, [SU(2)~] weak coupling constants
which will be set equal to g = gl, = gR [g is the usual
SU(2)1. weak coupling constant in the SM]. To facilitate
our computational task, we will further assume that the
corresponding neutral gauge boson ZL is the Z of the
SM to a good approximation. Also, we will list the novel
LRSM interactions together with the SM couplings in
order to avoid possible ambiguities between relative signs.

The trilinear couplings of gauge, Higgs, and would-
be Goldstone bosons may therefore be obtained by (all
momenta fiow into the vertex)

z „( )G+(p)G

ZL ~(&)Ga(p) G~(q)

ZL,„(r)h+ (p) h (q)

zl ~(&)Gz(p) h+(q)

Z~~(r)& (p)&2'(q)

ZLp(&)4+(p)4 (q)

(1 —2s' ) (p —q) ~ (A8)

i —(sp —2s')(p —q)„, (A9)

: —i (cp —2s ) (p —q) „, (A10)

: ~i spcp(p —q)„, (Al j )2c~
g~

(p —q)~2c~

: 2i s (p —q)„. (A13)
C~

(A12)

Here, we have defined sp = 1 —c&
——M~/MR and the

Lorentz tensor f&„g(q, r, p) = (r —q) pg„+ (q —p) gp~ +
(p —r),g.~.

The corresponding couplings of the gauge, Higgs, and
would-be Goldstone bosons to the charged leptons and
neutrinos can be read ofI' from the Lagrangians

(A14)

sp G~Bh l m(PR —m„,Pg n,;.GR g1U R
2M~

H.c., (Als)

cP h, l B) m)PR —B) b~;—
2M~

GR*)2'e

2 I
m . PL

Cp
H.c., (A16)

R* R L*lx B& zm„, B& ~P~+ B&;m„,B&,~PI, l2 —
2M

. p2'lx Bi,~m„, BI,,*PR —BI,,m„, B( ~PI. l2,

(A17)

Int
2 2M R H.c., (A18)

where the mixing matrices B+ and C are defined in Sec. II, qP2' ——Re(gz)/v 2, and qP&'
——Im($2)/v 2. The couplings

of Zl. (—:Z) to Majorana neutrinos may be found in Ref. [13].

APPENDIX B:THE NONOBLIQUE ZLL VERTEX

Ke analytically evaluate the loop amplitudes in the limit of vanishing external lepton masses. %e adopt dimensional
regularization in conjunction with the reduction algorithm of Ref. [32]. Unlike the metric notation of Ref. [32], we
use the Minkowskian metric, g~" = diag(l, 1, ..., —1).

The nonoblique effective Zll' vertex function is similar to the one obtained in [3]. Its analytic form is given by
(summation over repeated indices implied)
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1'„, = B„B,,; . 0;, . A (C , (A, , 1, 1) + C, (A, , 1, 1) —C , (A, , 1, 1))

+6c C24(A;, 1, 1) —s A;C()(A;, 1, 1) + —(1 —23 ) [A, C24(A;, 1, 1)
2

+ A;B—i(0, A;, 1) + Bi(0, A;, 1)]
1
2

'

++~ —+24 1 ~ ~~ ——~++0 1 ~' ~~ ++ii2 2

1
+Css(1, A', Ar) Css(1, A, Ar)] — A'Arcs(1, 1,Aj))4

+—C */A A& C()(l A A&) + —Az[C23(l A' A~) C22(l A Aj)] + C24(1, A, , A, )

1 R 1+—C; QA;A~ 2C24(0, A&, AI) —C24(A&, 0, 0) —C24(AI, 0, 0) +—

+s ]Br(0,0, As)+Br(0, 0, Ar)] ——Az]Css(As, 0, 0) —C»(As, 0, 0)+Css(Ar, 0, 0) —Css(Ar, 0, 0)])2

where A; = m /Mi4„Az = Mz/M~, As = M&0„/M~, and AI = M@„/Mi4, . Note that there is a contribution
2 2

proportional to C;. that originates solely from the Higgs sector of the LRSM. In the notation of [33], the first three
of the six arguments of the C functions are always evaluated at (0, Az, 0).

In the LRSM, virtual neutrinos and Higgs scalars induce a nonuniversal Z boson coupling to right-handed charged
leptons, I', as shovrn in Fig. 1. The contributions of the individual graphs to I are listed beloved:

( ) B 'B ' Az[C (A' AR AR) C (A AR AR) C (A' AR A )] 6C (A' AR AR)

I'ii, (t) + c) = Bl; Bp,*(s —sp)A, C()(A;, AR, AR),

I'„,(d) = B„Blrz*sp(s—p —.2s~) A, C24(A;, AR, AR),
2

~ll (e + f) = Bi";Bij —(4—SpA; —QA;A, C,, ) [Co(A;, AR, Alz) + CO(A, , AR, A)A)],2

I'ii, (g) = Bii,B,,„*/A—),A„1—
2 ~

(sphi, ; —C„,)(sp8,„—C;„)C (A;, A, A ),2 ( cp

r„,(h, + 2) = —-B,",B,",,*-gA, A,'p(.pb, , —C,',.) [C..(A;, AR, A, ) + C„(A, , AR, Aa)],2

I'iir(j) = Bl, Blrj I C~——1 —2C24(ARs AisAj) AZ[CO(AR1AisAj) + Cll(A» Air Aj)

(a2)

(a3)

(a4)

(a5)

+Css(ARA;, A, ) —Cs,s(Az, A;, A, )]) + C;, sr A;ArCs(AzA;, A, ) i, ,

Ills�(k)

BliBl'j Sp/AiAj] Ci~ 2C24(AR1AisAj) + AZ[C23(AR1AisAj)2 2

—Css(AR, A;, A, )]) —C;,*11'A;ArCs(AR, A. , A, )

rP(1) = —-'B,"„B,, „'sr'A, A„—', (,*0„,—C„',)( '0„, —C,'.„) i C,',. (0C„(A„,A, , A, }—-'

(a9)

+A, (C»(A„, A„A, ) -C»(A„, A„Ar)]) —C,', QA;ArCs(A. , A„Ar) l, (a10)
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r«, (m+ n) = —B—PB, ,*C,, QA, A, C24(0, As AI)
2

I', , (a+p) = —s„.s, 'o,. (1 —2s )gAA (2C~4(Ag, 0, 0) + 2cg4(Aq, 0, 0) —1
z l'2 z2

+A+(cg3(AQ 0 0) C22(Ag 0 0) + c23(AJ 0 0) c22(AI o o)]),

82

rP&, (q) = BPB—P'C; *s —. gA;A C24(O, Ap, Ag),

(811)

(812)

(813)

82

r, ) (r) = — B);B—
( *C; *s —QA;A. 2C (As, o, o) ——+ Az[C2s(Ab, o, o) —C22(Ag, o, o)]

Cp
(814)

/Mz and A~ = M2++/Mw2. In addition to the irreducible three-point functions, we should takeg++
wave-function renormalization constants into account [Figs. 1(A)—1(F)]. These additional nonuniversal corrections
generated by the self-energies are calculated to give

rp(, (A) = — Bti Bp—;*s~ [1 + 2Bi (0, A;, A R)],2

I'„,(B) = — B„B,,;*—s spA;B (O, A;, A ),2
2

rR, (C) = a,"„a,",—„' -'; gA, A„—( S2b„—C„',)(s~zh;„—C,'„)a,(O, A, , A, ),

rR, (D+ @)= —-aRa,",,*C,',-s' QA, A, [a, (O, O, A, ) + a, (O, O, AI)],4 li l'g zg

82

re, (p') = Bi;Bi,'C,—* —QA-;.A B (O, O, A ).

(816)

(817)

(818)

(819)

The sum of Eqs. (82)—(819) should be free Rom UV divergences, when E g I . This can easily be verified by employing
the identities that the mixing matrices B ' and C ' obey (see also discussion in Sec. II). An ultimate check for the
correctness of our analytic results is the vanishing of all terms involving s in the limit Az ~ 0, due to a vectorlike
Ward identity associated with the electromagnetic current.
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