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We evaluate zeta functions ((s) at s = 0 for invariant nonminimal second-order vector and tensor
operators defined on maximally symmetric even dimensional spaces. We decompose the operators
into their irreducible parts and obtain their corresponding eigenvalues. Using these eigenvalues, we
are able to explicitly calculate ((0) for the cases of Euclidean spaces and ¹pheres. In the ¹phere
case, we make use of the Euler-Maclaurin formula to develop asymptotic expansions for the required
sums. The resulting ((0) values for dimensions 2 to 10 are given in the Appendix.

PACS number(s): 04.62.+v, 11.10.Kk

I. INTRODUCTION

The effective potential formalism has been used by Ap-
pelquist and Chodos [1] and many others (see [2] for a
complete list) to consider the problem of spontaneous
compactification in Kaluza-Klein (KK) theories. The
hope was to explain the smallness of the extra dimen-
sions by using quantum gravity effects. It was soon real-
ized that the standard effective action produced results
that were dependent on the choice of the quantum gauge-
fixing condition [3,4] and that all conclusions about sta-
bility drawn from this standard efFective action (some-
times called the naive effective action) were questionable.
This problem was resolved [5,6] by the use of a new ef-
fective action, first introduced by Vilkovisky [7] and De-
Witt [8]. This new efFective action, now known as the
Vilkovisky-DeWitt (VD) effective action, has the merit
of being gauge choice independent.

However, progress in compactification has never recu-
perated from the setback [9, 10]. The primary reason
is that even at the one-loop level the VD effective ac-

tion involves determinants of operators with complicated
nonlocal terms (in most gauges). In [11],we considered
the six-dimensional case for a general background space-
time using the method of Barvinsky and Vilkovisky [12]
to deal with the nonlocal terms. Because of the complex-
ity of this calculation, it seems quite impossible to push
this method to higher dimensions.

The situation can be improved if one chooses the
Landau-DeWitt gauge. Since the VD effective action is
independent of gauge choice, one can of course choose
whatever gauge is convenient to work with, without al-
tering the final result. In the Landau-DeWitt gauge the
nonlocal terms are identically zero [13]. Although the
operators simplify tremendously, they remain nonmini-
mal (see [12] and [14]); that is, they involve second-order
covariant derivative terms other than just the Laplacian.
More explicitly, one has to deal with vector operators of
the form

M~ p
———bp +a% V'p —P p,

and the tensor operators of the form,

Mz = -b b U+aib( V' 7'
) + a2gp V' V' + asg V'(pV )

—P p (1.2)

where A( Bl )—:(A Bl + A~B )/2. Here we have
included the most frequently encountered nonminimal
second-order terms.

To date progress in evaluating determinants of such
operators for dimensions beyond 6 has only been made
for KK backgrounds of the form R x Tg (with B
usually taken to be fiat) and consequently progress with
KK compactification beyond these simple backgrounds

I

has halted [15]. More interesting backgrounds such as
Sd or B4 x S~ 4 have, so far, resisted all efForts [16]. In
this paper we make progress in evaluating determinants
of such nonminimal operators on nonfIat backgrounds of
the form Sg.

Using ( function regularization the one-loop quantum
contribution to the effective action can be expressed in
terms of the ( function for the appropriate operator as

1I'i ————g (0) —((0) 1np,
2

(1 3)
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where p is the renormalization scale. As a first step to-
wards obtaining the VD effective action, we shall in this
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paper concentrate on the evaluation of the zeta function
((s) at s = 0 for the nonminimal vector and tensor oper-
ators in even dimensions. Of course, these considerations
will also be useful in the usual effective action formalism
when one chooses to work with gauges other than the
Feynman gauge where the operators are minimal.

In the next section, we obtain eigenvalues for the vec-
tor operator Mv and the tensor operator Mz in maxi-
mally symmetric spaces, by decomposing the eigenfunc-
tions for M~ into transverse and longitudinal parts,
and for MT into transverse-traceless (TT), longitudinal-
transverse-traceless (LTT), longitudinal-longitudinal-
traceless (LLT) and trace (Tr) parts [17]. In Sec. III, we
explicitly evaluate g(0) in Euclidean space. Then in Sec.
IV, we extend the results to N-spheres using the Euler-
Maclaurin formula to develop asymptotic expansions for
the relevant summations [18]. Finally, the conclusions
are given in Sec. V. In the Appendix we summarize ((0)
values for various cases.

VQ TQ + Lcx (2 8)

Acting with the operator Mv on T gives

Mv pTP = hp( — P—) + a'(7 V'p TP,
= (— P)—T (2 9)

because of the transverse property of T . For I the
result is

Mv pLP = hp( —Cl P) +— V' V'p 7'PS
= [

—(1 —a) P] V—' S+ a[(7, ]S . (2.10)

which for maximally symmetric spaces simplifies to

To evaluate the commutator, we use the defining identity
for the Riemann tensor:

&"-p—T(' —&'-pT'( +"'
(2.11)

II. EIGENVALUES IN MAXIMALLY
SYMMETRIC SPACES

The ( function for an operator M is defined as

[V', V'p]T~ =K(b~"Tp " —b) T "
)

+~(b T'p —bpT'"' )+"'
(2.12)

The commutator in Eq. (2.10) becomes

(M(S) = ) A

A

(2.1) [9',Cl]S = g~ [V', V'pV' ]S
= v, (1 —N)(7 S (2.IS)

+pvap = &(gpagvp gppgua) ~

B„„=K(N —1)g„
R = K1V (1V —1),

(2.2)

(2.3)
(2.4)

where A's are the eigenvalues of the operator M. There-
fore, to calculate ((s) for Mv and MT, we must first
obtain eigenvalues for these operators. Here we assume
that our background spacetime is a maximally symmet-
ric space in which the Riemann tensor, the Ricci tensor,
and the scalar curvature are given by

and thus

Mv pLP = [
—(1 —a) U P —av(N ——1)]L . (2.14)

Using Eqs. (2.9) and (2.14) one can obtain the eigenval-
ues of the vector operator M~ when the corresponding
eigenvalues for the I aplacian are known.

B. Tensor case

where N is the dimension of the space and v is a constant.

A. Vector case

Mv p
——hp( —U P) + aV V'p, — (2.5)

with P and a constants. The eigenfunctions V of M~
can be decomposed [17] into a transverse part T

V.T- =0, (2.6)

and a longitudinal part I, which is the gradient of a
scalar function S:

L =V' S, (2.7)

We first consider the vector operator Mv of (1.1). For
M~ to be invariant in maximally symmetric spaces, the
function P p must be proportional to b&. i.e. ,

P-P,.= Ph(-hP) + Qg.Pg... (2.15)

with P and Q being constants. The tensor operator thus
becomes

M P = (— P)h( hP) —Qg P—g + a h(( V'P)V'
)

+a2gp~V V + asg V'(pV ) . (2.16)

The eigenfunctions H P of Mz can be decomposed [17]
into the TT part T ~, where

V'.T-~ = 0,
T =0,

(2.17)
(2.18)

Similar consideration can be applied to the invariant
tensor operator M~. In maximally symmetric spaces, the
functions P ~~ can involve only two difFerent invariant

tensors: b~ b and g ~g~ . One can thus write

with the I TT part L, where
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Zp + ~p~

for some transverse vector T with

(2 19) Therefore,

~cap ycxp + LT~p + LL p + npIIpg (2.22)

V' T =0,
the LLT part I,where

(2.20)
Acting with Mz on T P and I, and with the helpz p

of the identity in Eq. (2.12), we have

IL~p gagpI + gpgcxL ap L
N

(2.21)

for some scalar function I, and the Tr part g ~H"„/N.

Mz ~p T~ =(—0 P)T—~, (2.23)

Mz ~ L = [—(1 —2a&) CI P ——a~~]L . (2.24)

However, when acting on the LLT part and the Tr part,

M~ L = — 1 —
~

1 ——
~

aq 0 P —rc—aq(N —1) L,
Lp~ ( 1& Lap

N)
( (1+ 211 ——I(o~+&sN)( +~N)

I

—g ~&L
IN) qN

( 1 „) a~ (1
M'T .I

—g"H"
I

= — 1 — —+ a2 + as & —P —NQ
qN "y N qN ")

—ya, ( —2~N) ~V V' +V'V' ——g
1 Gy ( p p 2 p

'l (1
2 N

(2.25)

(2.26)

We see that the second term in Eq. (2.25) involves
g ~ 0 L/N, which is the trace part of the function

V'~lL, while the second term in Eq. (2.26) involves
(V' V'~ + V'~V' —~g ~ ) (zH~&)), which belongs to
the LLT part. Hence, the functions in the LLT part
and the Tr part are coupled together as long as the op-
erator is nonminimal (unless a2 ——as ———aq/N). To
Gnd the eigenfunctions and the corresponding eigenval-
ues one must take the appropriate linear combinations of
the functions in these two parts. In the following sections
we shall demonstrate explicitly how this can be done for
Euclidean spaces and N-spheres.

with eigenvalues

A~ —k' —P (3.1)

Al, = (1 —a)k —P . (3.2)

Thus the ( function is

g(s) = (N —1)) (k —P) 'g) [(1 —a)k' —P]

(3.3)

and one eigenfunction in the longitudinal part with eigen-
value

III. ( FUNCTIONS ON EUCLIDEAN SPACES

In this section, we calculate the ( functions for the
vector and tensor operators in N-dimensional Euclidean
spaces. In this simple case where K = 0, the eigenvalues
for the Laplacian are just —k, with the eigenfunctions
Fourier transformed to momentum space.

The sum over k is an integral because A: is a continuous
variable,

A. Vector case (3.4)

For the vector operator, &om Eqs. (2.9) and (2.14),
there are (N —1) eigenfunctions in the transverse part

I

where V~ is the volume of the N-dimensional space (N
= even). Therefore,

and

g~(0) =
(4 )~(~(N/2), (1 —a) + (N —1) P

(3.5)

(3.6)
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B. Tensor case

For the tensor operator, there are 2 (N —2)(N + 1) eigenfunctions in the TT part with eigenvalues

App ——k —P
and (N —1) eigenfunctions in the LTT part with eigenvalues

(3.7)

(3.8)

The g functions corresponding to these two parts are

(3.9)

NI2

(3.10)

The functions in the I IT and the Tr parts are coupled together as shown in Sec. II. By diagonalizing the matrix of
which the elements are given by the coefficients in Eqs. (2.25) and (2.26), we can see that the two eigenvalues Ai and
A2 corresponding to these two parts satisfy the equations

A~+ A2 ——o.,k'+ p, ,

AgA2 ——A~k + C~k + E, ,

(3.11)
(3.12)

where

n, = 2 —(ai+a2+ as),
2P —N—Q,

A, = 1 —(ai + a2 + as) —a2as(N —1),
C, = —[2 —(ai + a2 + as)]P —[N —(N —1)ai]Q,
E. = P(P+NQ) .

(3.13)
(3.14)
(3.15)
(3.16)
(3.17)

Since Ai and A2 are not polynomials in k, it is very difficult to do the k integration to obtain the corresponding (
functions. In fact, we have

A, = — (n.k'+ p. ) + g(n. k2+ p.)' —4(A.k4+ C.k2+ Z.)2

A2 ——— (n, k + p, ) —Q(n, k2 + p, )2 —4(A, k4 + C, k~ + E,)2

(3.1S)

(3.19)

However, we are interested in the t,
' function at s = 0, and this depends only on the small 7 behavior in the integrand

of the ~ integral like the one in Eq. (3.4). To extract the small w behavior from the integral over k, we need only to
concentrate on the part of large k. Hence, we can expand Ai and A2 as a power series in I/k, and we shall see in the
following that only the first few terms will contribute to (~ + '(0). Expanding

1 2——k
2

(3.20)

we can evaluate the ( function for the LLT and the Tr parts:

d~k

v= lim dwv' & e "'+e "'j
s~o I'(s) o (27r)~-

"/1 '92

&n2(n2 —2& ) l i'
2 2gogi (3.21)
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Note that the last step involves a rescaling

1 + Ql —4A /a2 (3.22)

In this power series form, the integrations over k and 7 can be performed. To be explicit, we consider the N = 2 case.
The A: integral in Eq. (3.21) becomes

f v,
e "

~

2 — 'Qn2 —4A, go
~

+
(2~)~ ( 2A. ) 4~ n.~

1
Qn2 —4A, go

e
(3.23)

We have left out the terms which, after the integration over 7., will vanish when the limit s ~ 0 is taken. prom
Eq. (3.20),

o.e Ce —2Aepe

n. gn.' —4A.
(3.24)

Using this result and Eq. (3.23), the sum of the ( functions for the LLT and the Tr parts for N = 2 is

OO

+ '(0) = lim
' d7-z' 'e=. O(4~)r(.),(, (

4~ qA ) q A. )

4

0!e7

1 ga.'—4A. q,
e

(3.25)

Finally the ( function for the tensor operator on a two-dimensional Euclidean space is

(T (0) (TT
(0) ~ (LTT (0) ~ (LLT+Tr (0)

Vq ( 2 nl (aq —2l
4vr (az —2 A ) 5 A, j (3.26)

where n, and A, are given in Eqs. (3.13) and (3.15) with N = 2.
One can extend this procedure to higher even dimensions. However, the number of terms involved increases very

quickly and the answers are too lengthy to be written down in any simple way. We choose to list results in the
Appendix for only the special case in which ai ———2a2, a3 ——0, and with dimensions up to 10. This case is of special
interest because the tensor operator with these parametrizations corresponds to the graviton operator in Einstein
gravity with the covariant gauge-fixing Lagrangian:

(3.27)

Here h~„ is the graviton field, and a2 ~ oo gives the
Landau-DeWitt gauge that we have mentioned in Sec. I.

IV. g FUNCTIONS ON 1V-SPHERES

l(l + N —1) —1
l r2

l(l + N —1)(2l + N —l)(l + N —3)!
(N —2)!(l i 1)!

(4.2)

(4.3)

where E = 1, 2, 3, . . . . For the longitudinal part, they are

K =
r2 (4 1)

In this section we extend the considerations of the last
section to N-spheres. We use the eigenvalues and the
degeneracies for the Laplacian given in [17]. For spheres,

l(l + N —1) —(N —1)
l r2

(2l + N —1)(l + N —2)!
l!(N —1)!

(4.4)

(4.5)

where r is the radius of the sphere.

A. Vector case

From [17], the eigenvalues and the degeneracies for the
Laplacian of the transverse part of the vector operator
are

where l = 1, 2, 3, . . . . Putting these into Eqs. (2.9) and
(2.14), we obtain the eigenvalues for the transverse part
of the vector operator,

(4.6)

with degeneracies D& (N), and for the longitudinal part
the eigenvalues,
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(1 —a) [l(l + N —1) —(N —1)]
r2

R(N —1) (4.7)

C(s) = ):(Di (N)[&i (N)1 '+ Di'(N)[&~'(N)] ')
l=z

,(a) + g (s) . (4 S)

with degeneracies D+&(N). The ( function is thus given
by

Consider first g~(s):

( ( ) =).D (N)[& (N)l '

= ) .Di+i(N)[&t+i(N)] '
l=o

OO

I'(s) o

d~r' ') D~ (N)e ~"~+~(~! . (4.9)~ ~

For example, for N = 2, we have

(z (s) = dew' ) (2l + 3) exp —w
~

—P
~

T s —i ( (l + 1)(l + 2) —1
I' s 0 l 0

r'
+2s OO

&( I'~'+—i) —) (2l + 3) &(& +a&)

I (a) 0
(4.10)

Since we just want to evaluate ( functions at s = 0, we can concern ourselves with the small r behavior of the
integrand above. It is sufficient to have an asymptotic expansion of the l sum for small 7 to evaluate Eq. (4.10). This
can be achieved using the Euler-Maclaurin forxnula [18]

(4.11)

where B2g are the Bernoulli numbers. Using this formula, the sum in (2 (a) can be expanded into

) (21+3)e ('+s'! = —+ —+O(~) .1 4
7 3

1,=0
(4.12)

When this asymptotic expansion is put back into Eq. (4.10), the terms with order w or higher in the expansion will
vanish as a -+ 0 (because I'(s) I/s). Therefore,

q, (0) = »m= .~0 r(s), &~ 3)
=(Pr )+ —. (4.13)

Similarly, for (2~(s), we have

Hence,

(o) =(, (o)+~,'(0)

+11(Pr')+
Igl —u ) ql —a 3)

(4.14)

(4.15)

We have extended this procedure up to N = 10, and the result is summarized in the Appendix.

B. Tensor case

From [17], the eigenvalues and degeneracies for the Laplacian of the TT part of the tensor operator are

l(l+ N —1) —2
r2

(N +. 1)(N —2) (l + N) (l —1)(2l + N —1)(l + N —3)!
(N) =

2(N —1)!(l+ 1)t
(4.16)
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with l = 2, 3, . . . . For the LTT part, they are

l(l + N —1) —(N + 2)
l p2 )

l(l+ N —1)(2l+ N —1)(l+ N —3)!
(N —2)!(l + 1)!

eigenvalues are

Gy—P ——
r2 ' (4.21)

ag fl('l + N —1) —(N + 2) )
r2

with l = 2, 3, . . . . For the LLT part, they are

l(l + N —1) —2N
l r2

LLT (2l + N —1)(l + N —2).
l!(N —1)!

(4.17)

(4.18)

with degeneracies D& (N). One can see that they are
very similar to the ones in the vector case, and so it is
straightforward to obtain the ( function corresponding
to these two parts, g (0) and (N (0), of the tensor
operator using the same method as in the case of the
vector operator. For example, for N = 2 we have

(0) = 0 ,

with I = 2, 3, . . . . For the Tr part, they are

l(l+ N —1)

(2l + N —1)(l + N —2)!
l!(N —1)! (4.19)

l(l + N —1) —2
r2 ) (4.20)

with degeneracies D& (N), and for the LTT part the

with l = 0, 1, 2, . . . . Thus, &om Eqs. (2.23) and (2.24),
the eigenvalues for the TT part of the tensor operator
are

qLLT (0)
2 2 ( 4 5't

(Pr') —
~

+ —
~

. (4.22)
(ag —2) ga, —2 3p

A, +A, = —,[nl +Pl+ad],=1 2

A, A, = —,(Al'+ Bl'+ Cl'+ Dl + E),

(4.23)

(4.24)

where

For the LLT and the Tr parts, the situation is more
complicated because the functions are coupled together.
As in the Euclidean case, we can obtain the following
relations for the eigenvalues from Eqs. (2.25) and (2.26):

n = 2 —(ag + a2+ as),
P = (N —1)n,
p = —2(Pr') —NQr'+ (N —l)(ag —2) —2,
A = 1 —(ag + a2 + as) —(N —1)a2as,
B = 2(N —1)A,

C = + (N —1)'A,
N —1

D = —(N —l)n(Pr ) + (N —1) (ag —2)Qr —(N —1)(2 —N)Qr
—N(N —1)A —N(N —1)n —(N —1) (aq —2) + (N —1)(2 —N),

E = —[~+ (Pr'+ NQr')][Pr'+ NQr'] .

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

(4.30)

(4»)
(4.32)

Note that the degeneracies DOLT(N) and D& '(N) are the same because they are both concerned with scalar
functions, I and H~&. However, I starts from 2 in the LLT part, while l starts from 0 in the Tr part. Thus the cases
with l = 0 and 1 in the Tr part have to be separated out. The ( function for these two coupled parts becomes

(~" + '(s) = ) D, '(N) Ai'+ A2' + Do'(N)( P —NQ)—
l=2

Tl Qy N
+13 '(iV) 1 — —+a2+as ——P —AQJ1 r2

As 8 —+ 0, which is the limit we shall ultimately take,

(4.33)

+ '(0) = lim ) D, '(N)[A, '+ A2'] + Do (N) + D, '(N)
l=2

= lim ) D, '(N) IA~'+ A2'] —(N+ 2),
1=0

(4.34)
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because

For Aq and A2, we have

D~ (N) = Di'(N) = N+ 1 .
(4.35)
(4.36)

, [(n/'+ p/+ p) + g(n/'+ p/+ p)' —4(A/'+ B/'+ C/'+ D/+ E)], (4.37)

A2 — [(nl + pl + p) &&&&
(n/2 + pl + p) —4(A/ + BP + C/2 + D/ + E)] (4.3S)

Since the eigenvalues are not polynomials in l, we cannot (as in the vector case) apply the Euler-Maclaurin formula
directly to obtain the asymptotic series in w. As was done in the Euclidean case, we first expand Aq and A2 as power
series in I//, and then use the Euler-Maclaurin formula to evaluate the sums over /. Suppose that

)2
2

P &q' r B C D Eq ( P
I
n+ —+ —

I

—4
I
A+ + + +

I

—
I

n+ —+ —
I

I — —= &o+ + +" . (4»)
l /') q l l' P /4) q l l2) n'

There is no l term in this expansion because we have explicitly subtracted. it out. The I, term also vanishes as a result
of the form of P and B in Eqs. (4.26) and (4.29). With this expansion we can evaluate the sum in Eq. (4.34):

lim ) D, '(N)[A~ '+ A2']
j=o

lim ) D, (N)
1

s-+o ' I'(s)

1= lim
s-+o I'(s)

OO OO

d7-~' e 2~ ) D( '(N)e ~~ ' +~1 2 — v n —4A
~
(o+ —+ —+

fn (n —2A) ) 6 2(o(g (4.40)

This last step involves a scaling

1 + 1r2 (4.41)

In this form, one can now apply the Euler-Maclaurin formula to obtain an asymptotic series for small ~ for the sum.
To be explicit, we consider the N = 2 case, where the sum in Eq. (4.40) becomes,

) y&&).--*&-"+"& 2 —'
&&'~' —4~g )+2A1=0

4 /2 1+ j

———qn' —4A(o
I
+ (4 42)

Again we have left out the terms which, after the integration over w, will vanish when the limit s —+ 0 is taken. Putting
the expressions from Eq. (4.25) to Eq. (4.32), with N = 2, into the expansion in Eq. (4.39), we have

0—o.D —2Ap
ngn2 —4A

(4.43)

Therefore,

28 oo 4
lim ) D& (2) [Az '+ A2 '] = lim dew' e

Q7

2 1+ ———
&&

n~ —4A &o)3 A

2 2 + 3~ + 4Q
W

(4.44)



4596 H. T. CHO AND R. KANTOWSKI 52

Putting this result into Eq. (4.34), the ( function for the LLT and the Tr parts for N = 2 is

(4.45)

Finally the ( function for the tensor operator on a two-sphere is

(T(p) (TT(p) + (LTT(p) + qLLT+Tr(p)

2 ol 2 faq —2l——
I
(Pr') —

I I
(&r') +-

pa& —2 A) ( A )
4 Gy —2+ —.(2n —3A) +

ag —2 A A
(4.46)

where a and A are given in Eqs. (4.25) and (4.28) with
N = 2. One can extend this procedure to higher even
dimensions. The results for N = 2 —10 with aq ———2a2
and a3 ——0 are listed in the Appendix.

ism to evaluate the gauge-independent trace anomaly
for gravitons [19]. The explicit evaluation of this trace
anomaly in different spacetimes will be possible by mak-
ing use of the ( functions derived here.

V. CONCLUSIONS ACKNOWLEDGMENTS

We have shown how to evaluate the zeta function at
zero, g(0), for certain nonminimal vector and tensor op-
erators. The procedure is to first decompose the vec-
tor and tensor functions into their irreducible parts. For
vectors there are the transverse (T) and the longitudi-
nal (L) parts. For tensors there are the TT, the LTT,
the LLT, and the Tr parts. Then evaluate the eigenval-
ues for the various parts of each operator. Because of
the fact that the tensor operator is nonminimal, the LLT
and the Tr parts are in fact coupled together and the
eigenvalues for these two parts are complicated. How-
ever, we have shown that it is still possible to obtain
g(0) by use of the appropriate series expansion for the
eigenvalues. Using this procedure we explicitly evalu-
ated ((0) for Euclidean spaces and N-spheres for even
dimensions up to 10, and summarized. the results in the
Appendix. Other techniques have been developed to suc-
cessfully deal with flat backgrounds [14];however, our use
of the Euler-Maclaurin formula [18]has allowed us to now
deal with more interesting backgrounds.

Although the above procedure gets more tedious as
one goes to higher dimensions, there is no conceptual
difficulty in doing so. One can extend this method to
dimensions higher than 10, to Kaluza-Klein spacetimes
like M4 x SN [14], and to more general coset spaces for
which eigenvalues of the corresponding Laplacians are
known.

The method developed here is general enough to be
useful in many circumstances when one-loop quantum ef-
fects are calculated in gauge theories with general gauge
conditions. What we have in mind in particular is the
calculation of the VD effective potentials in Kaluza-Klein
spaces. We are also interested in using the VD formal-

H. T. Cho was supported by the National Science
Council of the Republic of China under Contract No.
NSC 83-0208-M-032-034. R. Kantowski was supported
by the U.S. Department of Energy.

APPENDIX

In this appendix we summarize the (-function values
that we have obtained for the nonminimal vector opera-
tor

Mv p = bp( —Cl P) + aV V—'p. (A1)

and the nonminimal tensor operator

M ~, = b~ ag&( —C3 P) —g ~g —Q
—2a2b( V' V'

) + a2gp V' V' (A2)

1. Vector case

For N-dimensional Euclidean spaces, the (-function
values for Mv in Eq. (Al) are

where V~ is the volume of the ¹dimensional space.
While for ¹ pheres with radius r, where N

2, 4, 6, 8, 10, we have

qV(0) (1 )
N/2 + (~— 1) PN/2

(4') N/2 (K/2)!

(A3)

(2 (0) = I3(2 —a) (Pr ) + (2 + a)I,3(1 —a)
(A4)

(4 (0) = C15(4 —6a + 3a )(Pr ) + 30(8 —8a + 3a )(Pr ) + (172 + 106a —143a2)
1

180(l —a) 2
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(o)

|,s (0) = [7(6 —15a+ 15a —5a )(Pr ) + 105(6 —13a+ 12a~ —4as)(Pr~)~
2520(1 —a) s

+21(134—203a + 129a —35a ) (Pr ) + (3394 + 213a —5358a + 2626a )],

(. (o) = 1

9O72OO(1 —a)4-45(8 —28a + 42a —28a + 7a ) (Pr )

+420(32 —104a + 150a —1ooa + 25a )(Pr )

+630(280 —796a+ 1038a —668a + 167a )(Pr )
+180(5200 —11064a + 9930a —4724a + 100la ) (Pr )

+(1592968 —1081132a —2826102a + 3532148a —1109837a )
1

59875200(l —a) s [33(10—45a+ 90a —90a + 45a —9a )(Pr )

+495(50 —215a + 420a —420a + 210a —42a )(Pr )
+330(2150 —8611a + 16028a —15810a + 7905a —1581a )(Pr )

+330(29018 —103119a+ 172158a —160184a + 78570a —15714a )(Pr )

+1485(40002 —112777a + 135030a —89946a + 34405a —5985a )(Pr )
+(129517198—192948785a —167760920a + 502687820a —351902170a + 82355474a )].

(A6)

(A7)

(A8)

2. Tensor case

For the N-dimensional Euclidean spaces, where N = 2, 4, 6, 8, 10, the (-function values for MT in Eq. (A2) are

(A9)

(Alo)

(All)

(A13)

(0) [(3 + a2)P + 2(1 + a2)Q]4~(I + a, )

(4 (0) = (5+ 6aq + 3az)P + 2(2+ Ga~ + 3a&)PQ+ 2(2+ 3a~) Q
4vr ~ I+ay ~

t,"s (0) = 3(7 + 15aq + 15a~ + 5az) P + 6(3 + 15aq + 15a~ + 5a~) P Q64vr s I+ay s .

+ 12(9+45aq + 65az + 25az)PQ + 8(3+ Gaq) Q

(s (0) = (9+ 28aq+ 42a~ + 28az + 7az)P + 2(4+ 28aq + 42a~ + 28a~ + 7a~)P Q647r41+ap4-
+6(16 + 112aq + 238a~ + 182az + 49a~)P Q + 8(4 + 7aq) (4 + 14aq + 7az) PQ +4(4 + 7aq) Q, (A12)

(~q( ) =
s z 5(11+45aq + 90az + 90a~ + 45az + 9az)P

+10(5 + 45aq + 90az + 90az + 45az + 9a~)P Q + 40(25 + 225aq + 630az + 720az + 387az + 81az)P Q
+80(125 + 1125aq + 3600az + 5094a~ + 3159az + 729az)P Q
+80(5 + 9aq) (5 + 18aq + 9az) PQ +32(5 + 9aq) Q

while for the ¹ pheres, where again N = 2, 4, 6, 8, 10, we have

~. (0) = (3+ aq)Pr + 2(1+ aq)Qr + (1 —3aq)1+ aq

(4 (0) = 3(5 + 6ag + 3a~) (Pr ) + 6(2 + 6ag + 3a~) (Pr ) (Qr )18 1+ay ~-
+6(2+ 3aq) (Qr ) + 12(5 —aq —Ba~)(Pr ) +12(2+ 5aq)(Qr ) + 2(ll —122aq —97a~)],

gs (0) = 3(7+ 15aq + 15a~+ 5az)(Pr ) + 6(3+ 15aq+ 15a~ + 5a~)(Pr ) (Qr )360 1+ ag s .

+12(9+ 45aq + 65az + 25az)(Pr ) (Qr ) + 8(3 + 5aq) (Qr )
+15(21 + 27aq + 15az + 5az) (Pr ) + 60(3 + 13aq + 5az —az)(Pr ) (Qr )
+60(9 + 39aq + 43az + 5az) (Qr ) + 24(53 —39aq —142az —65az)(Pr )
+48(9+ 33aq —16az —15az)(Qr ) + 10(95 —915a~ —1539az —633a&)

(A14)

(A15)

(A16)
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(0)

&io(0) =
(A17)

(A18)

15(9 + 28az + 42az + 28az + 7az) (Pr )75600 1 + az 4

+30(4 + 28a2 + 42az + 28a2 + 7az) (Pr ) (Qr ) + 90(16 + 112a2 + 238az + 182az + 49a2) (Pr ) (Qr )
+120(4 + 7a2) (4 + 14az + 7az) (Pr ) (Qr ) + 60(4 + 7az) (Qr )
+140(36 + 90az + 114a2 + 76az + 19az) (Pr ) + 420(8 + 50az + 42az + 8az —a2) (Pr ) (Qr )
+840(32 + 200az + 348a2 + 167az + 14az) (Pr ) (Qr ) + 560(4 + 7a2) (8 + 22a2 + 5az) (Qr )
+1680(38+ 54aq + 16a2 —3az)(Pr ) + 2520(12 + 66az —az —52az —18az)(Pr )(Qr )
+2520(48 + 264az + 355a2 + 34az —42az) (Qr ) + 240(1270 —992az —6515az —6318az —1890a2) (Pr )
+720(120 + 570az —683a2 —1126a2 —336az) (Qr )

+ 56(6903 —48948a2 —134742a2 —113908a2 —32437az)

15(11+ 45az + 90a2 + 90az + 45az + 9az) (Pr )5443200 1 + az s

+30(5 + 45az + 90a2 + 90a2 + 45a2 + 9a2)(Pr ) (Qr )
+120(25 + 225a2 + 630a2 + 720az + 387az + 81az) (I r ) (Qr )
+240(125 + 1125az + 3600a& + 5094az + 3159a2 + 729a2) (Pr ) (Qr )
+240(5+ 9az) (5+ 18az + 9az)(Pr )(Qr ) + 96(5+ 9az) (Qr )
+45(275 + 995az + 1830az + 1830a2 + 915az + 183az) (Pr )
+360(25 + 205az + 270az + 150az + 39a2 + 3a2) (Pr ) (Qr )
+1080(125 + 1025az + 2450a2 + 2098az + 725az + 81a2) (Pr ) (Qr )

+1440(625 + 5125a2 + 14700a~ + 17820a2 + 8451az + 1215az)(Pr )(Qr )
+720(5 + 9az) (25 + 70az + 2la2) (Qr )
+60(5815 + 16805a2 + 24400az + 22290az + 1136laz + 2301a2) (Pr )
+360(545 + 4033a2 + 1934az —2838az —2427az —495az)(Pr ) (Qr )
+720(2725 + 20165a2 + 39718az + 19410az —2679a2 —2403a&) (Pr ) (Qr )
+480(13625 + 100825a2 + 257210az + 260406az + 80757az + 729az) (Qr )
+120(37589 + 63843a2 + 3462az —53032az —34947az —6183az) (Pr )
+480(3805 + 25113a2 —15072az —63632a2 —40959az —7875a2) (Pr ) (Qr )
+480(19025 + 125565az + 193326a2 —6850az —103923a2 —33615az)(Qr )
+4320(5920 —2712az —42445a& —65558az —40680az —9300a2)(Pr )
+17280(350 + 2030az —4172az —10153a& —6280az —1250a2) (Qr )
+8(5745607 —30218365az —125264810a2 —163829090az —94569445a2 —20749889a2)
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