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Quasilocal thermodynamics of dilaton gravity coupled to gauge fields
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We consider an Einstein-Hilbert-dilaton action for gravity coupled to various types of Abelian and
non-Abelian gauge fields in a spatially 6nite system. These include Yang-Mills fields and Abelian
gauge fields with three-form and four-form field strengths. We obtain various quasilocal quantities
associated with these 6elds, including their energy and angular momentum, and develop methods for
calculating conserved charges when a solution possesses sufBcient symmetry. For stationary black
holes, we 6nd an expression for the entropy from the microcanonical form of the action. We also
find a form of the first law of black hole thermodynamics for black holes with the gauge fields of the
type considered here.

PACS number(s): 04.70.Dy, 04.50.+h, 04.20.Fy

I. INTRODUCTION

The relationship between the Euclidean-action formu-
lation of quantum gravity and the thermodynamics of
the gravitational field has been a subject of increasing
interest in recent years. Fundamental connections be-
tween the partition function of the grand canonical en-
semble and the Euclidean-action path integral were first
pointed out by Gibbons and Hawking [1], who argued
that the Euclidean gravitational action is equal to the
grand canonical kee energy times the reciprocal of the
temperature associated with a black hole (or cosmologi-
cal) event horizon [2].

More recently Brown and York have extended this
work by considering the formulation of the partition func-
tion for gravitating systems of finite spatial extent [3,4].
Virtually all systems with which we have any experience
have a finite spatial boundary; indeed, one of the central
concepts in thermodynamics is that of a system and a
reservoir that are separated by a partition. A physical
realization of these concepts is needed in order to ap-
ply thermodynamics in a sensible way. When we use
thermodynamics to describe self-gravitating systems (in-
cluding objects such as black holes), we must divide our
space-time into a region which contains the system (the

'On leave from Dept. of Physics, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1. Electronic address:
jolienavatar. uwaterloo. ca

tOn leave from Dept. of Physics, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1. Electronic address:
rbm20amtp. cam. ac.uk

Another central concept of thermodynamics is, of course,
thermodynamic equilibrium. The realization of this is the
stationarity of a system, where we say a system is stationary
if there exists a timelike (Killing) vector field for which the Lie
derivative of all the fields considered vanish, and the boundary
of the system is chosen to contain the orbits of these vectors.
We shall assume that our systems are stationary.

black hole) and the remainder of the space-time which
can be treated as the reservoir. The traditional practice
is to study black hole thermodynamics at spacelike infin-
ity, assuming reasonable asymptotic conditions without
any boundary. However, this approach has a number of
deficiencies. First, it requires that a space-time which is
a solution to the field equations (and often the accompa-
nying matter fields) possess appropriate asymptotic be-
havior, typically asymptotic flatness. However asymp-
totic flatness is never satisfied in reality, and is not al-
ways an appropriate theoretical idealization: many black
hole space-times exist that are solutions to the (dilatonic)
gravitational Geld equations that do not possess asymp-
totic flatness. Some have been found recently that are
not even asymptotic to de Sitter or anti —de Sitter space-
time [5]. Furthermore, in the study of pair creation of
black holes one is forced to consider nonasymptotically
fiat space-times with an acceleration horizon [6], neces-
sitating a more careful consideration of boundary terms
in the formulation of the Hamiltonian [7]. Second, con-
struction of a partition function (which is central in the
study of statistical mechanics) requires the stability of
the system, which is only realized when a finite size is
imposed [4], a point also noted by Hayward and Wong
[8]. For example, the heat capacity for a Schwarzschild
black hole is negative [9] if one fixes the temperature
at infinity, and the formal expression for the partition
function is not logically consistent [10]. However if the
temperature is Gxed at a finite spatial boundary, there is
no inconsistency in the black hole partition function and
the heat capacity is positive [11]. This approach may
also be extended to black holes in anti —de Sitter space-
times [12],where analogous results are obtained. Finally,
it seems to us that, on physical grounds, one should be
able to define thermodynamics appropriate to observers
who are at a finite distance &om the black hole.

It is important, therefore, to construct thermodynamic
quantities appropriate to observers at the (finite) bound-
ary of a system. The quasilocal formalism, which has
been developed extensively by Brown and York [13] pro-
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vides us with a means. This formalism is based on a
Hamilton-Jacobi principle wherein the boundary terms of
the action functional for a compact region give rise to the
quasilocal quantities such as energy and angular momen-
tum. Brown and York [3] have also developed a paradigm
for understanding the relationship between the classical
mechanics, the statistical mechanics, and the thermody-
namics of gravitating systems, based on the boundary
conditions of the system. Here, the fields that are held
fixed on the boundary in deriving the classical mechanics
equations of motion &om an action principle determine
the statistical ensemble of the corresponding statistical
mechanics, and thus the type of thermodynamic partition
that must be imposed. There is a parallelism between the
Legendre transformation, a canonical transformation of
the boundary terms of the action, and the Laplace trans-
formation, which changes the type of ensemble, of the
path integral for the statistical mechanics. This paral-
lelism may be used to identify a "microcanonical" action
that has boundary terms appropriate to a microcanonical
statistical ensemble [3], and from it an expression for the
entropy of a thermodynamic system may be obtained.

In this paper we extend this formalism to include the
most general action of gauge fields coupled to dilaton
gravity that has at most two derivatives in any term.
This class of actions includes the low-energy limit to
string theories [14] and is also of interest as an empir-
ical foil for testing general relativity [15,16]. We consider
non-Abelian gauge theories coupled to gravity, the dila-
ton, and an axion Geld, as well as Abelian two-form and
three-form gauge potentials with three-form and four-
form field strengths, respectively, also coupled to a dila-
ton. (We note that recent research in non-Abelian gauge
fields coupled to gravity has led to new black hole solu-
tions that refute much of the folklore about black holes,
such as the "no hair" conjecture [17].) We will find that
a form of the "Grst law" of black hole thermodynamics
can be reconstructed for the theory considered which is
quite reminiscent of the conventional one for the Einstein-
Maxwell theory. Although we restrict ourselves to four-
dimensional space-times, higher dimensional generaliza-
tions of our work are straightforward. For each sector of
the action, we obtain expressions for the quasilocal ther-
modynamic quantities that will appear in the first law
of thermodynamics. In addition, we discuss the role of
conserved quantities associated with the gauge and grav-
itational fields. In general, the presence of a conserved
quantity depends on the type of solution. Such quantities
always require the presence of some sort of symmetry in
the solution. (Solutions that satisfy certain asymptotic
conditions often also possess an asymptotic symmetry
that can be used to define conserved quantities. Here, the
solution must at least possess exact symmetries on some
finite boundary in order to admit conserved quantities
for finite-sized systems. ) We also give a brief summary
of the construction of a statistical mechanics for the class
of theories considered, and we obtain an expression for
the entropy and a form of the first law of thermodynam-
ics for systems possessing an event horizon. We note that
a version of the first law of black hole thermodynamics
for a Gnite system has been obtained for vacuum gen-

eral relativity as well as vacuum Einstein-Maxwell [18];
we recover these results in the case of an Abelian gauge
theory with vanishing dilaton and axion fields.

Closely related to the work of Brown and York, as well
as to our present work, is that of Wald's Noether charge
formalism [19]. Wald obtains an expression for the en-
tropy of a space-time solution of a very general class of
theories that are required to be derivable via an action
principle from a Lagrangian density that is covariant un-
der diKeomorphisms. Here, the entropy is identified as
the Noether charge associated with this covariance. Re-
cently, Iyer and Wald [20] have extended their treatment
to systems with finite boundaries, and they have shown
how to formally recover some of the results of Brown
and York [13]. The present work can be viewed, there-
fore, as complementary to this technique. We restrict
our considerations to actions with at most two deriva-
tives in every term, and we explicitly evaluate quantities
which are only implicitly defined in Ref. [20] for specific
types of boundary conditions. We justify the choices of
boundary conditions by appealing to the role they play in
the connection of the classical mechanics, the statistical
mechanics, and the thermodynamics discussed above.

Therefore, our agenda is the following: In Sec. II,
we study the Einstein-Hilbert-dilaton sector, which we
consider as our gravitational theory in the absence of
additional Gelds. In Sec. III, we consider a Yang-Mills
field that couples to both the metric and the dilaton, ex-
tending this to include axion couplings in Sec. IV. In
Sec. V, we turn to an Abelian gauge theory involving a
four-form field strength (also coupled to the dilaton), and
briefly consider its relation to a cosmological constant. In
Sec. VI we complete our survey of matter fields with an
Abelian three-form Geld strength gauge theory coupled
to the dilaton. Section VII is a review of statistical me-
chanics based on path integral techniques. Here we adopt
a "general form" for the gauge fields rather than treating
each case separately. In Sec. VIII we apply these results
to obtain an expression for the entropy of a system con-
taining a black hole, and a form of the first law of black
hole thermodynamics. Concluding remarks follow.

In this paper, we adopt the conventions of Wald [21].
Units are chosen so that the speed of light, Newton's
constant, and the rationalized Planck constant are all
taken to be unity. A summary of the notation of the
manifolds, fields, and related quantities considered in this
paper is given in the Appendix.

II. EINSTEIN-HILBEHT-DILATON SECTOR

The theory of gravity that we consider is one which
is based on the usual action of general relativity, but
with the addition of a scalar function that couples to the
curvature called the dilaton. In general, it is possible
to redefine the metric via a conformal transformation so
that the dilaton does not couple to the new curvature.
However, as we shall see, such a transformation afFects
physical quantities such as the entropy associated with
black holes, so we consider the more general case.

As indicated. , our theory of gravitation will be based
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on an action principle, and is closely related to the usual
Einstein-Hilbert action. The gravitational Geld equations
may be deduced using Hamilton s principle when consid-
ering variations in the geometry. It is now known that
serious restrictions must be placed on the boundary of
the space-time region in order that such a variational
principle be well defined. In particular, both the vari-
ation of the induced metric and its derivatives must be
held fi~ed on the boundary. Alternately, the action may
be supplemented with additional boundary terms such
that we need only fix the induced metric on the bound-
ary. We take the latter approach; from these boundary
terms many useful quantities can be defined. , as we will
show.

In this section, we look at the gravitational sector of
the theory, and we defer consideration of various types of
matter to later sections. Insofar as we restrict ourselves
to dilatonic gravity, we will consider a very general ac-
tion. The coupling to the curvature, the kinetic energy of
the dilaton, and the potential energy of the dilaton will
all be arbitrary functions of the dilaton (alone). This
practice will be continued in the next section when we
consider gauge fields with arbitrary couplings to the dila-
ton.

We will restrict our considerations to a spatially finite
region of a four-dimensional manifold, M, which has a
topology of Z x R, where Z is a spacelike hypersurface
and IR is a real interval. On this manifold, we define
a metric g„and its compatible derivative operator V„.
Objects with Greek indices represent tensor quantities
on the four-dimensional manifold. We will consider two
parts of the boundary of this manifold: the outer bound-
ary 7 „&, ——BZ x X, and the initial spacelike hypersur-
face Z;„;&,. ~. The addition of an inner boundary and a
final spacelike hypersurface are trivial extensions of the
present analysis that will be important in following sec-
tions. Here we shall refer to them simply as 7 and Z,
respectively.

Associated with 7 is an outward. directed spacelike
normal vector n". We can construct the first and sec-
ond fundamental forms p„= g„—n~n and O~

These are to be viewed as tensors on 7, and
the indices i, j, etc. , will denote tensor quantities on 7 .
However, we will use p,. , defined in an analogous manner
to p~, to denote the projection operator from jA onto
7 . The derivative operator compatible with p,~ is E, .

We can foliate M into spacelike leaves Zq via the pa-
rameter t which is a coordinate along K; associate with
it the vector field ti' = (BjOt)~. View the initial hyper-
surface as one of these leaves, say, the t = 0 one. Little
confusion arises from dropping the t index and consid-
ering an arbitrary leaf, Z, in the foliation. There is
a future directed timelike normal vector u~ to X. We
may define the fundamental forms 6„=g& +u„u and
K~ = —

2 Z„h,~„ these are viewed as tensors on Z, and
such tensors will be shown with indices x, g, etc. and
projection operator 6-, from ~ onto Z. We may also
define the lapse and shift of the foliation by N = —t"u„
and ¹

= 6'„t~, so that tI" = Nu" + N~. The deriva-

tive operator on Z compatible with h;~ is given by 7;,

and this can be used to define the Ricci scalar on Z:
B[hj. It is also important to consider the boundary, OZ
of Z. We require that, on the intersection of Z and 7,
uj'n„= 0. The first and second fundamental forms on
BZ are 0-,~ = h-, ~

—n-, n~ and k-,~
= ——X, o —.The Latin

'i

2 n u
indices a, 6, etc. , are used to denote tensors on BZ. The
projection operator from 7 onto BZ, 0, is obtained from
0q~ = f/~~ + uqu~.

A zero vorticity observer is one for whom the vorticity,
ar = *(eA de), is zero, where e is the velocity of the ob-
server. It can be seen that observers who are comoving
with a given foliation on the boundary 7 are zero vortic-
ity observers. For such an observer, the velocity is just
the normal vector ul", and the acceleration of the normal
vector is given by a" = u V' u" = N h~ V'„N.

A summary of the notation described above is given in
Table I of the Appendix.

A. Variation of the action

In accordance with the above considerations, we choose
the action for the gravitational sector to be

~EH D

d x v' —p f,„(P)tr(O)

d x v h fEH(k) tr(K), (2.1)

~~EHD d x Q—g [(:-s, )„6g" + =g;ib@]

d'x (7r*'h~;, + II&;ib@)

d'x (p"bh, , +P&;iM'). ——(2.2)

Here

where the dilaton field is given by P, and fE„(@),f«(P),
and f (g) are model-dependent functions of the dilaton.
They are arbitrary insofar as they contain no fields other
than the dilaton and no derivatives of the dilaton. No-
tice the presence of the two boundary terms: these are
just what is needed to make a well defined variational
principle on the initial spacelike hypersurface and outer
boundary as we shall see below.

Now we vary the geometry and dilaton field configu-
rations. The geometry is varied subject to the (gauge)
restriction that the leaves of foliation remain orthogonal
to the boundary. (That is, we hold the boundary fixed in
that variations of the normal dual vectors to the bound-
aries are proportional to the normal dual vectors. ) For
convenience, we vary the inverse metric, except on the
boundaries where we can write the variation in terms of
the covariant induced metrics. The induced variation in
the action is given by



4572 JOLIEN D. E. CREIGHTON AND ROBERT B. MANN

df-(&) „[]:au=
d@ 0 +

-2V'" f (P)V'„@ + (2 4)

can be considered as equations of motion in the follow-
ing way: under variations of the geometry and dilaton
field that leave the geometry and dilaton conGgurations
on the boundary fixed, (:-s, )„„and:"g;i will be zero
at an extremum of the action. (In general, there will
be contributions to these equations of motion from any
additional matter present. )

Alternately, we could consider variations of the geom-
etry and dilaton conGgurations in which the equations
of motion are held Gxed, but the boundary geometry
and dilaton configurations are varied. Under these vari-
ations, we see &om Eq. (2.2) that we can define the
momenta conjugate to the boundary geometry of the ini-
tial and outer hypersurfaces as vr'~ = (bS«D/bp;z)«and
p~& = —(bS»D/bh;~)CL, respectively. {The subscripted
"cr" emphasizes that the variations are among field con-
figurations satisfying the equations of motion. ) Explic-
itly, these are

and

rr" = g—p(p" n"8„f (@)

+~..(~) o-" —.'
~ io-) ) (2.5a)

(=-.--).- = f-(&)G.-[g]+ .'f—-(~)g,-(&&)'
—2((7„N)(V'.@) + ,'g„—„f„(@) (2.3)

(with G„„[g]= R„[g]—2g„R[g]) and

gravitational field held within this boundary. To identify
these quantities, it is useful to decompose the variation
of the boundary metric, p;~, into the various projections
normal and onto the foliation. Thus we write

bp, , = o, o. bo. s — bN—u;u, —. u(—, "~) bN .(2.7)

The corresponding decomposition of the boundary mo-
mentum, vr'&, conjugate to p,~ leads us to define the sur-
face energy density, the surface momentum density, and
the surface stress density as

S = ~(7 u uhj 7 (2.8a)

EHD (2.8b)

gab ~P &a&bTh'
2 (2.8c)

respectively, where w'~ = 27r*~/i/ p is —the surface stress
energy momentum on 7 .

We next use Eq. (2.5a), and the relationship

0;, =k;~ + u. ,u~(n"a„) + u(, (T) n~K; ~ (2.9)

{recall that a" = u V'„u" is the acceleration of the
normal u~) to obtain expressions for t, (gs»), and
8 . An immediate consequence of Eq. (2.9) is that
tr(O) = tr(k) —n"a~. Then, we have

2V [
"—~ f. (&) - f {&)t (k)] - ~. (2.» )

p" = —Wh((h" u"8„f (@])

+f, (t(r) JC*' —h" tr(K) ). (2.5b)

(2 D) = 2v ~fss(@)n;a;K" —(ZEHD, o)

2~(T
neo'& p (&ssD,o)

h,
(2.10b)

Similarly, there are momenta conjugate to the dilaton
Geld on the initial and outer hypersurfaces defined in an
analogous way. These quantities are

and

= 2V ~(o n"~„f (&) + f (&)(k' —~'[tr(k)
—n"a~])) —(S.)', (2.10c)

2f, (@)n"8„&—2
'" tr(O) (2.6a)

( „df,„(@)
dpP

and

"=-("'-)..
= —~h 2f„s((J')u"B„(J'—2

" tr(K) ~ . (2.6b)
df „(P)

dk

H. Quasilocal quantities

The 7 boundary momentum, m'~, contains useful infor-
mation about the energy and momentum densities of the

where E'„(Q~»,), and (8,) are additional contribu-
tions that arise in supplementing the action SE» with an
additional (reference) functional of the boundary fields,
as we will discuss in the following subsection.

We can construct a quantity P froin the momen-
tum IIg;i conjugate to the dilaton configuration on 7:
P = N iIIs;i —P, where P, is an arbitrary background
contribution that will be discussed below. Thus we have

2f s(P)n"B„P —2 "
tr(k) —n"a„dfss(II)-

dk . .)
(2.11)

Note that P is also a scalar density on the two-surface
(9Z. Using the definitions in Eqs. (2.10) and (2.11), we
can write the 7 boundary terms in the variation of the
action as
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(2.12)

It is worth noting that 8, (J~»), o i„and P are all
extensive variables because they can be constructed out
of the phase space variables (pr~, h;~) and (Pg;i, k) on X'.
However the lapse and shift cannot be constructed out of
this information, and such quantities are called intensive
variables. We see that, in Eq. (2.12), the first two terms
of the integrand involve variations of intensive variables
(with extensive variables as coefficients), while the last
three terms involve variations of extensive variables (with
coeKcients that are intensive variables due to the lapse
function). We will consider the implications of this below.

Define the quasilocal energy to be the integral over the
two-surface OX' of the quasilocal energy density:

(2.13)

erence space-time.
The primary advantage of the above interpretation of

S, is that it ensures that the action is a linear functional
of lapse and shift and, as we shall see, this means that
the extensive variables defined above continue to be ex-
tensive. (This is the principal restriction that must be
placed on S,.) We shall thus write the additional piece
in the suggestive form:

(2.14)

Here, 8, and (gE», ) can be constructed out of the
phase-space variables alone (and are thus extensive), and
can be identified by the functional derivative of S, with
respect to the lapse and the (negative) shift, respectively.
The surface-stress and dilaton density of the reference
space-time can be obtained from the relation

This quantity has useful properties such as additivity
[13], although it is not necessarily positive definite. The
quasilocal energy is observer dependent, i.e. , even if we
are given a natural choice of boundary 7, the above def-
inition of the quasilocal energy will still depend on the
foliation; in particular, how the leaves Z intersect with 7 .
However, we would expect that we should be able to do
better than this when the space-time is stationary. The
construction of conserved charges resulting &om space-
times with symmetry will be addressed below.

d X [Nba ¹b(gEHD 0)~]r (2.15)

which allows one to determine (8,)
~ and y, when the

forms of E, and (gE», ) are known in terms of cr i, and
The net result of the addition of S, to SE„D is the

inclusion of the extra terms in Eqs. (2.10a)—(2.10c) as
well as in the definition of y. Of course, one possible
choice is always Sp: 0 in which case these terms would
be absent.

C. Reference space-time D. Conserved charges

The complete gravitational action will involve the ac-
tion SE» given in Eq. (2.1), plus some additional func-
tional of the boundary metric and dilaton configuration.
This additional piece, S„does not contribute to the equa-
tions of motion because it contributes only to the bound-
ary. It does, however, contribute to the momenta con-
jugate to the gravitational and. dilaton fields and thus
to the quasilocal quantities discussed above. It will be
suKcient in the present analysis to consider S, to be a
functional on the boundary 7 alone. Furthermore, we
will assume that it is a functional of the metric p;~, and
the 7 boundary dilaton configuration, but we will not
consider the general case in which it is also a functional
of boundary configurations of matter fields (though the
inclusion of these is straightforward).

The specification of the functional S, is akin to the
specification of some reference space-time. Although
there are restrictions on the types of reference space-time
allowed (which have to do with the embedding of the two-
surfaces DZ in the reference space-time), we will assume
that a natural reference space-time can be found. Of-
ten, this can be achieved simply by setting constants of
integration of a particular solution to some special value
that then specifies the reference. Our restriction that the
functional S, not be a functional of matter fields (other
than the dilaton) is just a specification of a vacuum ref-

Given a set of observers, all having histories on 7, we
wish to identify quantities related to the geometry of JUl

that are the same for all the observers. We will require
the presence of a Killing vector, (', on 7 . Our first step is
to consider the equation of motion for the geometry. We
have been deferring a detailed discussion of matter to a
later section; however, here we will allow for the presence
of matter so that the equation of motion reads

~geom)p, v 2~ p, vy (2.16)

(2.17)

we obtain

(2.18)

which shows that the surface stress-energy-momentum
tensor is not divergenceless: it has source terms arising
from the presence of the dilaton and the matter.

However, we can contract Eq. (2.18) with the Killing
vector. In addition to the usual requirements of a Killing

where T~ is the stress-energy-momentum tensor of the
matter and (:-z, )„ is given by Eq. (2.3). Computing
n"j', (:-s, )i,„with the aid of the Gauss-Codacci rela-
tionship
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vector, we require that the dilaton is constant on orbits
of the Killing vector. That is, we assume that (' satisfies
both the usual Killing equations cE( fzj Op for a Killing
vector on 7, as well as ZgPP = 0. The left-hand side of
Eq. (2.18) becomes a total divergence due to the Killing
equation and the symmetry of r'~. Integrating over 7,
we find

E. Canonical form of the action

HEHD P ~t~tg + Pdil~t+ ~EHD ) (2.24)

We now turn to the canonical decomposition of the
action of Eq. (2.1). The Hamiltonian density of the
Einstein-Hilbert-dilaton sector is defined as

7 ++final

&&initial

d X ~0 (;B,,7-*' d x g—p('T, „n".

(2.19)

In the event that the right-hand. side vanishes for arbi-
trary Zs„~, Eq. (2.19) empresses a conservation law for
a geometric charge:

where I EHD is the Lagrangian density which, when inte-
grated over M yields the action of Eq. (2.1). To evaluate
the first term, we use the definition of the second funda-
mental form, and the relationship between u" and t". We
find that

p* z,z,, = 2——Np*—K,,—2N—,v,I"-+ 2-v, (N,I' -). (-2=.25)

Similarly, the second term is
d'x~a(;u, 7-".

P„;,Z, P = NPg;(@ +. N'(Pg;i'7;k), (2.26)
Contingent upon the type of matter present, there are
many reasons why this may be the case. First, it may
be that 7 is positioned such that there is little matter
in its vicinity, so T„ is negligible. Second, it may be
the case that the particular projection ('T,„n" vanishes.
Alternately, if T~ is conserved, that is V'~T" = 0, and if
the Killing vector field on 7 can be promoted to a Killing
field over M (that is, if (" is a Killing vector field on
M, satisfying the additional requirements above, and 7
contains the orbits of these vectors), then we can rewrite
Eq. (2.19) in the form

where the symbol P is shorthand for u"B~P. The La-
grangian density can be canonically decomposed using
the Gauss-Codacci relationship

as well as

0 2
(v'@)' = ('v@)' —4 . (2.28)

R[g] = B[h] + K'~K;; —[tr(K)] —2V'„[u" tr(K) + a"]

(2.27)

k(7 n Z;„;„.i) —k(7 n Zs„ i) =
+final

(2.21)

We also use the relationship a; = N Q;N which is ap-
propriate for zero-vorticity observers. The Hamiltonian
can then be written as

and the integrand on the right-hand side of this equation
may vanish.

Suppose p' is a spacelike azimuthal Killing vector.
Then, we can define an angular momentum as Jl = lk[p].
If the surface BX is taken so that it contains the orbits
of the Killing vector, then we can write

HEHD

where

d ZHEHD

d x [RE„DN + ('R „D);N*]

+ d X [E'N (+@ED)E¹]& (2.29)

(+EHD ) (2.22) '8 „=—2P"K,—,—+ Pd;&P

When (' is tiinelike, we can define a mass as MI
—k[(]. If the space-time is also static, that is, ( is surface
forming, then we can choose a two-surface BX for which
the Killing vector is proportional to the timelike normal.
In this case, the mass can be written in the form

—V h, f,„(@)(B[h] + K"K„—tr(K) )--
+2tr(K) '" 8 —2'7 f „(P)

df,„(@).

(2.30)

Note that, in general, the quasilocal energy will not agree
with the conserved mass of the space-time unless u' is a
Killing vector on 7 . However, in asymptotically flat,
static space-times for which 7 is taken at spatial infinity,
a foliation in which u' approaches the timelike Killing
vector is usually adopted, and then the definitions of
mass and quasilocal energy given here will agree.

is the Hamiltonian constraint and

('R ); = 2'V;p', +P&;&'7;@-- (2.31)

is the momentum constraint. When the constraint equa-
tions hold, the Hamiltonian is purely a boundary term.

The action, Eq. (2.1), can now be rewritten in canon-
ical form:
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S«D —— d x (p Z&h;~ + PaiiZgk —HpHD)

dh/ d x p' Zih;~+ Pg;ikey& —'RE„D1V —(QE„D);1V*]+ [ + (&PHD)a1V ] (2.32)

This form of the action will be useful later in the study
of the thermodynamics of gravitational systems.

I

the potential projected onto the boundary. The induced
variation in the dilaton- Yang-Mills sector of the action is

III. YANG-MILLS SECTOR

Here we consider non-Abelian gauge fields with an ar-
bitrary gauge group 5. The case of electromagnetism
is, of course, just a simplification of the general results
of this section when the gauge group is U(1). We shall
refer to the internal degrees of freedom as color degrees
of freedom, and the associated gauge charges as color
charges.

In what follows, quantities that possess color are rep-
resented with Praktur characters; color indices, when
needed, will be given by lower case Fraktur characters,
and the adjoint representation will be assumed. The
gauge covariant derivative (both gauge covariant and
covariant on the manifold M) is given by (2„)ab
V'„b p + f b,S~' where S~ is the connection and fab&

are the structure constants of the group. The curva-
ture of this gauge covariant derivative operator is the
field tensor: $~ = 2V'~~S

I + f p&S„bS '. This field
tensor is covariant under gauge transformations of the
form S„[Z] = S„[0]+(2„)pt . We partially restrict
the gauge freedom of the potential so that the compo-
nents in an orthonormal frame are finite everywhere in
M (except, perhaps, at truly pathological points such as
curvature singularities) .

On a spacelike hypersurface X it is possible to decom-
pose the above quantities. The electric field as seen by
an observer who is stationary with respect to the folia-
tion is given by 5;a = h,-"$„au". The magnetic field is
given by 9; = —zh,-"e~ ~ $~ u". The gauge covariant
derivative that is compatible with the metric h;~ is (0-,)

A. The dilaton- Yang-Mills action and variations

The action is

~DYM (3.1)

The color indices are raised and lowered by the Killing
metric gab = 2f'oaf &b. The function, f~M(@), is a func-
tion of the dilaton alone, and contains no derivatives of
the dilaton.

Variation of the action of (3.1) yields source terms for
the Einstein-Hilbert field equations as well as for the dila-
ton field equation. In addition, variation with respect to
the gauge potential S„a gives a source-free field equa-
tion for the gauge fields. Note that the variation, on the
boundary, of the potential is the same as the variation of

bSDYM d + V g 2 (TDYM) gl

b@+X",bS„'

d'*(a.. )',bS, a

7

d z(P )' SS;, (3.2)

where

X"a = (2„)b, f (@)$""b . (3.3)

(TDYM) p v fYM (@)(Bpc7 Bv a g4/lvsnp 'S a) (3'4)

and

df&M (@)
g aggro'2 dN

(3.5)

respectively.
In addition we have momenta conjugate to the vari-

ation of the gauge fields on the boundaries 7 and Z.
These are

(DIDYM) a Q Y fYM (@)7pB a+ (3.6a)

and

(P )*, = —v h j (P)h'„g""aii„= —~h f (k)g*„
(3.6b)

respectively.
On the boundary 7, we can decompose the variation

of S; into pieces normal and tangential to the foliation.
Let 9 = —u'S. and K & i S a Then,

bS, " = 1V 'u; b(1V5 ) —K aha +O., bK . (3.7)

A similar decomposition of (1TD~M)a leads us to define a
surface Yang-Mills charge density:

(QDvM)a = P~ AM(&)iver&'a (3.S)

and a surface Yang-Mills momentum density

DYM a — DYM 0 a

Also, de6ne a surface Yang-Mills current

(3.9)

This yields the dilaton-Yang-Mills vacuum equation of
motion, X a = 0 when' the boundary terms vanish pro-
vided that there are no Yang-Mills source terms. The
dilaton-Yang-Mills stress energy and dilaton source are
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Then, the variation of SDYM on 7 is given by

(3.io) This alternate expression for the conserved gauge charge
gives us our interpretation of (QDYM) a as a surface gauge
charge density.

~~DYMI~ = d x (g ) bN —(Q )a8(NCJ') C. Canonical form of the dilaton-Yang-Mills action

+N3 8K ' (s.ii)
We will consider the interpretation of the surface charge
density in the following.

B. Conserved Yang-Mills charges

In the presence of a source, J"a, the equations of mo-
tion for the Yang-Mills field (with dilaton coupling) are

(3.12)

It can be seen that the source respects the identity
(2„) aJ~g = 0. In an Abelian gauge theory (such as
electromagnetism) this quantity is gauge invariant and
can be used to define a conserved charge. However, in a
general Yang-Mills theory, the identity is gauge covariant,
and the separation of the color contained in the charge
and the color contained in the field it produces depends
on the gauge choice.

Yet, it is still possible to construct a conserved color
charge if we require the solution to the field equations to
have certain properties [22,23]. Suppose that the solution
possesses a gauge Killing scalar t, that is, a I ie-algebra-
valued scalar field on M that is covariantly constant:
(2„) gt = 0. Then the quantity 5 J"a is gauge invari-
ant and. divergenceless: V'„(3 /~a) = 0. We can then
define a charge

DYM d xv hu„P J"a (s.is)

that is conserved provided that the source la J~a vanishes
in the vicinity of 7, that is, the charge of Eq. (3.13) has
the same value regardless of the volume Z chosen for the
integration.

Recall now the equation of motion (3.12). Contracting
both sides with the gauge Killing vector, one can take

through the gauge covariant derivative to produce a
gauge scalar as its argument. Further contracting both
sides by u~ and recalling that u~ is proportional to a gra-
dient, u~ = NB„t, we can—write u (2~) „ fYM (k)$~"p

as (0&) a fYM(k)$~ bu, due to the antisymmetry of
the field tensor g" a in p, and v. Integrating over the
spacelike hypersurface Z, we obtain

Finally, we turn to the task of writing the dilaton-
Yang-Mills action of Eq. (3.1) in canonical form. A
straightforward calculation shows that ZtS;a = $;za—V
(0;) bSt where 5t ———t~S„. Using the decomposi-
tion of t" into ut' and Nt', we have St a ——Ngfa —N K a.
Then, we can show that

(DIDYM )'a ~t4 = N(&DYM)'a &;

(+DYM) aBvg

+@t (~r) a (PDYM)

(+DYM ) a

We also use the decomposition

(s.i5)

(s.i6)

HDYM X HDYM

+DYMN + (+ DMY)rN* + (DIDYM)a&t

(QDYM)a& N (a7+YM)aN 1 (3 ~ 17)

where

+DYM (+DYM) a ~r

+ -,
' v I f (@)(9'.9,-' —C„K,-') (s.is)

is the contribution to the Hamiltonian constraint from
the dilaton-Yang-Mills sector,

(+DYM) J (+DYM) aB'Eg (3.»)

is the contribution to the momentum constraint from the
dilaton- Yang-Mills sector, and

(DIDYM ) a = (~t) a ( DYM ) (3.20)

The Hamiltonian density is given by HD YM

(DIDYM ) 'a ~t5& —L»M where L»M is the Lagrangian
density [the integrand of Eq. (3.1)]. The Hamiltonian
is, then,

QDYM [&] = + (QDYM) a& (3.14)
is the Gauss constraint for the Yang-Mills field.

The action in canonical form is simply

~DYM

d + [(DIDYM) a~ter, +DYMN (&DYM)KN (DIDYM)a&t ]

[ (QDYM)a~ N + (E7DYM)aN ] (3.2i)
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IV. AXION SECTOR

In this section we consider the coupling of an axion field
to the Yang-Mills Geld strength. Such couplings provide
an interesting counterexample [15] to Schiff's conjecture2
[24] and, in the case of an Abelian gauge theory, imply
interesting new tests of the equivalence principle [25,26].

Many of the derivations in this section are simi-
lar to those in the previous section on the Yang-Mills
field. Define the dual to the Yang-Mills Beld tensor by
(e$)„„~= ~e„„~ $~ ~. Note that there is the identity

(~.)".(*E)" b = 0

Similarly, there are momenta conjugate to the gauge field
configurations on 7 and Z:

(II»M) 6 V 7 8YM (0)np 7 (+8) 0 (4.6a)

and

(P„)*,= —Vh@ (0)u„h*(*$)"„ (4.6b)

II „;= 2v' —pO„E(0)n"8„0

respectively. Also, there are momenta on 7 and Z con-
jugate to the axionic field. configurations:

A. The axion-Yang-Mills action and its variation

We take the action for the axionic sector to be

P „;= 2068— (0)u"0„0, (4.7b)

~AYM d + g 4YM ~ + Q P,v

+8,(0) (V'0)' i 8,(0), (4.i)

hS»M = d z v —g —2(T»M)„„bg""

+2)",h8„'+ =.„;h'0

+ d'x (It )',bS,"+II.„,Nr
d'* (P„..),b5,-'+ P.„,h0,

X'
(4.2)

where the stress-energy-momentum contribution from
this sector is

(T ).- = ».(0)(&.0)-(&-0) + g.-~ .(0)(«)'
+g~-~-(0). (4.3)

The equation of motion for the gauge field, when bound-
ary variations vanish, is g"~ = 0 (vacuum case) where

where 0 is the axion field and 8~M (0), 8«(0), and 8~E(0)
are functions of the axion (but not its derivatives) that
are the couplings to the Yang-Mills Gelds, the kinetic
energy, and the potential energy, respectively.

Varying the action with respect to the geometry, the
gauge Geld, and the axion yields

respectively.
Recall that the variation of the gauge field on the

boundary 7 can be decomposed as in Eq. (3.7). We
perform a similar decomposition of the momentum
(II»M)'ci. Define a surface axion- Yang-Mills charge den-
sity,

(Q»M)A &0 0&M(0)ni+ 0&

a surface axion-Yang-Mills momentum density,

AYM a — AYM Q a

and a surface axion-Yang-Mills current,

2 " = ~o 6 (0)~ "n,
Also define the scalar density

A = N-'II.„,.

(4.8)

(4.9)

(4.10)

(4.ii)
Then, the 7 portion of the variation of S„ is decom-
posed into

hS„ i7- = d'x (g„) hN —(Q„),b(N93')r
iN(%, hK. ' i Ab0) . (4.12)

In analogy with the discussion of conserved charges in the
previous section, we can interpret the quantity (Q»~)~
to be some sort of magnetic charge surface density that
will yield a magnetic charge

"~ = (*$)" „V' 6 (0) (4.4) AYM 'r (QAYM)Q~ (4.IS)

while the equation of motion for the axion itself is = „;=
0 with

when some gauge Killing scalar l~ is present.

1 d~vM(0)
( ~)„„~

d8

i" -( ) (V0)' —2V'0 i d8pE (0)
d0

SchifF's conjecture states that any self-consistent theory of
gravity that obeys the weak equivalence principle necessarily
obeys the Einstein equivalence principle.

B. Canonical form of the axion- Yang-Mills action

The Hamiltonian density of the axion-Yang-Mills sec-
tor is given by H»M ——(»M)'~Z, 2(,— + P», Z, 0 —I»M.

0
Denote by 0 the quantity u~8„0. The first term in the
Hamiltonian density looks just like Eq. (3.15) but with
(P»M)'z replacing (PD~M)'z everywhere. The second
term is just like Eq. (2.26), but here we replace Pg;~
and k with P; and. 0. In addition, we can decompose
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the terms in the Lagrangian density, L„YM, which is just
the integrand of Eq. (4.1). Note that

(4.16)

Furthermore, the kinetic term of the axion can be de-
composed just as the kinetic term of the dilaton was de-
composed in Eq. (2.28). Thus the Hamiltonian is

(+AYM)J ( AYM) Ggqj + qqX1 7)~ (4.17)

is the axion- Yang-Mills sector contribution to the Hamil-
tonian constraint,

HAYM d XHAYM is the axion-Yang-Mills sector contribution to the mo-
mentum constraint, and

+AYM& + (&AYM)r& + (QAYM)a@t
(QAYM ) (( (t)7) (((I AYM ) (4.iS)

where

d x (Q„)(('5 N —(Q„Y ) I)I, (4.15) is the axion-Yang-Mills sector contribution to the Yang-
Mills Gauss constraint.

The action of Eq. (4.1) may be written in canonical
form as

~AY M

d x [(&AYM)*a~t@F + &axi~t~ &AYM~ (& AY)PM' (~AYM)&&& ]

(4.19)

V. DILATON-FOUR-FORM SECTOR

It is possible to treat a cosmological constant as a
constant of motion arising from a four-form Geld rather
than as a fundamental constant. Doing so allows one to
consider space-times in which the cosmological constant
takes diBerent values. In this section, we will consider
such a four-form field, but here we will also allow possi-
ble couplings to the dilaton.

The four-form Geld. strength will be given by A~ ~
4!V'~&A ~ ~

where Ap~ is a three-form potential. The
Geld strength is invariant under gauge transformations of
the potential of the form h~~„[y] = hg„„[0]+ 3|9'~~y„~
where y„ is an arbitrary two-form. We partially re-
strict this gauge invariance in requiring the components
in an orthonormal basis be Gnite everywhere in M. It
will be useful to introduce an "electric" Geld, Eg;~
h&h, , h, -A~ ~ u . One can show that A~ ~ A„~

~~DFF d x g g (TDFF )PFbg

2 +DFF ~@ + ( DFF ) ~harv

(5.2)

We could replace the four-form field strength Ag~ ~ with
its dual +A. The result would be a cosmological constant
term with dilaton couplings. We will not d.o so here as
it is more useful to consider variations of the three-form
potential. We will discuss the relationship between the
four-form Geld strength and the cosmological constant
below.

Under variations of the three-form potential, the ge-
ometry, and the dilaton Geld configurations, the induced
variation in the action of Eq. (5.1) is

A. The dilaton-four-form action

Let fFF ((J') be a function of the dilaton (that contains
no derivatives of the dilaton) that couples to the four-
form Geld as follows:

Note that the projection of the variation of the potential
onto the bound. ary elements is the same as the varia-
tion of the projection of the potential onto the boundary
elements. Here, the stress energy momentum of the four-
form Geld is given by

SDFF d4x g—g, fFF(@)h"" Fhg„p (5.1)
and the dilaton source is
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1 df„(@)T (5.4)

The equations of motion for the four-form Belds are

( )A)l Q [f (y)A A)l (5.5)

(5.6a)

In addition, the momentum conjugate to the three-form
potential on the boundary 7 is given by

—3~ bJ "u„ is the charge density.
Using our definition of p, we can express it in terms

of the four-form Beld strength by means of the equation
of motion, (5.S). Because the unit normal to Z is pro-
portional to a gradient (recall u~ = N—B~t), it can be
pulled inside the derivative operator due to the antisym-
metry of the field strength; in doing so, the derivative
operator on JA becomes the one on X. We find that
V h p = 3V h '7; fFF (@)E' e g and thus

while the momentum conjugate on the boundary Z is d 2: (QDFF) &ab (5.11)

(P, )
*' = vh f—(@)u A """h"h,'6'

= Vh f„(P)E"". (5.6b)

Since A;~I, is proportional to the volume element r;~A,
on 7, the quantity V~ = A;~yu" will be a tensor on BZ,

A A

that is, V,.~ = h,. h-V b. With this in mind, we see that
the variation of A,~k can be decomposed as follows:

Equation (5.11) justifies our interpretation of (QDFF)
as a surface density of four-form charge.

bA;~I, ———3N b&u(, V.A.
I
—3u), o. . OqjbV b.

With the definition

(Q „) ' = 3~a f„(@)n,E' '-
(5 7)

(5.S)

C. Canonical decomposition
of the dilaton-four-form action

To obtain the Hamiltonian density, HD F

(PDFF)"'~Z&Ag;~ —IDFF, we compute

for the four-form surface charge density, the component
of the variation of the action SDFF on the boundary 7
can be written

d & (QDFF) ~(NVab).

As usual, (Q»F) is related to a surface charge density.

(P „)"'E,Ag;= N*(.——,—,vlf (@)& '&m„~)

3Algt, 7))(PDFF)
htg

+'7); 3NV i,(.PDF ) . (5.12)

B. The conserved charge of the four-form Beld Here, A;~z
——A;~~t~. We have already seen that the La-

grangian density is purely electric:

Recall the equation of motion for the four-form field
strength given by Eq. (5.5). In the presence of a source,
J ",we have

I. „= Nv h,
,
f—„(@)E"''Es;

2 x 3!
(5.13)

f (g) AlxAPv JA)lv (5 S)
Thus the Hamiltonian is

and the identity V'p J ~" follows. Let the quantity
~„„be the volume element on the surface OZ. Then,
V'g(J"~ e& ) = 0. If there is no source present in the
vicinity of 7, then we see that

HDFF X HDFF
3

d X 'RDFFN + (gDFF) AU-t

Q „„[e]=j O'T Whp (5 10)

is a conserved charge of the four-form Beld: its value
is independent of the choice of leaf X. Here, p

+ d + DFF +Vab& (5.14)

„f..(~)E""E., (5.15)

where the four-form contribution to the Hamiltonian con-
straint is

That is, given a two-form, e~„, the associated charge is
independent of the foliation. However, the interpretation of
this two-form as the volume element of the boundary of the
leaves of the foliation is, of course, foliation dependent.

and the four-form Gauss constraint is

(QDFF ) 3 7h (PDFF )

The action in canonical form is

(5.16)
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~DFF d z (PD, F) ZiAr„~ —HDFF
dt's

d z (PDFF )""Z.,Ar„~ —'RDFF N —(gDFF)"A;~i — d z (QDFF) NV~s
~

. (5.17)

D. Relation to a cosmological constant A. The dilaton-three-form action

Recall the Lagrangian density

L „=g—g (2 x 4!) fFF(k)A" ~ A„„p
= —

—,'g —g f„(@)(*A)'. (5.18)

In the latter form, it appears like a dilaton coupled to a
cosmological constant A = —4(wA), except that, where
a cosmological constant is fixed in the theory, +A is a
scalar field. The stress-energy-momentum tensor can be
evaluated and we find that (TD«)„= 2 f FF(LP)(s A) 2g~

which is consistent with this interpretation. When the
Gauss constraint equation holds, however, we find that
the quantity fFF (P)E~;~ must be equal to the tensor es;~
up to some constant 2C. Thus we find that f»(iII) (wA) =
2C. The Lagrangian d.ensity is now written L»
—2g—g I/fFF (P) ' C . Thus C can be interpreted as
a (negative) cosmological constant when fFF(k) is a con-
stant. When f»(k) is not a constant, LDFF is essentially
a contribution to the dilaton potential proportional to
C times the reciprocal of the coupling of the four-form
field strength with the dilaton. Although C is a constant
(rather than a scalar field), it is a constant of integration
rather than an imposed fundamental constant.

When the Gauss constraint holds, we can obtain an
explicit expression for the charge QDFF[a]. We see that
(QDFF) = 6C~ae, so the charge QDFF[a] is just 12C
times the area of the surface BZ whose volume element
is

As usual, the dilaton-three-form action will be taken
as the three-form field strength squared coupled to some
function of the dilaton. Let this function be given by
fTF(@), and make the usual assumptions about its form,
i.e. , that it contain only the dilaton, but no derivatives
of the dilaton. Explicitly, we write the action

SDT„= d zQ —g fTF(P)H"" Hi, „v.
2 x 3! (6.1)

bSDTF —— d z Q—g —
2 (TDTF)„vbg"

2TDTF~@ + (=DTF) ~Aviv

d'z (II,)"bA, ,r
dsz (P,)*'8A (6.2)

If we were to perform a duality rotation of the three-form
Geld strength, we would be left with a kinetic energy for
a scalar Geld. However, we are not interested in this case
here. (In a sense, we have already considered a scalar
field in the context of the dilaton in which there is no
coupling to the Ricci scalar, though we have not consid-
ered a dilaton coupled to a scalar field. )

The action of Eq. (6.1) can be subjected to variations
in the geometry, the dilaton, and the two-form potential.
The response in the action is given by

VI. DILATON- THREE-FORM SECTOR

In low energy string theory, one encounters a term in
the action that is a three-form field strength squared
with a coupling to a dilaton. Here, we analyze such
a gauge field with a somewhat more general coupling.
The three-form field strength will be written as Hp„
3!V'~~A~

I
where A„ is a two-form potential field. As

always, there are gauge transformations of this poten-
tial, A„[y] = A„[0]+ 2! V'!„y !,under which the three-
form field. strength is invariant. As usual, we can use
this gauge freedom to guarantee that the components
of the potential in the orthonormal frame are finite ev-
erywhere in M. It is useful to decompose the three-
form field strength into "electric" and "magnetic" pieces

A A

on a spacelike hypersurface, E;~ = h, -, h,"-Hp„u and
B = —(3!) e"v'" H~„u, respectively. It can then be
shown that H & Hp„——6B —3E'~E;~.

(TDTF)~v = fTF (@) (2 x 3 ) gijvH Hnp~

nP
2 Hg H~~p (6.3)

as well as a dilaton source:

1 dfTF(+)
DTF 6 gy APv' (6.4)

In addition, the equation of motion for the three-form
field, in the absence of a source, is the vanishing of

( DTF) +A [fTF(@)H ] ' (6.5)

The momenta conjugate to the two-form potential con-
figuration on the boundaries 7 and Z are, respectively,

As usual, the projection onto the boundary elements of
the variation of the potential are the same as the varia-
tion of the projection of the potential onto the boundary
elements. When the variation of the two-form potential
on the bound. ary is held fixed, there is a contribution to
the stress-energy-momentum tensor,
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(HDTF) hh Y fTF (@)uAH 7p 7 p (6.6a)

and

(P,)"= v—h f, (@)u~H""'"6'„h'„= v—h f,(k)E"
(6.6b)

The potential A;z on the boundary 7 can be written in
terms of the quantities V = o' A;~u~ and W b ——& 'O.

b A;~
on the two-surface OZ as

must be divergenceless, V~J""= 0. Thus we can con-
struct conserved charges for it in the following way. Let
f„=V&P be an exact one-form. (P is a scalar function. )
Because of the antisyrnmetry of J~" in p and v, we have
O = f V„J""= V„(J""f ). If we integrate this expres-
sion over M, we have contributions from the initial and
final hypersurface as well as the boundary 7 . Supposing
that the source vanishes in the vicinity of 7, we find that
the quantity

j~
+ + (6.7)

DTF (6.14)

Note that since W b is a two-form defined on the two-
surface OZ, we could express it as W b ——me b where
m is a scalar function on the two-surface. Similarly, the
variations of A,~ can be decomposed:

bAry ——2u(, o' )N [b(V N) —W bbN j+ o(;o' jbW b.

(6 8)

This leads to a like decomposition of the momentum con-
jugate to the T boundary two-forzn potential. We can-
struct a surface three-form charge density:

DTF d & (QDTF) fah (6.i5)

is invariant upon the surface, X, of evaluation. Thus it
is a conserved charge.

Using Eq. (6.13), we can reexpress the conserved
charge of Eq. (6.14) in terms of the two-surface three-
form charge density (Q»p) . Recall that u„= NV'„—t
Then, the integrand of Eq. (6.14) can be written in the
form '2& fTF(@)EI' f . (Notice that we have restricted
the gradient f to be a one-form on the dual tangent
space of BZ. Natural choices for the scalar P are the
coordinates of this hypersurface. ) Therefore, we have

(Q, ) = 2~~ f, (@)n„E" (6.9)

which is a vector on OZ. Note that (Q»p) is an exten-
sive quantity. It can be used to define conserved charges
as will be seen below. Another extensive quantity is the
surface three-form momentum density:

h

(a7DTF)b (QDTF) Wab ~ (6.iO)

Also, there is a surface three-form current density, de-
fined as

(ZDTF) = ~O' fTp (k)7LpH (6.ii)

bS, i7- = d x (J', ) b¹—(Q, ) b(NV )r
+N(X )DTSFWab (6.12)

Here, the erst two terms in the integrand involve vari-
ations of intensive variables with extensive coefBcients
while the last term is a variation of an extensive variable
with an intensive coeKcient.

Using these, we can write the 7 boundary contribution
to the variation of the dilaton three-farm action as

where f = 0 P and P is an arbitrary scalar function on
OZ.

C. Canonical form of the dilaton-three-form action

(PDTF) ~tA2 j 2 N(PDTF) E2J + 2 N Hhl j(PDTF )

2Aty&r(PD—TF)"
+2'2; Aty(PDTF)'~, (6.16)

where Aq~
——t"A„~ will act as a Lagrange multiplier.

Also, the second term in the Hamiltonian density can be
written as

L T, = Nv h fT, (P)(iB —'E"E;~). -(6.i7)
With these expressions, we can write the Hamiltonian

HDTF X HDTF
3

The canonical decomposition of the action SD~F is ob-
tained through the construction of the Hamiltonian den-
»ty HD» ——(PoT, )"ZtA;; —IDT, Astraig. htforward
calculation of the first term yields

B. Conserved charges of the three-form field
d z LRDTFN + (RDTF);N + At;(gDTF) ]

Suppose that suitable matter is present such that there
is a source term, J~, included in the equation of motion
of the three-form field. Then we have, from Eq. (6.5),

d x (Q, ) NV —(QDT ) N', . (6.18)

Here the contribution from the dilaton-three-form sector
to the Hamiltonian constraint is given by

—V'&[f, (P)H'""] = J~ . (6.13)

However, we see from this equation that the source

'RDTi- = —vhfTF(4)(2B + 4E"~E;~),

the contribution to the momentum constraint is

(6.19)
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(+DTF )b 2 +hag (PDTF ) (6.2O) (gDTF)' = 2'7;(PDTF) (6.21)

and the Gauss constraint for the three-form field is
Also, the action of Eq. (6.1) can be reexpressed in the
canonical form. It is

+DTF d x ( DTF) ~C+2J DTF

d& d X PDTF XgAxg +DTFN +DTF TN»F 'A
X

d'*[(& .)-N —(Q ) NV- (6.22)

VII. STATISTICAL MECHANICS

Here we address, at a formal level, the construction of
statistics of the quantum-mechanical theory based on the
actions we have constructed. The mechanical theory is
entirely described in terms of path integrals involving our
actions. These yield quantum-mechanical density matri-
ces. The statistics of primary interest are the partition
functions, which can be thought of as functional integrals
over the density matrices with some periodic identifica-
tion (with the period related to the temperature).

A. The general action and canonical ensembles

We will consider a general form of action that pos-
sesses all of the features of the actions we have consid-
ered thus far. Let A„" denote the gauge field poten-
tial, where the upper-case Latin index labels the various
gauge Gelds that may be present. The Geld strength asso-
ciated with the potential is given by F" ~, and the gauge
Geld action functional S~F involves the square of the field
strength along with a possible coupling to the dilaton,

I

fDF (k). Note that for the three-form and four-form field
strength gauge fields, the field index will actually be a set
of space-time indices, while for the Yang-Mills fields, it is
a color index. The total action of the theory is given by
St t l

——S „+S + S,. Variations of this action yield
the usual equation of motion terms as well as boundary
terms. We will primarily be concerned with the latter.
The 7 portion of the variation of the total action will
take the form

b~t.t i~7- = d x ZbN+ g—bN —Q„b(NV")j
+N(iS bb~ b+gb@+Z „bW ") . (7.1)

Here, Q„are the surface charge densities of the gauge
fields, X „are the surface currents of the gauge fields,
and g = (g~„D) + Q„W is the total surface mo-
mentum density. Also, V" are the projections of the T'

boundary potentials of the gauge fields along u', while
W " are the portions of these Gelds restricted to t9Z.
Note that all of the gauge field actions we have consid-
ered can be expressed in this way. The action can be
written in canonical form as

Stotal —— dt d x (p'~ kih;~ + Pg;iZik + P'„Zt Ar" —'RN —'8;¹—g„Ai")

+ d 2: —E'N+ N — „NV" (7.2)

Here, Az are the projections of the gauge potentials
along the time vector. 'R is the total Hamiltonian con-
straint, 'R is the total momentum constraint, and g„are
the Gauss constraints of the gauge fields.

The first three terms in the integrand of Eq. (7.1) in-
volve variation of an intensive variable with an extensive
coefFicient. However, the remaining terms involve vari-
ations of extensive variables with intensive coefficients.
Define the microcanonical action to be

Since this action difI'ers from the original by bound-
ary terms alone, the equations of motion are unafFected.
However, such a transformation changes the 7 boundary
component of the variation of the action. We now have

d xN(bE —(u bJ + V"bQ~r
+-', &'b ..+ 3»+ & .bid-") (7.4)

Srnicro = Stotal + d z fN ~N + ~NV

(7.3)

where we define Nu = N . We will interpret u as
the angular velocity of observers comoving with the foli-
ation on 7 . Each term in the integrand of Eq. (7.4) is
of the form of a variation of an extensive variable with
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s„.„,= s,..., — d'* N(-,'8'~., + ye+ z'.w.").
7

(7.5)

Under variations of this action, the 7 boundary compo-
nent becomes

dry, g~r = —j d x Ebs —Z d(N~ ) + g 6(NV )'
8(N8 '/2) + @b(Ny)

+W "8(NZ' „), (7.6)

so it is indeed the intensive boundary variables that
must be fixed in order to obtain the equations of mo-
tion. In canonical form, the 7 contribution to the grand-
canonical action is given by

an intensive coeflicient. We see that the boundary condi-
tions imposed in order to obtain the equations of motion
are those in which the extensive variables are held con-
stant. It is for this reason that the term "microcanonical"
has been adopted. Also, note that the Hamiltonian for
the microcanonical action contains only the constraints
(i.e., there are no additional boundary terms), so the
canonical form of the microcanonical action has no OZ
integral. The importance of this observation is that the
microcanonical action vanishes when stationarity of all
the fields and the constraint equations are imposed.

Grand-canonical boundary conditions involve the fixa-
tion of all intensive variables on the boundary. In analogy
with the procedure above, we define a grand-canonical
action by

B. "Euclidean" notation

Until now, the metrics we have considered have been
of Lorentzian signature. Such metrics can be reexpressed
in a "Euclidean" notation by redefining the (real) met-
ric functions in terms of new (complex) ones. Our pre-
scription is the following: We first rewrite the volume
elements as ~g = i,g gan—d ~p = i,g pand—redefine
the lapse and shift functions: N = iN and N' = iN'.
The former leads to a new unit normal u„= —iu~ which
satisfies u - u = +1. In addition to the lapse and the
shift, we adopt a new notation for all the Lagrange mul-
tipliers in the Hamiltonian. Thus Aq" ——iraq". Thus the
Hamiltonian as a functional of the Lagrange multipliers
is H[N, N', A&"] = iH[N, N', A& ]. Finally, we define a
new action functional I[g, P, A] = —is[g, P, A] such that
the phase in the path integral is written exp( —I).

An important feature of this prescription is the fol-
lowing. Suppose that a complex metric g~ is obtained
from a real, Lorentzian metric g~ via the transformation
t ~ —it. Then, the Lagrange multipliers, N, N', and
Az" become imaginary, or, equivalently, N, N', and A&"
become real. However, the canonical data, that is p'~,
6;z, Pd;i, P, P'„, and A; all are invariant. Therefore,
the extensive variables are all invariant under the Wick
rotation since these variables are constructed out of the
canonical data. In particular, the values of the extensive
variables of the complex metric that extremize the path
integral are the same as the values of these variables on
the corresponding Lorentzian metric.

We can write the microcanonical and the grand-
canonical actions using the Euclidean notation in the
canonical form. They are

s„.„,~7 = — d'*N y —P.~ + Q„v"r
+-,' tr(8)+yP+2 „W" . (7.7)

Imicro—

+AN + R,N'+ g„A,")- (7.1O)

d x (
—ip" Z, h;~ —iP'„ZtA;" —iPd;iZig'

Smicro
~
7 f,„(y) t, (o)

It will be useful to have a covariant form of the micro-
canonical action. To obtain this, we recall the definition
of the microcanonical action, Eq. (7.3), as well as the
initial covariant form of the total action, Eq. (2.1) plus
matter terms. Since the difFerence between the micro-
canonical action and the total action amounts to just a
difFerence on the boundary 7, we will just attend to this.
Thus

and

Igrand Imicro + dt dxN 8 —t'~ +Q„V"
BX'

+-,' tr(8) +y@+2' „W" . (7.11)

In addition, we can write out the variations of these ac-
tions. For example, the 7 boundary contribution of the
variation of the Euclidean form of the microcanonical ac-
tion can be constructed from Eq. (7.4). It is

NB+ N g. —N—V"Q„. (7.S) (~lmicro
~ 7 d xN(hE —~ hQ + V"bQ„

To cast this in a covariant form, we employ the definitions
of E', j', and Q„, as well as the decomposition given
in Eq. (2.9). Then Eq. (7.8) can be rewritten in the
covariant form

+-,'8'~ ., + y~~+ r„.~W."). (7.12)

C. Functional integrals

Smicro
~ 7

f~, ((II)(n„F""„0 t)—(t"A„") . (7.9)

d'x g—~ If.„(@)t„O""O„t—2n"8„f. (@) It is well known that the classical equations of motion
are obtained from an action I, by setting variations of
this action to zero. As argued earlier, the variations are
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of a restricted class which fix certain quantities on the
boundary, and the quantities that must be fixed are de-
termined by the choice of ensemble. For example, it is
the extensive boundary variables that must be fixed in
obtaining the equations of motion from the microcanon-
ical action.

This method of obtaining classical equations of motion
is best understood as a (classical) limit of the quantum-
mechanical density matrix obtained from a path integral.
Formally, we can write this density matrix as

g = d g, e, A e-'~& ~ "I,

where the integral is taken over all possible field configu-
rations of the metric, the dilaton, and the matter fields,
from an initial and. a final spacelike surface. The field
configurations are fixed on the initial and the final space-
like surfaces, Z;„;t, ~ and Xg„j, so the density matrix is
a functional of these quantities. In addition there will be
quantities on 7 joining the boundaries of these two space-
like surfaces that must also be fixed. These quantities de-
pend on the ensemble chosen for the action. The density
matrix will be a functional of these variables as well. The
density matrix gives us all the quantum-mechanical in-
formation we need to solve most problems. Furthermore,
the classical limit can be understood in the following way.
Given an initial configuration, there is a final configura-
tion that is most "likely" in a quantum-mechanical sense:
it is the one for which the density matrix. has the largest
value. In the classical limit, the action is always much
larger than unity (in units of Planck's constant). Thus
the final configuration that extremizes the density matrix
is the one for which bI = 0, that is, the one for which the
classical field equations hold. (Note that I is a complex
quantity we have not yet made a Wick rotation so the
last stateinent follows from stationary phase arguments. )

Much information about the system can be obtained
by taking statistics of the density matrix. The most im-
portant of these is known as the partition function. It is
obtained by "tracing over" the initial and final states. In
terms of path integrals, this can be realized by identifying
the initial and the final configurations, and integrating
over all possible configurations. The partition function
then depends upon the information fixed on the bound-
ary 7 alone. Note that, in identifying the initial and the
final spacelike surfaces, we have electively changed the
topology of M from Z x X to X x S .

As an example, consider the microcanonical ensemble.
The objects that are held fixed when this action is var-
ied are the metrics and field configurations on the initial
and final surfaces as well as the extensive variables on
the boundary 7 . Thus the functional dependence of the
density matrix is

g = g[h, , P, , A, ; hy, &f, Ay, f, Q, cr, g, Q, W]

is the dilaton configuration on 7 . The partition function
is also known as the density of states. It is given'by

id [8,g, o, @, Q, W]

d[h, P&, A~]

xg[h, k~, A~, h, k~, A~, E, J, o., g, Q, W]. (7.15)

Note that we have explicitly indicated the periodic iden-
tification of the fields on the initial and final spacelike
boundaries in the density matrix.

In a siInilar manner, we can construct a grand-
canonical density matrix by making a Laplace transform
of Eq. (7.14). This density matrix would be a functional
of P, u, 8 q, y, V", and X„on the boundary 7 . Here,
the reciprocal temperature, P, is defined by

tt =
ddt tt~ttt;,

where we have used f as a reminder that the initial
and final spacelike hypersurfaces have been periodically
identified; P is the gauge invariant measure of this pe-
riod. The grand-canonical partition function is then
Z[P, ~, S,y, V, r].

VIII. BLACK HOLE THERMODYNAMICS

+[/ g tT g Q W] ~ e micro (8.1)

where the microcanonical action is evaluated at its (com-
plex) extremum value. Clearly, the entropy is just

The thermodynamics of systems containing black holes
can be obtained using the statistical techniques of the
previous section. In particular, we wish to obtain a ther-
modynamic "first law" which relates the entropy change
of a system with changes in extensive quantities of the
system. Clearly, such a result should be obtained f'rom

the microcanonical action. The entropy is normally de-
fined as the logarithm of the density of states. (We re-
call that the latter is just the partition function for the
microcanonical ensemble. ) We will only consider black
hole solutions that are stationary in the sense that the
Lie derivative of all fields (including the metric, dilaton,
and matter fields) vanishes. Also, we continue to use the
"generalized gauge fields" introduced in the previous sec-
tion. Any of the gauge fields discussed in this paper will
have a similar form.

We will only construct the "zeroth order" contribution
to the entropy &om the path integral for the density of
states. In this approximation, the density of states is
written

d[ g g] Imicro [gi+&&j
[Oi (7.14) S[E,J', o., @,Q, W] = I;„[,. —(8.2)

The subscripts i and f refer to the initial and final space-
like hypersurfaces, Z;„;t; ~ and Zs„ i, respectively, and @

Thus to evaluate the entropy is to evaluate the micro-
canonical action at its (complex) extremum value. how-

ever, the presence of an event horizon introduces some
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interpretational problems. These we address in the rest
of this section.

A. Regularizations at the event horizon

As usual, we turn to the Euclidean form of the ac-
tion. The system will be defined as the interior to some
closed two-surface, 8 „q „on which the microcanonical
boundary data are specified. This interior will include
an event horizon; the foliation will become degenerate
on this horizon. In addition to the usual foliation in
the timelike direction, we will suppose that it is possible
to foliate &om the event horizon to the outer boundary.
After periodic identification, the complex manifold has
the form of a cone x S, where the azimuthal direction of
the cone is the timelike direction and the "radial" direc-
tion corresponds to the spacelike vector along which the
spacelike foliation was constructed. The outer edge of
the cone is the two-surface 8 „q „and the "point" of the
cone is where the timelike foliation becomes degenerate:
the event horizon.

It is common to impose regularity conditions on the
cone to cause it to become a disk. Near the event horizon,
we assume that it is possible to write the metric in the
Euclidean form

2 ~ N2dt2+M2d 2+ d ad b (8.3)

B. Evaluation of the microcanonical action

Although the event horizon is in no way distinctive to
an infalling observer, nevertheless, for a system observer
(i.e., one who lives on the system boundary 8 „t„) it
represents a one-way membrane onto which information
can approach, but from which nothing can come (at least
classically). For such an observer, it would be inappro-
priate to attempt to calculate an action that included the
event horizon. So let us remove an open set surrounding
the event horizon infinitesimally close. The remaining
portion of the manifold now contains a new "boundary. "
However, this is not a system boundary on which ther-
modynamic data must be specified —it is just a tool that
will represent the information lost in "throwing away"
the event horizon from the system. With this under-
standing, we shall denote this surface as 8;„„,.

Here, r is the coordinate of foliation in the spacelike direc-
tion, and M is the analog of the lapse function defined as
n„= MO„r. The conical singularity is not present in the
metric of Eq. (8.3) if the "circumference" of the circles
of constant t has the value of 2' times the proper radius
near the event horizon. Let Lt be the period of the iden-
tification of the coordinate t. Then the circumference of
the circles of constant t is given by NLt, and the regu-
larity condition is At(n'0;N) = 27r at the event horizon.
Choose the period At to satisfy this condition. Then it
takes the value At = 2vr/Ir, „where v„= h'~(B;N)(B~N—)
(evaluated on the event horizon) is the surface gravity of
the event horizon.

Let us recall the covariant form of the microcanonical
action. It is the usual action but with the 7 „q„bound-
ary term given by Eq. (7.9). There is no supplemented
boundary term for the inner boundary. Using the usual
techniques to perform a canonical decomposition of this
action, and keeping track of the terms appearing on the
new boundary 8;„„„,we find that

Iy I~j~go + ddt d x 2 O' EH k 72 BgN
~inner

2~o —Nn'8;fE„(k) —¹Q+ Nr2„V", (8.4)

in the "Euclidean" notation. Here, I, is the thermody-
namic action which divers from the microcanonical ac-
tion, I;„,in that the event horizon has been removed
from the microcanonical system. In obtaining Eq. (8.4),
we have used the relation a; = —N 8;N. The action
I;„was given in Eq. (7.10). Thus we notice that
the only boundary contribution to I, is on the boundary
8inner ~

We wish to evaluate the action I, on the solution in
which the field equations hold —the extremal solution.
The contribution from the action I;„ofEq. (7.10)
vanishes: the terms involving Lie derivatives of the fields
vanish due to the stationarity of the solution, and the
remaining terms vanish because the constraint equations
must hold on a classical solution. Thus the sole contribu-
tion to the action I, comes from the boundary contribu-
tion 8;„„„ofEq. (8.4) which arises due to the discarding
of the event horizon from the system. In evaluating this
term, we invoke the regularity conditions of the previous
subsection: N = 0, N = 0, and I n'0;Ndt = —2vr. (The
shift approaches zero as we approach the event horizon
since we have chosen a zero-vorticity observer. The neg-
ative sign in the third equation arises since the normal
vector is now inward directed, rather than outward as it
was in the previous subsection. ) Thus we find that

I.~, = —4' J d x ~a f(P). ,
+inner

(8.5)

C. The Qrst law of thermodynamics

Since the inner boundary, 8;„„„,is not really a bound-
ary, we will view I, as a functional of the same extensive
variables on 8 „t, as I;„.The first law of thermody-
namics is obtained by varying the entropy given by Eq.
(8.2) with the aid of Eq. (7.12) which applies equally to
I, . These variations are understood to be among those
that preserve the classical equations of motion, so the
boundary contribution is the only one present. (Recall

The entropy (neglecting higher-order quantum correc-
tions) is just the negative of this quantity according
to Eq. (8.2) (using I, rather than I;„).The usual
value for the entropy with no dilaton field, one quar-
ter of the event horizon area, is recovered when we set
f«(k) = (16vr) i. (This is the appropriate value for this
coeKcient for the usual Einstein-Hilbert action in units
where Newton's constant is unity. )
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that we have closed. the manifold with respect to the ini-
tial and final hypersurfaces, so there are no longer any
initial and final spacelike boundaries. ) Thus

bS = d xP(SE —(u 8Q + V"hQ
+outer

+-,'s'a ., +ye~+a „sw.") (8.6)

is our formulation of the first law of thermodynamics.
Recall that P is the reciprocal temperature of the sys-
tem [Eq. (7.16)]. Note that it is not necessarily constant
over the system boundary, so we have left it within the
integral. When the boundary is chosen to be an isother-
mal surface, then we can integrate the first term in the
integrand of Eq. (8.6) to obtain the usual "PRIE" term.
[Recall that K is the quasilocal energy af Eq. (2.13).]
However, the angular velocity u will not generally be
a constant on the system boundary simultaneously, so
the usual expression for the first law does not gener-
ally hold in the case of a finite system. In the case of
non-Abelian fields, if a surface can be chosen such that
PV" is constant and proportional to the gauge Killing
scalar (if such exists), then the contribution of this term
in the first lavr is of the form PVSQDvM vrhere the latter
quantity is defined in (3.13). We note that the formu-
lation (8.6) of the Brst lavr differs fram that considered
previously for non-Abelian gauge fields [27], in which cer-
tain asymptotic properties of the gauge and gravitational
fields were assumed in ord.er to define a color charge-
the resultant formulation of the first law is therefore valid
only in this asymptatic region. Our formulation (8.6) of
the first law recovers this result when the gauge and grav-
itational fields have the aforementioned fallofF properties.

It is useful to divide the variations of the metric on
8 „t, into a "shape" preserving piece and a "volume"
(which is, of course, an area on a two-surface) preserv-
ing piece as follovrs: ho~i, = q~g6~o + ~obey, where

o s/i/o. . If this is dane, then the 2PS hrr b

term in the integrand of Eq. (8.6) can be rewritten as
P('PbV+ A hq ~). Here, V = i/o can be thought of as a
measure of the valume of the system (by which we really
mean the area of 8 „t„),and thus 'P =

2 tr(8)/~cr is
interpreted as the pressure on the system. The quantity

= —~o8 ~ is thermodynamically conjugate to shape
changes of the system boundary.

TABLE I. Manifold variables.

Indices
Normal vector
Metric
Compatible derivative
Intrinsic curvature scalar
Extrinsic curvature
Geometric momentum

Manifold
T X BX

(Ij,, v, . . .) (z, j, k) (h, , i, , y)
fLp ~i

gpv yij h;; O~b

V„
&[g] R[h]

K~ k bJ"
O,j
vrU

in the curvature and/or field strengths. Although the
general form for the Noether charge for such terms has
been evaluated [20], the detailed manner in which such
terms contribute to the first law of thermodynamics in
the context of the quasilocal formalism considered in this
paper remains to be worked out.

A related problem of interest concerns the role of topo-
logical fields. These are fields which couple to the con-
nection but not to the metric. It has recently been
shown that interesting black hole solutions exist for a
model topological Beld theory in 2 + 1 dimensions [29].
Their thermodynamical properties are considerably dif-
ferent from the usual case [12,30] and are not fully un-
derstood. The generalization of the quasilocal formalism
to such actions represents an interesting problem since
the first derivatives of the metric will play a markedly
difFerent role in the boundary terms.
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APPENDIX: NOTATION

This is a summary of the notation used in this paper.
The manifold. ~ is topologically X x X where Z is a
spacelike hypersurface and 2 is a timelike interval. Foli-
ation of ~ along X allows us to define the lapse, N, and
the shift, N+. The various manifold. s we will consider,
and some of the tensors defined on them, are summa-

IX.. CONCLUDINC R,EMAB.KS

The formulation of the first law of thermodynamics as
given in (8.6) generalizes previous formulations [18,28]
to include the most general couplings of gauge fields to
dilatonic gravity in four space-time dimensions that have
at most two derivatives in any term in the action. We
close by commenting on possible extensions of our work.

General arguments from string theory suggest that the
action considered in this paper receives corrections &om
terms that have more than two derivatives in the metric
and matter fields, i.e., terms which are at least quadratic

Dilaton

Axion
Yang-Mills
Four-form
Three-form
General field

Field strengths
Full Electric Magnetic

0

z3

E;~ B

8gl V

&pvpcr
H),„
p A

Potential fields
Full Along u On OZ

8
5„'
Ag„V b

A~v Va
A VA

lV b

TABLE II. Field variables.
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TABLE III. Conjugate momenta.

Dilaton
Axion
Dilaton- Yang-Mills
Axion- Yang-Mills
Dilaton-four-form
Dilaton-three-form
General field

Conjugate
On X'

+dil
&ax.i

(DIDYM)'a

(&AYM)'a

(+DFF )
(PDTF)

momenta
On 7
Ild; j

~K3C1

(IIDYM)'a
(IIAYM )
(IIDFF )
(IIDTF )

'

Charge

(QDYM)a

( QAYM ) Q

(QDFF)
(QDTF)

Surface density
Momentum

A
(DIDYM )a

(a7AYM )a

(a7DTF )a

Current

ga

(&DTF)
A

rized in Table I.
We can construct the fol1.owing densities on OZ out

of projections of m'~: the surface energy density, f, the
surface geometric momentum density, (+«D), and the
surface stress density 8

We consider various forms of matter. These are sum-
marized in Tables II and III. Table II contains the field
variables used in the various sectors. The momenta cor-
responding to these fields (and the related densities con-
structed on BZ) are given in Table III.
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