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Hawking radiation without trans-Planckian frequencies
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In a recent work, Unruh showed that Hawking radiation is unaffected by a truncation of free field
theory at the Planck scale. His analysis was performed numerically and based on a hydrodynamical
analogy. In the present work, by analytical methods, the mathematical and physical origin of
Unruh's result is revealed. An alternative truncation scheme which may be more appropriate for
black hole physics is proposed and analyzed. In both schemes the thermal Hawking radiation remains
unaffected even though trans-Planckian energies no longer appear. The universality of this result
is explained by working in momentum space. In that representation, in the presence of a horizon,
the d Alembertian equation becomes a singular 6rst-order equation. In addition, the boundary
conditions corresponding to the vacuum before the black hole formed are that the in modes contain
positive momenta only. Both properties remain valid when the spectrum is truncated and they
sufBce to obtain Hawking radiation.

PACS number(s): 04.70.Dy, 03.70.+k

I. INTRODUCTION

The theory of black hole evaporation [1] is sorely beset
with two unsolved dilemmas.

(1) The trans-Planckian issue [2,3]. When deriving
Hawking radiation in the usual &amework of &ee field
theory, one calls upon vacuum fluctuations at X [4,5]

Mwhose energies are O(eM /M). These propagate as such
up to a Planckian distance of the horizon where there
energy is redshifted down to order 1 and then further
down to a typical frequency of O(M ) upon reaching
2'+. Since gravitational interactions become strong at
the Planckian scale, &ee field theory is at best dubious.

(2) The unitary issue [6]. In the semiclassical theory
of back reaction, both the matter, which is the source
of gravity (the star), and the "partners" to the emitted
Hawking photons fall into the singularity, giving rise to
a density matrix description of the radiation and thus,
in the last analysis, to a nonunitary description of the
evolution. Can one incorporate such a quandary into
quantum mechanics?

Both will require a deeper knowledge of how gravity re-
acts to Hawking emission in order to be resolved. But
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perhaps at a more preliminary stage progress may be
made by introducing an efFective theory that one guesses
incorporates some of the features that might emerge &om
the fundamental theory. Such is the nature of a recent
interesting contribution of Unruh [7], who addressed him-
self to the taming of the trans-Planckian monster. The
present paper, inspired by Unruh's work, contains an
analysis as well as a generalization of the taming mecha-
nism.

Unruh's work is based on an analogy between the hy-
drodynamic equations of the motion of sound waves in
a moving fluid and those that governs 8-wave emission
of a massless scalar field &om an incipient Schwarzschild
black hole in free field theory. Thus, one is led to predict
the production of a thermal Qux of phonons as the Quid
passes from sonic to supersonic How [8]. Through nu-
merical computation he subsequently showed [7] that a
truncation of the spectrum of sound, using a rather nat-
ural algorithm, in no way afFected the thermal emission
of Hawking phonons in the circumstances that this emis-
sion occurred in the untruncated theory. Carrying this
lesson over to the black hole situation, the implication is
that tinkering with the trans-Planckian part of the pho-
ton spectrum will leave the thermal emission unafFected.
We shall here follow up on Unruh's tinkering, first by
introducing a truncation scheme that we believe to be
more appropriate to the black hole situation and then
by supplying the mathematical rationale for the resis-
tance of Hawking's result to such mutilation. Through-
out we have preserved. the linearity of the field equations.
Whether nonlinear efFects preserve Hawking radiation re-
mains a moot point.
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The paper is organized in seven parts. Section II con-
tains a brief review of Unruh s considerations. In prepa-
ration for our analysis we present in Sec. III a variant of
the technique of Damour and Ruffini [9], using momen-
tum space considerations. This technique provides for a
simple and elegant characterization of initial conditions,
which then rapidly leads to the understanding we seek.
In Sec. IV, the photon spectrum is truncated in this ap-
proach. It follows immediately from the formalism that
tinkering with the trans-Planckian part of the spectrum
does not a8'ect the Hawking thermal emission. Section V
incorporates the Damour-RufFini technique into the Un-
ruh hydrodynamic truncated model. Using similar rea-
soning as in Sec. IV, the usual thermal emission is once
more recovered. Section VI contains a comparison of the
wave-packet trajectories in the two cases that have been
analyzed so as to draw a physical picture of the produc-
tion mechanisms. Finally, in Sec. VII we speculate on the
physics behind our phenomenological truncation proce-
dure. Some interpretation in terms of quantum gravity
is hazarded. The result of our analysis can be viewed
as one of disappointment. Hawking radiation does not
seem to be, in itself, an open door that leads to quantum
gravity. Rather, it provokes thought in that direction,
without o8'ering, at least in a direct way, an orientation
for the solutions.

II. UNRUH'S HYDRODYNAMICAL MODEL

The equation that governs the propagation of sound
(amplitude = P) in a perfect fluid in 1+1 dimensions,
which flows with a stationary background velocity field
V(() is

[(—ic)„—ic)~V)( iO—„—Vie)~) —P (—ic)~)]P = 0 . (3)

This equation has been the starting point of Unruh's nu-
merical computations. Propagating an outgoing wave
packet centered about a given negative frequency back-
wards in time, he determines the Bogoljubov coeKcients
by decomposing the packet at early times into its pos-
itive and negative frequency components. Setting up a
vacuum state at early times (see Sec. V), the P term
in the Bogoljubov transformation (i.e. , the weight of the
positive frequency part at early times of a negative fre-
quency mode at late times) encodes the presence of out-
going phonons. This latter conforms to the existence of
the outgoing thermal Hawking flux, quite independently
of the truncation function E.

An amusing aside is provided by I andau's theory of
superfluid critical velocity V, . Were vortices and rotons
absent, the approach to critical superfluid flow would be
accompanied by a thermal shower of Hawking phonons.

III. THE DAMOUR-RUFFINI METHOD

To explain and generalize Unruh's result, we shall use
the Damour-Rufffni technique [9], using a variant based
on momentum space introduced in Ref. [10]. It is es-
pecially convenient for our present purpose because the
wave equation near the horizon and the boundary condi-
tions defining in modes take a particularly simple form.

Equation (2) is valid outside a collapsing spherical
star. First we transform it through use of the advanced
Eddington-Finkelstein system v and r, where

v = t + r*, r* = r + 2M in[(r —2M)/2M]

to give

This equation can be rewritten in d'Alembertian form
P = O with metric g" = 1, g" = g" = V, g" =

—1+V . It is readily diagonalized by the transformation
dt = dg + Vd(/(1 —V ); d( = dr to read

(2)

In this form one recognizes the 8-wave part of con-
structed from the Schwarzschild metric with the identifi-
cations t, r = Schwarzschild time and radial coordinate,
respectively, V = 2M/r. The horizon is at ~V~ = 1.
Thus a fluid, whose flow rate approaches V = —1, will
emit a thermal distribution of phonons whose temper-
ature is given by (1/2')dV/dr~~ q. At this point we
simply use the form given by Eq. (1) to motivate, with
Unruh [7], the truncation procedure used for this model.

In the rest frame (V = 0), the spectrum of sound de-
termined from Eq. (1) is w = ~k~. But since the fiuid has
atomic structure, the spectrum has the property ur = ~k~

when k ( ko and ~ ~ ~o for k )) ko. For example
~ = ko tanh(k/ko) might be expected to approximate
the spectrum. In general, for u = P(k), we are then led
to modify Eq. (1) to

@ = —[c)„(l—2M/r) 8, + 20„c)„]@(v,r ) = 0 . (4)

0(0„+2c)„)@ = 0 . —

The usual Minkowski modes inside the star, hereafter
called in modes, are

y'„"(")(v) = e '""/+4vrA, (6)

'
( )( „) —A( —2 )/q4

The solutions g are connected smoothly to those that are
inside the star. Since the details of the star's trajectory
are irrelevant in the interesting asymptotic region, where
the star's surface approaches the horizon (r = 2M), we
shall for simplicity of presentation take a very simple
model: the star is defined by a thin shell radially falling
inward with the speed of light. We choose its trajectory
to be v = v, q

——0, where st labels the star's surface.
Inside the star, for v ( 0, the geometry is flat and

described by the metric ds = dv —2 dv dr. (In terms of
the usual Minkowski time T, one has v = T + r.) In this
coordinate system waves obey
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The u sector of the field operator is

—8 [(x/2M)B + 28„]g(x,v) = 0, (8)

where x = r —2M. This equation holds in the do-
main

~
xu] (( 1 where u is the eigenvalue of iB„.

Indeed the phase of the exact solution of Eq. (4)
e '~"e ' ~~~+ I'"~~ and the phase of the solution of Eq.
(8) e ' "e ' " differ by O(l) when ]xu~ = O(1).
Henceforth we shall consider only typical ~ = O(M )
which implies that x ( M.

From Eq. (6), the v modes (irrelevant for production)
remain of the form e ' "//4vrw, whereas the u modes
are given by

W (x, v) = [8(x)Ax * +8(—x)Bixi ' ], (9)

i.e., a linear combination of the other solutions of Eq.
(8) . The standard Klein-Gordon normalization pre-
scribes /A/ —]B] = 1.

Far &om the horizon (x )) 2M), the wave equation
reduces to

4

(a~&~ + a~ 6 ),
0

i.e. , a superposition of in modes given by Eq. (7) inside
the star. The Heisenberg state is the vacuum state ~0;„),
which is annihilated by the destruction operators ap, i.e.,
there are no quanta inside the star. For a full description
one should consider v modes y&" as well, but these do
not encode particle creation and will not be considered
here. Henceforth, we drop the label (u). [To be complete
we also point out that in order to describe the 8-wave sec-
tor of a (3+1)-dimensional theory one should impose the
additional boundary condition that the modes vanish at
r = 0. This complicates the notations without modifying
the result and will not be taken into account. ]

Hawking radiation is encoded in the history of the out-
going modes y&" s they propagate through the star into
the space exterior to it. In particular, we shall display
their form outside the star both near and far 6.om the
horizon. In the first instance, the equation that governs
their behavior is

it is propitious to compute the Fourier transform of the
modes at the surface of the star (v = 0). The matching
conditions are then implemented in simple and elegant
fashion.

The Fourier transform of Eq. (8) is

[pet„+ 4Mi ~ + l]X (p) = 0, (i2)

whence

~-(p) = 5'p -'"-&(p) + D]pl ™--~(p)] -(»)
+2z p

The domain of validity of Eqs. (12) and (13) is ~p~ &) M
[for typical w = O(M )].

The Fourier transform of the Minkowski modes Eq. (7)
are proportional to h(p —2A), and we recall that positive
norm modes have A ) 0.

The object of the exercise is to use continuity to change
the basis &om modes inside the star [—:g&"(p)] to those
outside the star, which, for large p, are of the form W (p).
Since the former set have p ) 0 (since A ) 0), continuity
prescribes that p ) 0 is valid for the latter set as well. In
this way one establishes that an equivalent set of in modes
is found &om Eq. (13) with D = 0 and C = 1 (this set
was obtained. independently &om Damour-RufFini, but
by working in Kruskal coordinates by Unruh [11] and
Hawking [6]). We call this basis @'"(p):

gin( ) g( )
4Miw ——1 (14)

—(~—~0) /'2'

This gives @'"(p) for sufficiently large p (e.g. , p )& M ).
Thus, for these values of p one finds that the expansion
coefffcients a g, which give @'"(p) in terms of g&"(p), are
(M/8vrzA) i2(2A) 4M' . For smaller values of p, which
are relevant for the construction of packets that cross the
surface of the star at large values of x, @'"(p) and y&" (p)
coincide. In this case n p -+ b'(u —A).

To see explicitly that only the large values of p are
relevant for packets which reach 2+ at late times, one
builds a wave packet with the modes Eq. (14):

—0 (8 +28„)vP = 0, (10) P'."....(v p) =

and the u modes vP
""associated to asymptotic quanta on

2+ areequaltog "t = e ' &" 2'1//4zu. Since the exact
solution of Eq. (4), which connects to this asymptotic
form, is Q

"t = e ' ~ ~" &/+4z u, the out modes near
the horizon are given by A = 1, B = 0 in Eq. (9):

The phase e' "' centers the wave packet on the light ray222v —2r* = uo and the Gaussian e ~ ~'~ / ~ centers
the frequency around wo. Inserting the form of g'" one
obtains

@out iwv g ( )
4M— i&u

As the crux of our analysis lies in a careful formulation
of the matching conditions at the star's surface, which
define the modes outside in terms of the modes inside the
star, we now go into this matter in some detail. In order
to determine the out-particle content of the in vacuum,

P'"....(v, p) = &M(2 )' 1 —( +4M' —,)' 'y2

~27r p
(+ Ml p — ) (16)

whereupon it is seen that the wave packet is centered on
the trajectory v + 4M in@ = uo. The momentum p at the
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surface of the star v = 0 is given by p = e"'/ . Hence
for wave packets which reach X+ at late times uo, p at
the surface of the star is much larger than M

In conclusion, we have the important result that for all
values of p only positive ones appear in the basis func-
tions Q'"(p). Furthermore, for p )) M, which are those
necessary to describe outgoing packets that begin their
journey from the surface of the star to X+ at values of
x,q « M, the content of the y&" (p) modes in terms of
Q'"(p) contain both signs of w. On the other hand, for

p ~ 2u, which are the relevant values to describe outgo-
ing packets that begin their journey to Z+ at values of
z,q && M, w becomes equal to A. Therefore, it is the for-
mer set that gives rise to particle creation on X+, whereas
the latter give rise to no creation. In this formalism, this
is what expresses the well known fact that Hawking radi-
ation sets in as the star's surface approaches the horizon
exponentially closely. To derive these results, all that has
been used is continuity at the star's surface. From now
on we shall characterize the in vacuum by a ~0;„) = 0,
where a are the annihilation operators associated with
the @'"modes, and we reemphasize that cu takes on both
signs in this characterization.

To find the content of ~0;„) in terms of the out modes
(de6ned on X+) one considers the Fourier transform of
@'"(p) valid for p )) M and, hence, x « M:

gin( ) d ipse 4Miw——1

r( —4Mi~)
27r

)( ~x~4M [g(x)e+2 M + g( x)e ™] {17)

The mode g'" lies on both sides of the horizon. Only
the piece outside the horizon [i.e. , proportional to 8(+x)]
propagates out to X+. From Eqs. (11) and (17) one has,
outside the horizon (x ) 0),

(18)

where we have introduced the Bogoljubov coeKcients

+2@„=0 (20)

where we have used Eddington-Finkelstein coordinates
x, v and their conjugate momentum p and p„[compare
with Eq. (8)]. The canonical equations are

p = —BH/Bx, x = OH/Bp, v = OH/B~, p„= 0,
(21)

where the overdot denotes a derivative with respect to
an aIIIine parameter along the trajectory. These combine
to yield

p = —u = const, (22)

dp p
dv 4M (23)

On the mass shell, H vanishes and, accordingly,

(24)

Hence,

IV. CONFRONTING THE TRANS-PLANCKIAN
HIATU S

The mechanism of how Hawking photons get created
is through the combined gr-vitational and Doppler red
shift, which is incurred as a wave-packet voyages from
small values of x to X+. In the steady state of radiation
the star's surface is exponentially close to the horizon
(x,t Me '~ M). As a consequence, the p values, ob-
tained from Eq. (7), which dominate the integrand in the
packet in this region, are exponentially large: the saddle
point of the integrand in Eq. (17) is at p* = 4M~/x [10].
[See Eq. (16) et seq. ]

To see this more precisely, recall that the locus of the
saddle points traces out the classical trajectories of pho-
tons. Near x = 0 they are obtained from the Hamiltonian
constraint

p(v) = p„e "~ and x(v) = 4M') )4Me" (25)
1 (—4Mi~) +2M(ue

~sr

I'(+4Mi cu) v'2M~e
~sr

~p / ~

—4mM~

This implies a steady thermal Aux of emitted. particles at
temperature T~ = 1/8vrM.

The condition p ) 0 used in Eq. (14) in the present for-
malism is equivalent to the Damour-Ru%ni requirement
that g'"(x) be analytic in the upper half of the x plane.
What we have seen here is that it is a direct consequence
of the existence of vacuum in the star. The d.escription
we have given here is readily adapted to take into account
truncation of the trans-Planckian spectrum (p ) 1).

where p, & is a constant of integration. From this last
equation, we see that a photon of fixed energy w, emit-
ted at late time and reaching x = O(M) at v, [where v„
is typically of the order of the lifetime of the black hole
= O(M )] must have crossed the surface of the star at
x,t,

——4Mat/p, t,
——e " ~4 O(M) with an enormous mo-

mentum p, &
——e+" ~ O(w). This is the trans-Planckian

problem. At these high values of p, and concomitantly
small values of x, free Beld theory certainly breaks down.
The gravitational interaction of the s-wave modes under
consideration, both with other modes and with the back-
ground Beld whose source is in the degrees of freedom
of the star, becomes enormous. Therefore the under-
pinnings of the free field calculation become completely
fallacious.

This does not mean, however, that the derivation given
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g( —i(9 ) g( —i(9 ) —2iB„Q(x,v) = 0 .
2M (26)

Hence, the mode equation corresponding to Eq. (12) be-
comes

[(9„g(p) + 4Mi(u]X (p) = 0 . (27)

The physics that goes into the evaluation of g(p) will be
the subject of the conjectural discussion of Sec. VII. For
the present we only require that g(p) = p for p & 1 and
g(p) = 1 for p & 1, since we anticipate that it is only
the Planckian and trans-Planckian modes, which will be
a8'ected by gravity. As in Unruh's model, the function
g(p) is now to be identified with the energy associated
with the mode number p rather than p itself. Indeed in
fiat space the proposed modification Eq. (26) reads

in Sec. III is completely lost. This is Unruh s main point.
We shall first illustrate these considerations in the con-
text of the Damour-RufBni formalism of Sec. III by in-
troducing a truncation in that scheme, and in Sec. V
we will proceed to analyze Unruh's efFective theory as
given in Sec. II. In both of these schemes one explores
the hypothesis that the physics near the horizon can be
mimicked by modifying the way the matter Beld propa-
gates but leaving both gravity and the linear character
of the Huctuations unafFected.

First a few words of clarification are in order. Any
truncation scheme can be formulated in intrinsic geo-
metric terms. However, it is convenient to work in a
coordinate system that is privileged in the geometry of
the incipient black hole. We make the assumption that
the truncation takes a simple form in such a privileged
system. Explicitly, the origin is fixed and the angular
momentum expansion is carried out with respect to it.
The radius has an intrinsic geometric meaning. Further-
more, the origin of time is given by the inception of radial
infall.

Let us therefore begin by truncating in the Eddington-
Finkelstein (EF) system. We suppose that the energy
spectrum gets modified for modes probing space time at
scales less then 1, i.e., for p & 1. Then Eq. (8) is assumed
to be modified to the form

W—:—g(p) ( g(p) + 2p ) (= 0), (29)

and Eqs. (22), (23), and (24) now read

Pv = (30)

dp/dv = —g(p)/4M,

x = 4M(u/g(p) . (32)

Integrating, one sees that ~p~ decreases with v, initially
(when ~p~ & 1) linearly and then exponentially (when
p ( 1). For ~p~ & 1, one has ~x = ~4M'~ and for
p ( 1, (x) is proportional to (p), hence, increasing
exponentially with v. Thus, at the same time as one
avoids trans-Planckian energies, one ceases to approach
the horizon to within trans-Planckian distances (typically
~M 1). Section VI contains a sketch of the production
process based on these classical trajectories (see Fig. 4).

To establish Hawking radiation in the truncated the-
ory, we once more have to characterize the in-mode ex-
terior to the star. Subsequently, it must be shown that
these in modes evolve towards 2+ so as to give the re-
quired radiation.

From the truncated equation inside the star [Eq. (28)]
it is seen that positive A implies positive p. Thus continu-
ity across v = 0 once more implies that in modes on the
outside also have positive p. [This crucial result, which
is independent of the details of g(p), results from our
assumption of postulating a linear field equation, which
keeps the d'Alembertian factorized in a u and a v piece.
That this is sufhcient is obvious, but that it is not nec-
essary will become apparent in Sec. V.] Thus, our in
modes, the solution of Eq. (27) with p & 0, are

Ref. [12], Chap. 3 and App. D). This redshift is repre-
sented by the factor x/4M in Eq. (24), and the energy
measured by the &ee falling observer is 4M'/x = g(p),
which is now bounded by 2.

It is instructive to see how the truncation deforms the
classical trajectories from the geodesic associated with
the free field. The truncated version is described by the
Hamiltonian

g(-iB )[g(—i(9 ) —2iB„]@= 0, (28) vP'"(p) = 0(p)g(p) exp
~

4i Mar dp/g(p) ~—
27r

so that one sees that for outgoing modes A, the eigen-
values of iB„, is equal to g(p)/2 rather than p/2 and is
bounded by 2. In the curved space outside the star, the
energy at 2'+ (—:w) is Doppler and gravitationally red-
shifted when compared to the energy measured by the
free falling observer (for a discussion of the redshift see

I

(33)

To verify that the condition p ) 0 once more gives rise
asymptotically to Hawking radiation we again resort to
the wave packet construction of Eq. (15) which here takes
the form

4'"....(v, p) = 1
imago —(car —wo) /2cr imv sn(—2 2 ~ ~

(2m)')' (7'&'

(2~)'«(M~)'~2 1 r
exp —

~

v —up+ 4M dp'/g(p')
~

(T /2
2 7(' g p

(x exp 'Clap
~

v —vp + 4M dp'/g(p') (34)
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As it should be, the Gaussian is centered on the classical
trajectory Eqs. (30), (31), and (32). In the asymptotic
region (v )) uo), the values of p which dominate the
Gaussian are very cis-Planckian (p « 1). Thus one re-
covers the packet of the untruncated theory up to the
negligible errors due to the tails of the Gaussian.

It should be noted that the norm of the cis-Planckian
modes is the same as in the free field case. This results
from the fact that the truncated problem is possessed of
a conserved norm,

the skin to become the usual outgoing modes of &ee Geld
theory, thereby guaranteeing a steady state. Thus, at
large values, p has become converted from an energy to
a mode counting parameter. Note that the total time
of evaporation is O(M ), so that the total number of
modes that boil o8' ft.'om those initially inside the skin is
O(M2), which is proportional to the usual estimate for.
the entropy of the black hole.

V. THE TRUNCATED UNRUH MODEL

dp
* pgp *, p =sgnwbu —u'

which reduces to the free field form for [p[ & 1.
When translated into the variable x, what we have

shown is that the &ee field vacuum is maintained at
x & 1, since one only requires the characterization of
the in state in terms of its cis-Planckian content in this
region. Most succinctly, Unruh vacuum is still a valid
concept just outside a Planckian skin of the horizon. This
is every bit as valid as the statement that the Unruh vac-
uum is the correct description of the in state in free field
theory outside the star. A little bit of Planckian fuzz
around the horizon does no injury to the physics, since
the conversion to Hawking photons on X+ occurs out-
side the star because of the red shift which the outgoing
modes feel on the scale of x = O(M) and not x 1 (this
has been pointed out by Jacobson [13] who, however,
did not ascribe the insensitivity of Hawking radiation to
Planckian tinkering) .

The picture that emerges is that fluctuations within
this skin steadily develop into outgoing pairs. Note that
from Eq. (31),p in this region grows linearly in v. The in-
terpretation is that there is a conversion of modes within

In this section we analyze the production of Hawking
phonons based on Unruh's truncation, Eq. (3). As in Sec.
IV, the analysis is based on the momentum representa-
tion of modes. Complications occur because the equation
for the modes near the horizon is second order, and it is
necessary to ensure that the trans-Planckian sector does
not contaminate the cis-Planckian physics. This was ob-
vious in Sec. IV once the boundary conditions were set.

To have a clear idea of the mechanism of production
from the modes, it is first worthwhile to go into the clas-
sical motion along trajectories. While this part of the
analysis does not give the production per se, it does give
the motion of wave packets before and after production.
In this way one has a guide to the portion of the mode
analysis that is relevant.

The Hamiltonian, which generates the classical trajec-
tories corresponding to the wave equation, Eq. (3), is

H = [p, +pV(&)]' +'(p) (=-0)

In the context of Eq. (35), p„ is the momentum conjugate
to g; p is conjugate to (. From the canonical equations
one finds

p„= —w = const, (36)

dp jdg = —pV'((), (37)

V(() + E'(p) on trajectories of type II or III,
V(() —E'(p) on trajectories of type I .

We point out that Eq. (28) has in general a large number
of linearly independent solutions [an "infinity" if g(B ) is not
polynomial in 8 ]. These linearly independent solutions are
recovered from the function g'"(p) by specifying which inte-
gration contour is used to take the Fourier transform. Accord-
ing to how the singularities of vP'"(p) are encircled, difFerent
solutions are obtained. We have chosen the contour to coin-
cide with the path in the absence of truncation, namely to lie
on the real axis. Other prescriptions would presumably give
rise to runaway solutions and the properties of the theory at
low momentum would not coincide with the free field theory.

Since the fluid flows to the left with V decreasing to the
left (so that near the horizon V = —1+(/4M), it is seen
that [p[ always decreases in g. As a consequence, we can,
and shaH, describe evolution with respect to g in terms
of p.

To analyze the trajectories we use the on mass shell
condition —pV(() = —cu+[F(p)[. In Fig. 1 are plotted, as
functions of p, the family of curves —V(()p, and the two
curves —u+[E(p) [. The intersections give the trajectories
((p) at fixed u. It is seen that there are three types of
trajectories.

(I) The sequence of points near the origin all have sinall
negative p and, hence, correspond to a usual null geodesic
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p i(u4M + 1 + i4M + E'(p), P (p) = 0 .

-co+ ] F(p)[

For ~p~ & 1, where I" (p) = p, the solutions are

[ F(P) ] ~(+p)lpl ' '

(40)

FIG. 1. The two curves u+—~E(p)
~

(solid curves) and the
family of lines —V(()p (dotted lines) are plotted as functions
of p for some representative values of (. Their intersections
give the trajectories ((p). There are three trajectories, labeled
I, II, III. Set I corresponds to a v =const trajectory. Set II
crosses the horizon when ( = 0 and then starts to propagate
for ( & O( —4M'), whereupon it corresponds to a u =const
trajectory. The points in class III never reach the horizon:
there are no solutions in this class for ( & (;„(u) =- O(4M'),
but there are two solutions for ( & (;„corresponding to a
trajectory that bounces.

4 (p) = —
I 0(+p)lpl

'

Solutions in class I are associated with the trajectories
of class I (v modes) and are not involved in production
[the singular behavior of these modes is because of the
presence of the (spurious) Cauchy horizon at ( = 8M].
For p )) 1, where I' (p) = 1, the solutions are

(M&"
+-(p) =

I

—
I 0(+p)lpl ™~Ie+'4M"lpl' '

in Schwarzschild geometry, which, in EF coordinates, is
v =const. They are therefore uninteresting for the pro-
duction of particles.

(II) These are points which, for ( )& —4M', have

p « 1; hence, I" (p) = 1. A particle on this part of
the trajectory is at rest with respect to the fluid. For
( & —4Mtu, p is & 1, and the particles then propagate
with respect to the fluid. This trajectory stops at p = 0
owing to the monotonous character of p(g) [Eq. (37)].

(III) The third trajectory has p ) 0. Once more, for
large positive p, it is nonpropagating. As ~p~ decreases,
it starts to propagate for p 1, whereupon it reaches a
minimum value of ([= (;„(u)),which is O(4M'). As ~p~

continues to decrease, ( now increases so as to describe
the propagating part of the trajectory for negative values
of p.

Trajectories II and III are plotted in Fig. 4, where the
functions ((v) are displayed [these are very similar to the
functions ((g), since the coordinate transformation used
to go from Eq. (1) to Eq. (2) shows that near the horizon
q differs from v by a regular function of (]. Production
is concerned with the mixing of trajectories, say III into
II, i.e. , a wave packet localized on trajectory III at large
( and large p (that is, at early times, g small) has an
amplitude P to be localized on trajectory II at small p (g
large). Note that had we taken u & 0 rather than w & 0,
trajectory II would then have positive p and trajectory
III negative p rather than the reverse.

We now study Eq. (3) near the horizon, where V
—1+(/4M. In momentum space, after some elementary
manipulation, the equation takes the form

p »1, (41)

where n~ are the roots of n(n —1)—(4M) = 0. We take
M )) 1 so that n~ +4M —i/2. These modes serve as a
basis of second quantization. Their positive and negative
frequency parts will then correspond to the bases of the
quantized field wherein the annihilation part (positive
frequency) annihilates the in vacuum (i.e. , vacuum at
large (, and hence, large p). To determine this we refer
to the conserved scalar product, which we norm in the
conventional way,

.(&)"[a„+vg)a, ]y.(g)

—&- (&)* &-(&)) = +~( — ') (42)

or, in momentum space,

i2~ dp p
' 0„—ip —1 4M —p 4MB„p

(p)* ++ 4.(p)] = +~(~ —~') (4~)
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Inserting Eq. (41) into Eq. (43), it is seen that the
sign of the scalar product is determined by the sign of

in Eq. (41). The condition of positive frequency
(n+ ——+4M) corresponds to taking wave packets local-
ized along the trajectories —pV(() = —w + ~P(p) ~

rather
than —pV(() = —~ —~E(p) ]. The additional require-
ment that the modes be localized along trajectories II or
III rather than I then imposes p ) 0. The condition of
positive p, which played an essential role in the preceding
sections, is thereby recovered. In summary the in modes
appropriate for second quantization, which give rise to
Hawking radiation, are

pi~( ) ~ ~
0( )

4M— '~ i — '4—~& '4M+i/2
(m)

p )) 1 . (44)

It remains to establish how these in modes, which have
been characterized at large p, evolve into their forms, Eq.
(40), at small p. To this end we use the WKB approxi-
mation, whose validity we justify subsequently. Thus, we
approximate the full solution of the in mode for positive

dpI" (p)/p l
v'&(p)h . (45)

Equation (45) is exact for both ~p~ & 1 and ~p~ )) 1. The
validity of the WKB expansion is assured owing to the
inequality

d[p/4ME(p)]
(46)

This condition can be given a geometric interpretation.
To this end, one reexpresses the solution ((p) of the on-
mass-shell condition II = 0 [Eq. (35)] as ((p) = (~(p) +
A((p), where 6;(p) corresponds to a point that moves
with the ffuid a + pV((~) = 0 and 4( describes motion
with respect to the background [pV'((~A()] —I' (p) =
0. Then the validity of the WKB approximation takes
the form

d(1/&&)
(47)

which expresses that the motion, with respect to the
background fluid, is suf5ciently "slow. " The left-hand
side of this inequality is O(M ), which, by assumption,
is &( 1. Any back scattering because of the second-order
character of the differential equation will be a nonpertur-
bative eff'ect [typically of O(e™)],which would result in
the mixing of u- and v-type modes. It is negligible.

Once having established that the low-p part of the in
modes is of the form of Eq. (40), types II and III, with
only positive p, the results of Sec. III follow forthwith: to
wit, Fourier transform gives a thermal distribution in ~
arising from packets built &om the low-momentum part
of the modes.

In any truncation scheme, be it linear or nonlinear,
one may hope that a condition of adiabaticity similar to
(47) will be applicable. It will then imply that the cre-
ation of particles at a Planckian distance from the hori-
zon is strongly suppressed. Thus, Unruh vacuum will
once more be a valid concept on scales x & 1, and the
usual spectrum of Hawking radiation will be recovered.
Were there any Planckian particles created at x 1, they
would severely disrupt the Hawking flux. Their absence

can be taken to be an expression of the general princi-
ple (very well verified experimentally) that flat space is
stable against the creation of Planckian particles. Since
the curvature in Schwarzschild geometry acts on scales
b,x = O(M), at a Planck distance from the horizon space
looks almost flat, and the principle can be applied with
conBdence. Thus, the absence of created Planckian par-
ticles at the horizon should come as no surprise.

VI. THE CLASSICAL TB.AJECTOR. IES

We now have on hand three schemes on how to ac-
quire Hawking radiation. It is interesting to display in
an Eddington-Finkelstein graph the classical trajectories
corresponding to the modes in the three cases. These
encode vacuum fluctuations in the past, which are con-
verted into quanta at x = O(M).

In Fig. 2 the usual free Beld model is displayed. A vac-
uum fluctuation emerges from the star, it is a pair that
straddles the horizon. The fluctuation hugs the horizon
at an exponentially small distance. Outside the star it
starts to propagate (outwards for the observed Hawk-
ing photon and towards the singularity for its partner-
unobservable in Schwarzschild time but taking form on
the other side of the horizon in finite Kruskal time). Upon
reaching x = O(M), the ffuctuation has become an on-
mass-shell quantum, which now propagates along the tra-
jectory v —2r =const.

In. Fig. 3 the efFect of the simple truncation of Sec. IV
is shown. We have taken g(p) to be unity for p ) 1 [and,
of course, g(p) = p for p & 1]. The propagation on either
side of the horizon begins at the edges of the Planckian
zone ~x~ 1. The Planckian zone ~x~ & 1 is thus steadily
solicited to give out radiation at a steady rate.

Finally, in Fig. 4 the trajectories in Unruh s truncation
are sketched. Here they begin from 2, but, unlike the
free field case, they do not go into the star to reflect and
then come out, as in Fig. 2. Rather they reach the hori-
zon region directly, whereupon at x = +1 they reflect.
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FIG. 2. The classical trajectories of outgoing null geodesics
(thin dotted curves) given by the Hamiltonian equation (20)
are displayed in the Eddington-Finkelstein coordinate system.
The light ray, which generates the horizon, the infalling shell,
the origin r = 0, and the singularity are also represented.

FIG. 4. The trajectories of light rays in Unruh's truncated
hydrodynamic model displayed in the Eddington-Finkelstein
coordinate system. Only class II and III light rays have been
displayed, as it is these that are responsible for production.
Note that, since v and g differ by a regular function of a, the
trajectories in the coordinate system g, $ given by the Hamil-
tonian equation (35) would be very similar to those depicted
in the 6gure.
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The amplitude of the reflected wave is augmented; it is
accompanied by a partner, which appears on the other
side with amplitude P, and the production is encoded in
n2 —1 = P = (e~ —1) . It is fairly difficult to inter-
pret this structure in terms of the black hole. In the fluid
it comes about because of the "riding in" of the modes
on the background. flow.

More important, &om the figures it is seen that in
all cases, at large distance from the horizon ~x~ )) 1,
~p~ (( 1 one recovers the usual free particle trajecto-
ries. Therefore, independently of the truncation we have
used, Hawking radiation remains a pair-production phe-
nomenon: the outgoing quanta are accompanied by part-
ners on the other side of the horizon.

VII. CONCLUSION

FIG. 3. The trajectories of outgoing light rays given by
the truncated Hamiltonian equation (29) are displayed in the
Eddington-Finkelstein coordinate system. In this case the
trajectories no longer approach the horizon exponentially, but
rather they stick at a Planckian distance.

It appears to us that the scenario based on Eq. (26)
could well turn out to reflect some part of the truth. The
function g(p) deviates from its &ee ffeld value p for p & 1
so as to give rise to a sort of quasiparticle description.
The strong gravitational interaction among the modes
will result in continuous mixing of angular momenta, so
in the rigorous theory restriction to 8 waves will no longer
be possible. The whole medi. um is to be regarded as a
matter gravitational soup that has some s-wave content.
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For values of x greater than unity, this content becomes
that of the usual free Geld, and there should be a turn
over from a quasiparticle to true particle theory. The
trans-Planckian soup steadily feeds into the free Geld sec-
tor. It should be possible to display the transition region
(x 1, p 1) by perturbative methods, for example, by
expanding the gravitational action to quadratic terms in
fluctuations around the background geometry. This will
show how the modes start interacting with each as they
move into the Planckian region. We might expect g(p) to
become complex for p & 1, corresponding to a Planckian
lifetime of the 8-wave quasiparticle. Such behavior might
encode the fact that an s wave gets swallowed up in the
extrapolation backwards in time towards the Planckian
skin. Then, instead of the extrapolation through the star
drawn in Fig. 3, the modes just peter out within the skin.
This is indicated by some shading in Fig. 5.

In addition, there is the interaction of the modes with
the gravitational Geld emanating from the sources that
constitute the star (possibly taken together with the
mean efFect due to the other modes, as in the semiclas-
sical theory). Here it would be "recoil" effects of the
gravitational field, which would be responsible for devi-
ations from free field theory. That such effects can be
important has recently been shown by one of us (R.p. )
in the context of the accelerated detector [14], and more
recently corroborated in a study of accelerating mirrors
[15]. What the incidence of these two types of effects
on the modes is for the unitarity problem remains to be
seen. Finally one must be prepared to encounter the
very strong coupling problem, which will arise well into
the trans-Planckian region, where conceptual problems
will arise concerning the nature of space-time.

Whatever happens, on the basis of the above consid-
erations we conjecture strongly that Hawking radiation
is protected &om the vicissitudes of quantum gravity. It
appears as an essentially kinematic response to the pres-
ence of the event horizon encountered in the collapse of
a macroscopic black hole.

Note added. After this manuscript was completed, C.
Bouchiat and F. Englert called our attention to the fol-
lowing conceptual problem. The truncation we have used
treats u modes and v modes asymmetrically, thereby ex-
plicitly breaking the invariance of the theory under local
I orentz transformations. However, one should recall that
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I"IG. 5. The trajectories of light rays in the Edding-
ton-Finkelstein coordinate system if the truncation g(p) were
complex. In this case the trajectories disappear into some
quantum fuzz, which is represented by some shading in the
figure.

the formation of a black hole by the collapse of a star in-
duces an asymmetry between u-ness and v-ness: only a
future horizon is formed but no past horizon exists. Con-
comitantly the field state is asymmetric, the v part being
Schwarzschild (Boulware vacuum) in character whereas
the u part is Kruskal (Hartle-Hawking) in character (i.e. ,
the state is Unruh vacuum).

We believe that it is not unreasonable to envisage that
a phenomenological truncation of the field equations is
state dependent since it should encode the dynamics of
the matter field state induced by the quantum gravi-
tational interactions. In Unruh vacuum the truncation
would then treat u and v modes differently. What would
be the effect of a symmetric truncation in a symmetric
state such as the eternal black hole situation remains to
be seen.
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