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Thermal divergences on the event horizons of two-dimensional black holes
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The expectation value of the stress-energy tensor (T,.) of a free conformally invariant scalar
field is computed in a general static two-dimensional black hole spacetime when the field is in either
a zero temperature vacuum state or a thermal state at a nonzero temperature. It is found that
for every static two-dimensional black hole the stress-energy diverges strongly on the event horizon
unless the field is in a state at the natural black hole temperature which is defined by the surface
gravity of the event horizon. This implies that both extreme and nonextreme two-dimensional black
holes can only be in equilibrium with radiation at the natural black hole temperature.
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I. INTRODUCTION

Since the discovery of black hole radiance two decades
ago, the study of quantum aspects of black holes has been
regarded as one of the most likely areas in which to gain
further insight into the nature of quantum gravitational
processes. Recent work in several distinct areas has led to
a common central concern: Does the stress-energy tensor
of a quantized field diverge on the event horizon? If so,
is the divergence weak and essentially ignorable, or is
it strong, calling into question the very existence of a
meaningful semiclassical black hole solution?

It is well known that Schwarzschild and Reissner-
Nordstrom black holes have a well-defined temperature
which is related to their surface gravity. If quantized
fields are in a thermal state at this temperature (this
is the Hartle-Hawking state), then one expects that
the stress-energy is finite on the past and future event
horizons.! This has been confirmed by numerical cal-
culations in four dimensions [1,2]. If the fields are not
in the Hartle-Hawking state, even if they are in a ther-
mal state at some other temperature, then the stress-
energy diverges severely on the event horizon of the black
hole. This strong divergence indicates that no solution
to the quantum or semiclassical theory would be “near”
the classical solution in these cases; the back reaction to
the quantized fields would profoundly affect the geome-
try in a nonperturbative fashion if the fields are not in
the Hartle-Hawking state.

Despite the classic black hole uniqueness theorems,
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!n this paper, we shall be concerned only with possible equi-
librium states of the black hole-quantized field system. We
shall not consider states such as the Unruh vacuum state,
which is appropriate to a black hole formed by collapse, and
which would be regular on the future event horizon but would
diverge on the past event horizon.

0556-2821/95/52(8)/4554(5)/306.00 52

there are several reasons to be interested in quantum
effects in more general black hole spacetimes. For exam-
ple, back reaction effects due to the nonzero stress-energy
of the quantum fields will alter the spacetime geometry
near the event horizon of a Schwarzschild or Reissner-
Nordstréom black hole [3-5]. Thus self-consistent solu-
tions to the semiclassical back reaction equations will
not be described by the exact classical geometries. In-
clusion of additional fields, such as the dilaton suggested
by superstring theories, may also necessitate examining
a larger class of black hole metrics. Within the larger,
general class of black hole metrics, those metrics which
represent extreme black holes (usually defined as having
a degenerate horizon structure and zero surface gravity)
are of particular interest due to their possible stability
against evaporation.

Extreme black holes play a very important role in cer-
tain contemporary investigations. One such area is the
study of information loss due to the evaporation process
[6]. By studying the absorption and reemission of ra-
diation by an initially extreme black hole, the issues of
Planck scale physics may be avoided, while capturing the
essence of information loss. The simplicity of semiclas-
sical theories in two dimensions allows for the explicit
solution of such models [7].

A second area involves the investigation of pair cre-
ation of magnetically charged Reissner-Nordstrém black
holes by an external magnetic field [8-10]. A curi-
ous discrepancy has been found between the pair cre-
ation rate for extreme and nonextreme black holes.
This discrepancy can be understood simply if extreme
Reissner-Nordstrém black holes are assigned zero entropy
(notwithstanding their nonzero horizon area). Hawking,
Horowitz, and Ross [11] have recently pointed out that
in the Euclidean sector, the distance to the horizon of an
extreme black hole is infinite in all directions (as opposed
to merely in spacelike directions in the Lorentzian met-
ric). They use this fact to argue that the entropy will
formally be zero, explaining the pair creation rate dis-
crepancy. Since the horizon is at an infinite distance, the
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Euclidean geometry may then be identified with an arbi-
trary period without the penalty of introducing a conical
singularity at the horizon. This fact leads them to con-
clude that extreme black holes can be in equilibrium with
radiation at an arbitrary temperature.

Extreme dilaton black holes [12,13] may play an im-
portant role in superstring theories as representations of
massive single string states [14,15]. These black holes are
extreme in the sense that any increase in the charge of the
hole would result in a nakedly singular spacetime. How-
ever, unlike the ordinary Kerr-Newman extreme black
hole metrics of general relativity, these black holes may
have zero, finite, or infinite surface gravities (and hence
temperatures), depending on the value of a, the dilaton
coupling. However, the assignment of thermodynamic
properties such as temperature and entropy to elemen-
tary particles (strings) is problematic, particularly when
infinite temperatures are contemplated. In order to avoid
confusion, we shall hereafter reserve the use of the ad-
jective “extreme” for those black holes (with or without
dilaton fields) which have zero surface gravity, unless oth-
erwise explicitly stated.

Finally, Trivedi [16] has shown that the stress-energy of
a quantized conformally coupled massless field has a weak
divergence on the event horizon of (almost) any extreme
two-dimensional black hole if the field is in a zero tem-
perature vacuum state. We have recently shown [17] that
this divergence does not occur for the four-dimensional
extreme Reissner-Nordstréom black hole and that no di-
vergence in the stress-energy occurs on the horizon if the
field is in a zero temperature vacuum state. However, if
the field is in a thermal state at any nonzero tempera-
ture a severe divergence in the stress-energy does occur
on the horizon. This means that there is a well-defined
temperature (zero) for the extreme Reissner-Nordstrém
black hole and it cannot be coupled to radiation at an ar-
bitrary temperature as suggested by Hawking, Horowitz,
and Ross [11].

These studies raise several related natural questions
concerning the stress-energy of quantized fields in black
hole spacetimes. Does the divergence discovered by
Trivedi exist in four-dimensional extreme black hole
spacetimes other than the extreme Reissner-Nordstrom
spacetime? Is the stress-energy of quantized fields in
nonextreme black hole spacetimes always finite on the
event horizon if the fields are in the Hartle-Hawking state
and does it always diverge otherwise? Can other extreme
black holes be coupled to radiation at an arbitrary tem-
perature even if the extreme Reissner-Nordstrom black
hole cannot?

The answers to these questions will have important
implications. For example, if the divergence found by
Trivedi for extreme black holes existed for some four-
dimensional extreme black holes, then quantum effects
would greatly alter the spacetime geometry near the hori-
zons of such black holes, even though all curvatures in
that region may be far smaller than the Planck scale.
On the other hand, if one could assign an extreme black
hole a temperature other than that defined by the surface
gravity, this would possibly allow one to avoid infinite
temperatures in dilatonic extreme black holes.
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The recent development of a method of numeri-
cally computing the stress-energy of quantized scalar
fields in an arbitrary static spherically symmetric four-
dimensional spacetime [2] has made it possible to
address these questions directly in four dimensions;
as noted above they have already been answered
for Schwarzschild, Reissner-Nordstrom, and extreme
Reissner-Nordstrém black holes. However, the numeri-
cal methods do not allow one to examine arbitrary black
holes in four dimensions. Instead one must numerically
compute the stress-energy for one black hole geometry at
a time.

For this reason it is of interest to look at the two di-
mensional case. Here the stress-energy can be computed
analytically for a conformally invariant field in an arbi-
trary two dimensional spacetime. Thus one can examine
all static two-dimensional black hole geometries. In this
paper we compute the stress-energy for a conformally
invariant field in a general two-dimensional static black
hole spacetime by directly integrating the conservation
equation. This method is well known; the integration
of the conservation equation on a specific [18,19] or gen-
eral (extreme) [16] black hole background has been pre-
viously carried out. The main new feature of our work is
the interpretation of the resulting expressions in terms of
boundary conditions (e.g., temperature) on the quantized
field. We investigate under what conditions the stress-
energy is finite or, at most, weakly divergent on the event
horizon. We find in all cases that the stress-energy tensor
diverges strongly on the horizon unless the fields are in
a thermal state with a temperature equal to the natural
temperature defined by the surface gravity of the black
hole. Hence, the divergence we previously found in the
four-dimensional extreme Reissner-Nordstrom spacetime
is of precisely the same form as that which occurs when
any two-dimensional black hole, extreme or nonextreme,
is assigned an “unnatural” temperature.

For two-dimensional extreme dilaton black holes, this
implies that one cannot escape the divergent behavior as-
sociated with infinite temperatures by choosing to iden-
tify the Euclidean metric with a different period (and
hence temperature). Any such attempt will result in a
strongly divergent stress-energy tensor on the black hole’s
horizon.

Our sign conventions and notation follow Misner,
Thorne, and Wheeler [20]; we also use natural units
(G = ¢ = h = kp = 1) throughout.

II. CALCULATION OF (T,.)

The most general two-dimensional static spacetime
metric may be written in the form

ds? = —F(R)dt* + ﬁd}#. (1)

It is always possible to transform this metric to
“Schwarzschild gauge” by defining a new spatial coor-
dinate
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which yields, as the general metric form,

1
f(r)

where f(r) is an arbitrary function of r. This metric
possesses horizons at the locations 7,, where f(r,) = 0,
(n=0,1,2,...). Markovic and Poisson [21] have recently
discussed stress-energy divergences on Cauchy horizons
in two-dimensional spacetimes. In this paper we consider
black holes with an arbitrary number of horizons, but we
restrict our attention to the outer event horizon at » = rg.

The conservation of stress-energy in the metric of
Eq.(3) yields the differential equations

ds® = —f(r)dt® + dr?, (3)

Tt"rzo (4)
and
1f 1f .
R R A 5
Tr,1-+2f r 2f t ) ()

where a prime denotes differentiation with respect to
r. Hereafter we will generally suppress the expectation
value brackets for simplicity of notation. Equation (5)
may be simplified by rewriting 7 in terms of the trace
of the stress-energy tensor: Tf = T* — T". The conser-
vation equations are then easily integrated:

Iy =C (6)
and

Cy 1 /T ,
=221 [ fToar. 7
Frarl,t @

Equations (6) and (7) are the complete solution to the
conservation of stress-energy equations in two dimen-
sions. The components of the stress-energy tensor in a
given spacetime then depend on one function 7' and two
integration constants C; and C,.

If the field is chosen to be conformally invariant, then

the trace is given by the conformal anomaly TS = E%’
where R is the Ricci scalar, which becomes
fll
TS = — 8
s Sam (8)

for the metric of Eq. (3). In the case of a conformally
invariant field, all information concerning the quantum
state of the field is then encoded in the two integration
constants. Substituting the trace anomaly from Eq. (8)
into Eq. (7), one can explicitly perform the integration
to find

Cz f/2 ™

2
967Tf + a (THawking) ) (9)

r — —

T
where we have defined THawking in terms of the surface
gravity « of the horizon at rq:
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Kk _ f,lf’o

o an (10)

THawking =
Note we have not assumed that THawking represents the
physical temperature of the black hole; rather we have
simply used a familiar definition to simplify a collection
of terms involving f' (ro).

The integration constants are fixed by choosing a par-
ticular quantum state for the field. We will consider a
state in which the black hole is in thermal equilibrium
with a surrounding heat bath. The requirement of ther-
mal equilibrium implies that 7, must be invariant under
time reversal, and thus 7] = C; = 0.

The remaining integration constant C; is now deter-
mined by fixing the form of T in an asymptotically
flat region far from the horizon, where f — const.
(The apparently more general asymptotically flat form
f' — const simply amounts to choosing asymptotically
Rindler coordinates rather than Minkowski.) We assume
that the stress-energy approaches the form appropriate
to a two-dimensional gas of massless scalar bosons at
temperature 7" far from the horizon,

1:-+%T{ (11)
as the metric becomes asymptotically flat. Evaluat-
ing Eq. (9) in the asymptotically flat region and using
Eq. (11), we find

i

™
Cy = ET2 -5 (THawking)® - (12)

IIL (T,,) ON THE HORIZON

Having completely integrated the conservation equa-
tion and solved for the stress-energy tensor, we turn to
the issue of its regularity on the event horizon. Since
the coordinate system used in the metric of Eq. (3) is
singular on the event horizon at r¢, we will evaluate the
stress-energy tensor components in an orthonormal frame
attached to a freely falling observer. The basis vectors
of the frame are chosen to be the two-velocity e = u®
and a unit length spacelike vector e§ = n® orthogonal
to u®, so that n®u, = 0 and n®n, = +1. Using the
timelike Killing vector field to define a conserved energy,
the geodesic equation may then be solved to find

w=y/f, W =—yPoT, (13)

and

nt= VP f W=7, (14)

where <y is the energy per unit mass along the geodesic.
The components of the stress-energy tensor in the freely
falling orthonormal frame are then given in terms of the
coordinate components by

2 r _ mt
y (Tr Tt) _ TT, (15)

Too = 7 -



52 THERMAL DIVERGENCES ON THE EVENT HORIZONS OF . . .

v (T} - T¢)

Ty = 7

+ T}, (16)
and

2 ™ t
Toy = A f(T,,. Tt)‘ (17)
f

Since the value of v is arbitrary, the stress-energy will

be regular on the horizon only if T}, T, and the com-

bination (T — T¢) /f are each separately finite at 7.

Because a possible divergence in either T} or T7 will

be made stronger by the extra f~! in the combination

(Tr — T¢) / f, we will focus on this combination as repre-

senting the strongest possible divergence in (T}, ). Using

Egs. (9),(10) and the trace anomaly, this combination of
terms may be written as

Iy -Tf _2C, 1 f?—f?,, —2ff"

f 48« f? )

The second term on the right hand side of Eq. (18) is 0/0
on the event horizon. Applying I’Hospital’s rule to this
term and rewriting (77 — T7) /f in the limit as r — g
gives

(18)

r _mt "
fm BT _ (202 1 g
T—To f f2 48w f’

This result was derived by Trivedi for the case of ex-
treme black holes. For an extreme black hole (by the con-
ventional definition, i.e., one with zero surface gravity),
f'|ro =0, and the second term of Eq. (19) diverges. This
is the unavoidable divergence Trivedi previously discov-
ered [16]. The only escape from this divergence would be
if f""" approaches zero as fast or faster than f’ does in the
limit r — r¢.2 Of course two-dimensional extreme black
hole metrics for which this occurs form a set of measure
zero in the space of all extreme two-dimensional black
hole metrics. However, it remains to be seen whether
two-dimensional gravitational dynamics, when semiclas-
sical backreaction is included, might cause extreme black
hole solutions to evolve towards such a state.

If C; # 0, then there is a far more serious divergence
of the stress-energy tensor on the event horizon. The
energy density and pressure seen by an infalling observer

(19)

2If one generalizes Trivedi’s result to a nonconformally cou-
pled field [so that the trace of the stress-energy tensor is
not given by Eq. (8)], then the condition for regularity of
the stress-energy on the event horizon is that the limit of
(Ta®)'/f' as 7 — 7o must be finite.
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will diverge as f 2, irrespective of whether the black hole
is extreme or not. Both Christensen and Fulling [18] and
Trivedi [16] noted this and set C, = 0; here, we expand
on the physical interpretation of the meaning of this re-
striction on C,. We have previously seen that the inte-
gration constant C; may be expressed in terms of the dif-
ference between the square of the “natural” temperature
of the black hole, THawking, defined by the surface gravity,
and the square of the asymptotic temperature assigned
to the black hole, T, as shown in Eq. (12). We thus see
that unless the temperature assigned to the black hole,
T, is precisely equal to the natural temperature defined
by the surface gravity, THawking, the stress-energy of a
quantized field will diverge strongly on the event hori-
zon. Further, the form of the divergence is independent
of whether the black hole is extreme or nonextreme?; ex-
treme (zero surface gravity) black holes have a natural
temperature, namely, zero, in precisely the same fash-
ion as nonextreme holes, and may not be assigned ar-
bitrary temperature without serious consequences. The
divergence of (T,,) on the event horizon of an extreme
Reissner-Nordstrém black hole in four dimensions when
the temperature is chosen to be other than zero [17] is
thus seen to be simply an example of the general strong
divergence which occurs for all black holes when assigned
an inappropriate temperature.

In conclusion, the stress-energy tensor of a conformally
coupled quantized field will diverge strongly on the event
horizon of any two-dimensional black hole unless the tem-
perature of the black hole is chosen to be equal to the
natural temperature defined by the surface gravity of the
horizon. If the temperature is chosen to be the natural
value, then the stress-energy tensor will be regular on the
horizon unless the black hole is extreme. If the black hole
is extreme, then there will be a weak divergence of the
stress-energy on the horizon, except in a set of metrics of
measure zero. Whether two-dimensional extreme black
hole metrics evolve naturally towards these nondivergent
cases when semiclassical backreaction is included remains
to be determined.
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3For the nonextreme case, in which the horizon is bifurcate,
this is simply the two-dimensional version of the well-known
result of Kay and Wald [22], although derived here by a dif-
ferent method.
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