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We discuss the status of the black hole entropy formula Spu = An /4G in low-energy effective
field theory. The low-energy expansion of the black hole entropy is studied in a nonequilibrium
situation: the semiclassical decay of hot flat space by black hole nucleation. In this context the
entropy can be defined as an enhancement factor in the semiclassical decay rate, which is dominated
by a sphaleronlike saddle point. We find that all perturbative divergences appearing in Euclidean
calculations of the entropy can be renormalized in low-energy couplings. We also discuss some
formal aspects of the relation between the Euclidean and Hamiltonian approaches to the one-loop
corrections to black hole entropy and geometric entropy, and we emphasize the virtues of the use
of covariant regularization prescriptions. In fact, the definition of black hole entropy in terms of
decay rates requires the use of covariant measures and, accordingly, covariant regularizations in
path integrals. Finally, we speculate on the possibility that low-energy effective field theory could
be sufficient to understand the microscopic degrees of freedom underlying black hole entropy. We
propose a qualitative physical picture in which black hole entropy refers to a space of quasicoherent
states of infalling matter, together with its gravitational field. We stress that this scenario might
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provide a low-energy explanation of both the black hole entropy and the information puzzle.

PACS number(s): 04.70.Dy, 11.10.Gh, 97.60.Lf
I. INTRODUCTION

Black hole entropy has a neat phenomenological mean-
ing. During the late stages of the collapse process in
which a large black hole radiates thermally (i.e., accord-
ing to Hawking’s calculation [1]), the interaction of the
black hole with the rest of the world occurs as if it had
an effective density of states p ~ exp(An/4G), where
Ay is the horizon area and G is the low-energy (renor-
malized) Newton constant. This is obtained from the
Hawking temperature formula Ty = (87GM)~! and the
equilibrium equation 8Spu/OM = Tgl.

A seemingly equivalent phenomenological derivation of
black hole entropy due to ’t Hooft [2] does not assume
any thermal equilibrium boundary conditions (which are
probably unphysical for real collapsing black holes). In-
stead, this derivation is based on a comparison of semi-
classical absorption and emission rates and, in contrast,
the main assumptions are those of unitarity and CPT in-
variance. The absorption cross section of the black hole
would be proportional to the horizon area:

Oin ~ |H(in)|?pa(M) ~ Ag ~ (GM)?, (1)

where the interaction is described by a Hamiltonian Hy
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in some underlying quantum description. According to
Hawking, the emission rate for particles of mass 6 M has
a thermal profile:

Tout ~ |Hr(out)|?ppu(M — §M)
~ AHe—,BHJM ~ (GM)26787rGM5M . (2)

Now, from CPT invariance and unitarity, |H(in)| =
|Hy(out)|, and one obtains the semiclassical relation

psu(M —6M)
pH(M)

which is satisfied by ppu(M) = €588 = exp(4rGM?2+C).

This phenomenological derivation relies on the Hawk-
ing emission formula, which is a low-energy result.
Hence, one would expect that a microscopic descrip-
tion of the degrees of freedom leading to Spu could be
achieved in low-energy effective field theory, at least for
large enough black holes, which accurately follow the
Hawking radiation formula. Strikingly, the only such cal-
culation of Spy giving the correct result Ay /4G regards
the entropy as a purely classical entity, without any sta-
tistical interpretation [3]. This “intrinsic” entropy is at
odds with the phenomenological notion presented above.
Several proposals for an ab initio quantum construction
of the Bekenstein-Hawking entropy have been put for-
ward over the years (for a review see [4]). Notably, geo-
metric (or entanglement) entropy has been proposed as
responsible for all or part of Sgu [2,5].

Entanglement entropy [6,7] arises when the support of
physical operators is conventionally restricted to a proper

e—87rGM6M , (3)
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region of space, and finds its origin in quantum correla-
tions across the boundary between both regions. It is a
fully quantum object naturally scaling as the area, but
it is ultraviolet divergent in field theory. Moreover, this
divergence poses subtle conceptual questions regarding
its physical interpretation. Perhaps one should opera-
tionally choose a physical cutoff such that all the entropy
of large black holes comes from entanglement and its
value is precisely Ay /4G, with G the low-energy Newton
constant. Concrete pictures of this kind include estimates
of the cutoff based on horizon fluctuations [5]. Other
suggestions involving nontrivial quantum gravity physics
are, for example, the hypothesis of a “holographic” de-
scription of the state of collapsed matter [8], and the idea
that black hole entropy looks classical because it lives in
a Hilbert space of states which cannot be realized in field
theory, such as special (perturbative) string configura-
tions [9] (the question of one-loop corrections in string
theory is a subtle one; see Refs. [10]). A striking fea-
ture of all these scenarios, in which one invokes subtle
effects of quantum gravity to target the value Ay /4G,
is that automatically Hawking’s semiclassical calculation
becomes suspect. One could wonder that not only black
hole entropy, but also Hawking’s temperature, would
arise as “miraculous” successes of the semiclassical ap-
proximation.

A different alternative, which is compatible with some
of the ideas above, has been advocated by Susskind and
Uglum in [9]. According to this proposal geometric en-
tropy is just a correction to a classical entropy, and the
divergences organize in such a way that they renormal-
ize the Newton constant, such that Sgy = Ay /4G to all
orders. In this context, it is important to note that the
problem of understanding black hole entropy can be ad-
dressed independently of the details of the end point of
black hole evaporation. Phenomenologically, one assigns
entropy to a black hole only during the period in which
it is radiating thermally. For this reason, a concrete low-
energy picture should be attainable to the extent that
Hawking’s emission formula can be considered as accu-
rate at least for some period of time.

Many of the discussions of black hole entropy are car-
ried out in the Euclidean formalism for the canonical en-
semble where, as stated before, there is a classical contri-
bution whose explanation in physical terms is not clear.
In addition, the one-loop fluctuation determinant in the
gravitational sector has a negative eigenvalue which leads
formally to a complex one-loop entropy. While this may
be sufficient to call into question the relevance of the
whole approach, it is likely that the imaginary part of the
effective action still has a physical meaning interpreted as
a decay rate for black hole nucleation. This is the inter-
pretation of Gross, Perry, and Yaffe in [11] of the original
Hawking-Gibbons calculation. In the light of these com-
ments, it becomes interesting to recast the ideas of [9]
about entropy renormalization in the language of decay
rates, rather than in the static definitions of entropy.

There is an elegant operational definition of black hole
entropy appropriate for nonequilibrium situations, based
on the fact that semiclassical decay processes can be com-
puted by means of Euclidean instanton methods. For ex-
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ample, when charged black holes can be pair created in a
background electromagnetic field, the total rate may be
written as

T ~ |amplitude|?peg , (4)

where peg is the effective density of final states. The clas-
sical instanton contribution is such that p.g is enhanced
for nonextremal black holes with respect to the extremal
ones (and to monopole pair production) by precisely the
Bekenstein-Hawking degeneracy factor pgy = e4#/4G
[13].

It was pointed out in Ref. [14] that the quantum correc-
tions (fluctuation determinant) to Eq. (4) diverge uncon-
trollably because the Gaussian fluctuation determinant
contains the factor

— (0)
rPI"!-L,,;. € BuH 5 (5)

where Bp is the Hawking inverse temperature (the black
holes are created in equilibrium with the Hawking radi-
ation), and H(® is the free Hamiltonian for the physi-
cal (transverse) fluctuations around the instanton. This
quantity diverges because of the continuous spectrum of
field excitations in the black hole background [2], in a way
which makes the corresponding renormalization a subtle
question. The reason is that the divergence can be traced
back to the presence of the horizon as an infinite redshift
surface. One may then argue that, after low-energy cou-
plings have been renormalized according to, e.g., graviton
scattering far from the black hole, the horizon is still in
place and the spectrum in a finite box is still continuous.
According to this argument, it would appear that the
calculation of the quantum corrections to Sy requires
explicit knowledge of Planckian physics and therefore the
phenomenological formula Sgy = Ay /4G could not be
substantiated in a low-energy effective description. This
state of affairs would contradict the low-energy theorem
of Susskind and Uglum [9], which states that an inam-
biguous low-energy expansion exists for Sp. Whereas a
breakdown of the effective description could be expected
in a remnant scenario, one would regard it as unreason-
able if the classical theory failed to provide an adequate
description of large enough black holes.

One of the aims of this paper is to show that a pre-
scription can be given so that such a breakdown does not
occur. This will require disentangling some of the sub-
tleties involved in different ways of considering the quan-
tum black hole entropy. We choose to discuss these issues
in the context of thermal nucleation of black holes: this
provides a scenario rich in both technical features and
appealing interpretations in physical terms. The final
outcome of our analysis will be a low-energy characteri-
zation of black hole entropy.

The paper is planned as follows. In the next section
we cast the low-energy theorem of Ref. [9] into the lan-
guage of Eq. (4) and find that the continuous spectrum
problem is absent in the Euclidean formalism, where all
ultraviolet divergences can be renormalized in a stan-
dard way. In Sec. III we turn to a more detailed study
of Eq. (5). We derive a Euclidean prescription which is
markedly different from the conical singularity formal-
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ism, and makes manifest the problem of the continuous
spectrum. It also explains why this problem does not
appear in the treatment of Sec. II. Roughly speaking,
what happens is that the divergent Hamiltonian partition
function equation (5) admits several formal representa-
tions as a determinant. One of them uses an operator
with continuous spectrum and the natural regularization
is noncovariant (a brick wall). The other representation
uses a fully covariant operator with discrete spectrum,
which is the one appearing in the calculation of decay
rates following the formalism of [11].

In Sec. IV we offer some heuristic arguments show-
ing that the continuous spectrum problem is also absent
in semiclassical models for black hole collapse. It be-
comes an artifact of the eternal black hole geometry as
an asymptotic approximation, and the structure of ul-
traviolet divergences should be again renormalizable in
low-energy couplings in the standard way. Finally, in the
last section we speculate on a physical picture for the
quantum origin of black hole entropy. We point out that
the space of quasicoherent states of the infalling mat-
ter and gravitational field could be used to parametrize
the microscopic degrees of freedom of black hole entropy.
This point of view does not necessarily rely on Planck-
ian physics. One of the appendices contains a calculation
that would otherwise disrupt the main line of the text.
The other develops the subject of the thermal instabili-
ties of the vacuum of two-dimensional dilaton gravity.

II. THERMAL NUCLEATION OF BLACK HOLES
AND ENTROPY

Black hole entropy as a classical enhancement factor of
the final state degeneracy may be studied in a technically
simple situation, which nevertheless retains many phys-
ical features of the charged pair production, at least for
large black holes. This is the thermal nucleation of neu-
tral black holes in hot flat space, as studied in Ref. [11],
where it was computed to one-loop order in the dilute
instanton gas approximation. The corresponding instan-
ton is simply the Euclidean section of the Schwarzschild
geometry, which mediates the nucleation of black holes of
critical mass M = (3/8w @G inside a thermal bath of gravi-
tons in flat space at temperature T = 1/3. The rate per
unit volume is given by [11]

3 2
_ Wo mp, 212/45 mp;
= 278 6ans M) /% exp (—167FT2> - ()

The relation between the imaginary part of the free en-
ergy and the nucleation rate in this expression is the one
corresponding to semiclassical excitation over the barrier

(see Ref. [15]):
ro i (£). o

In other words, the Euclidean instanton is better thought
of as a sphaleron. Indeed, it is time independent (the
Schwarzschild metric is static) and the fluctuation deter-
minant in the physical sector has exactly one negative
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eigenvalue A = —w2 ~ —0.19/(GM)?2, responsible for the
appearance of an imaginary part of the free energy. The
term proportional to m}, in Eq. (6) comes from the inte-
gration over the collective coordinates of the sphaleron,
and the term (u3)%12/4% is because of the anomalies asso-
ciated with the Euler number counterterm, which is non-
vanishing in the Euclidean Schwarzschild section. The
mass scale p appears as a dimensional transmutation
(analogous to Aqcp) of the dimensionless Euler num-
ber coupling, which then becomes a running coupling,
and may be phenomenologically determined (a natural
value in this context is 4 ~ mp;). Finally, the exponen-
tial suppression factor comes entirely from the classical
gravitational action e~ "1, which is given to leading order
by the Hilbert action

1 1
=-— - K — K©),

The interpretation of Eq. (6) according to the Fermi
rule Eq. (4) is based on the fact that, due to the nontrivial
topology of the Euclidean Schwarzschild section, the clas-
sical suppression factor is not exactly the Boltzmann fac-
tor e=#M, Indeed, on a manifold with cylindrical topol-
ogy (a usual thermal manifold), the Hilbert action equals
the canonical action and I j(cylinder x S?) = BMapy.
On the other hand, on the Schwarzschild manifold, with
topology M = disk x S? there is one boundary missing,
which produces I (M) = %,HMADM. The Boltzmann
factor is in excess exactly by the value of the classical
black hole entropy (recall 3 = 8wGM for the nucleated
black holes):

e——ﬁz/lﬁnG — ¢~ BM e41rGM2 — e_ﬁMPBH- (9)

Hence, an operational definition of black hole entropy
in this context would be the excess of the classical action
over the Boltzmann factor

SBH = ,BM - Icl(M) . (10)
Since the gravitational sector may be regarded as a low-
energy effective theory, quantum corrections require the
introduction in I of the whole tower of counterterms,
leading to a low-energy expansion

Ag An
Spu = 22 [ o,.
T D /M

Here we have suppressed the cosmological constant coun-
terterm, since asymptotic flatness is a condition of the
problem. The leading term absorbs the renormalization
of the Newton constant, while the others are also phe-
nomenologically determined. It is important to note that
the definition of Sgu given in Eq. (10) is not in general
equivalent to others based on the thermodynamic for-
mula

(11)

§ = (B0 — 1)1 (12)

In the original analysis of Gibbons and Hawking [3], the
derivative was taken on the space of classical solutions of



4530

the field equation. Alternatively, in the conical singular-
ity method [16,17], one holds M fixed while varying g3,
thus going off shell due to the conical singularity at the
horizon.

Actually, one may regard the sphaleronlike interpre-
tation of the Euclidean Schwarzschild instanton [11] as
more natural than the thermostatic interpretation behind
formula (12), because the negative mode at one loop sig-
nals an instability of the canonical ensemble for thermal
gravitons, in addition to the infrared Jeans instability.
Yet, the low-energy effective theory predicts a value for
the decay rate which may have physical meaning. The
definitions based on Eqgs. (10) and (12) will give, in gen-
eral, a slightly different low-energy expansion, although
the leading term seems to be universal (in a fashion sim-
ilar to the first two terms of the 3 function in gauge the-
ories, which are independent of the definition of physical
coupling).

A very striking feature of Eq. (6) is the absence of
the potentially troublesome partition function in Eq. (5).
In fact, it is easy to see that it cancels against the flat
space normalization, up to an ultraviolet finite boundary
or “surface tension” term. To be more specific, let us
consider the total partition function given as a dilute
multi-instanton sum:

> 1 )
—Znye Ta

1< (N)
= N!

Z = exp(—fReF + ;—”VF) = , (13)
(1]

where IC(IN) ~ NIS) = NBM/2 and Z(y) denotes
the perturbative partition function around the N-
multiblackhole solution. To one-loop order one finds

Ziny = (/2)NCNdet ]V ?(Illyy) (14)

where C stands for the contribution of the collective coor-
dinates (zero modes) and anomalous scaling. The factor
i/2 comes from the usual half-contour rotation for the N
negative modes and Iy, is a combination of second order
elliptic differential operators which includes fluctuation
kernels for the physical as well as unphysical graviton
polarizations, and the corresponding ghost terms [19].
Roughly speaking, the ghost determinant cancels the lon-
gitudinal and trace parts of the graviton excitations, leav-
ing the physical (transverse-traceless) fluctuations.

In any covariant regularization, the ultraviolet di-
vergences in the perturbative effective action W.g =
1 Indet(J; () can be absorbed in the counterterm series
of I1. A very convenient one-loop prescription is given by
¢ function regularization, which only requires the spec-
trum of I"” to be discrete. This is always the case at
finite volume, since all operators are elliptic and the Eu-
clidean manifold is compact with boundary. If we write
the ultraviolet finite part of Weg as a volume integral it is
clear that, within the dilute gas approximation and in the
large volume limit, W.g is dominated by the free energy
of gravitons in flat space. Let us separate the contribu-
tion of the asymptotic thermal gravitons from those close
to the horizon (up to, say, a radius r ~ 3GM). Then one
finds

J. L. F. BARBON AND R. EMPARAN 52

Weﬂ' ~ NWhor + ﬁfg(V - NVBH) ) (15)

where f, = —w2/453* denotes the free energy density of
gravitons in flat space, and Vggy is the excluded volume
per black hole. If we multiply and divide by the flat
space partition function Z(g) = exp(Vw?/453%) we get
an overall factor in the N-instanton term

Zgye VPP (16)

where Fg is a boundary-free energy given by the contri-
bution to Weg coming from the horizon region minus the
graviton-free energy in the same volume of flat space

IBFB = Whor — ﬂngBH . (17)

Notice that Bf,Vpy is a pure number, independent of
M. In fact, BFp appears as a constant term in the 1/V
expansion of Wg:

Weg = Bf,V + NBFp +O(V™1). (18)

For small black holes (corresponding to high tempera-
ture) this term should approach zero, whereas for large
black holes (i.e., low temperature), Wy, scales like the
vacuum energy of Euclidean Rindler space, Wy, ~
(M/mp1)* + const. Hence one concludes that

pra (M) [ivo ()] o)

When the multi-instanton sum is performed the term
BFp exponentiates and it contributes to the imaginary
part of the free energy. The real part is given by the
flat space free energy as it should be, and the corrected
low-energy expansion for the rate reads

wo M
273 6473

Fcorr = f(p“ﬂ)e_ﬂMeSBHe_ﬁFB ’ (20)

where Spu is defined in Eq. (11) and f(u8) =
(uB)?12/45 4 ... is obtained from the perturbative ex-
pansion of the 3 function associated to the dimensionless
coupling to.the Euler number.

The boundary term exp(—BFg) =~ exp[—C(M/mp))?]
dominates the suppression factor at low temperatures.
This agrees with the fact that surface effects become in-
creasingly important: in the large M limit the Rindler
region covers all of (Euclidean) space. The boundary
partition function is thus related to the part of Eq. (5)
coming from the vicinity of the horizon.

In the construction presented above, black hole en-
tropy is fundamentally a classical object with no micro-
scopic interpretation, and quantum corrections organize
in a low-energy expansion. Furthermore, the renormal-
ization of the Newton constant implied in the definition
of Sy is the same that one would obtain from graviton
scattering far from the black hole, as long as a covariant
procedure, such as {-function regularization, is employed
everywhere. This, in turn, is ensured by the fact that the
finite volume Euclidean manifold is compact and smooth
and at the equilibrium temperature there is no global
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distinction between finite temperature free energy and
vacuum energy.

An important point to stress is that, at least for nonex-
tremal black holes, the problem of continuous spectrum
is absent from the previous discussion. All the operators
involved are elliptic, and have discrete spectrum at finite
volume. An explicitly covariant regularization is possible
and there is no obstruction to the low-energy theorem of
[9]. For example, having discrete spectrum one can use ¢
function regularization at one loop, in which there are no
divergences at all and the total black hole entropy comes
out clearly as Ay /4G.

III. CONTINUOUS VERSUS DISCRETE
FLUCTUATION SPECTRUM

In this section we study some aspects of the Hamilto-
nian partition function, Eq. (5), which following Unruh
[20], is related to the entanglement density matrix in the
vacuum of the extended eternal black hole geometry. We
start by reviewing the disease caused by continuous black
hole spectrum, as first pointed out by 't Hooft in Ref. [2],
and work backwards to derive an Euclidean formulation
which makes manifest the differences between Eq. (5) and
the term exp(—BFg) that we have found in the previous
section.

A. Statistical mechanics of the fluctuation degrees
of freedom

Although we have in mind the physical situation stud-
ied in Sec. II (thermal gravitons) the discussion may be
generalized to different matter contents. In general, let
the Gaussian (Lorentzian) action for quadratic fluctua-
tions around the black hole be

1
5(2)=§/M<P£<P7 (21)

where £ = —V?% + V(g) and ¢ represents the physical
(transverse) excitations. For example, for a scalar field
we have L = —V2 + m2 + (R + - - -, while for transverse-
traceless gravitons, the case relevant to the previous sec-
tion, we must consider Lrrhog = —Vzhaﬂ — 2Ra575h78
(we are focusing on bosonic fields for simplicity).

Choosing a time slicing adapted to the Killing vector
8/0t, where t is the asymptotically Minkowskian time, we
may express the free canonical Hamiltonian associated to
Eq. (21) in terms of the eigenfrequencies as

HO® = Zwalaw + Ap, (22)

where Ap = %wa is the (Boulware) vacuum en-

ergy, formally infinite, and a!, generate the physical Fock
space. The one-loop free energy takes then the well
known form

BF —BAp = In(1—eP¥). (23)
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At finite volume, this quantity is ill defined even with
an ultraviolet cutoff in the frequency sum: w < A. The
reason is that the spectrum of a black hole in a box is still
continuous because the horizon behaves as a noncompact
boundary. The eigenvalue problem for the frequencies is

(=900) (= V2 + V(9))dhur (%) = w9 (x). (24)

In tortoise coordinates 7. = r+2GM In|r/2GM — 1| this
is a Schrodinger problem for radial excitations with L2
metric, and with an effective potential Veg o< —ggo ~
exp(4nTyry) as we approach the horizon (r. — —oo).
As a result, the spectrum is continuous unless a horizon
regulator (brick wall) is imposed. This all looks very dif-
ferent from the discussion in the preceding section, where
all operators would present discrete spectrum after stan-
dard infrared regularization (large volume cutoff).

In particular, as pointed out in Ref. [14], the prob-
lem of continuous spectrum seems to remain even after
the Newton constant has been renormalized according
to graviton scattering far from the black hole, because it
only depends on the existence of the horizon as an infinite
redshift surface. Heuristically, the brick wall boundary
condition is a local ultraviolet cutoff, because the condi-
tion w < A is not a uniform cutoff for local static ob-
servers, who measure local frequencies wioc = w/1/—goo-
Thus, the brick wall cuts off unphysical static frames. It
is, however, very disturbing that this interpretation of
the cutoff is frame dependent. This is a first indication
of the fact that the continuous spectrum cannot be easily
cut off in a covariant way.

In order to bring the discussion to the terms of Sec.
II, it is necessary to rewrite the free energy equation (23)
in Euclidean form. This can be done directly, as in flat
space, by means of the ¢ function identity (we follow Ref.

(21))

[[(4+n%B) = % sinh(rv/AB). (25)

We get

BF = Lo [] T[t4n*n?/6" +?) = ~ Indet™"/%(2).

neZ w
(26)

This defines L as the operator with eigenvalues
47?n?/pB? 4+ w?. From Eq. (24) we conclude that L is
given by

L=-82+(—g00)(-Vi+V(g), (27)

acting on periodic functions of the Euclidean time 6 of the
form 9, ., = €270/, (x), where 9, (x) are the spatial
harmonics in Eq. (24).

Curiously enough, this is not the covariant fluctuation
operator, but rather a local multiple:

L = (—goo)L. (28)

The inner product for E, as inherited from the L? in-
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ner product in tortoise coordinates (or the Klein-Gordon
metric in Lorentzian signature) is

TN 43: \/“_g Tx 71
W) = /Md (—900) v

(29)

From this we can derive a path integral formula. In gen-
eral, given an inner product

(o, ) = / d'z p(z)* () (), (30)

the determinant of an operator £, admits the represen-
tation

at(Ly) = [ Dypexp (<5l Lor) . (D

where the measure is formally given by

(32)

Doy = H den H d<Pz 1/2'

Here c,, are the Fourier coefficients of the field ¢ in a
basis orthonormal with respect to the product (30).

It is interesting that the inner product equation (29)
precisely gives the action S(®) in the exponent:

s@ =3 [dav=geLo = (olBle).  (3)

So, the operator £ with the inner product equation (29) is
classically equivalent to the operator £ with the covariant
inner product. However, quantum mechanically, there is
a difference in the path integral measure.

We have then established

w

(elele’y = (pl(Tra, [0)0D1¢") =TT (

sinh 27w

where ¢, ¢, are the Fourier components of the spatial
fields in the right half-space, analyzed in the basis of spa-
tial eigenfunctions ,,(x) orthonormal with respect to the
spatial section of the inner product (29). The exponen-
tial term in Eq. (35) corresponds to the classical action
S(2) between configurations ¢, ¢, whereas the prefactor
comes from the fluctuation determinant around the clas-
sical path. It is easy to check that to obtain it from the
four-dimensional Euclidean path integral one must use
the noncovariant measure in Eq. (34), and introduce ¢,
¢’ as the values of the field at each side of the cut along
6 =0 [23,12].

1/2
) exp (—; {coth 2rw(p? + ¢'2
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Tra,, e BH® - det~Y/2(L)

dop 1/2 @
/H 2‘”( - ) e=SPlel | (34)
V aT 00

This result was also obtained in Ref. [22] using the canon-
ical derivation of the path integral. It is remarkable
because it shows that the canonical partition function
equation (5) is not formally equal to det'/?(£). Rather,
it equals the determinant of a related operator which
is singular at the horizon where goo = 0. Accordingly,
the operator L has continuous spectrum at finite volume,
and does not admit (-function regularization unless we
provide some kind of brick wall cutoff. Therefore, the
topology of tllf Euclidean manifold appropriate to L is
cylindrical: M = M — {horizon} is noncompact in the
vicinity of the horizon. If we would use this as the phys-
ical thermal manifold, the classical contribution to the
entropy would vanish.

The peculiar topology associated to Eq. (34) can be
traced back to its origin as geometric or entanglement
entropy, at least when it is calculated as a thermal sum.
For example, if we consider the entanglement entropy
generated by performing a trace over half of Minkowski
space [6], the formal procedure to expose the thermal
nature of the density matrix uses a trick due to Unruh
[20] (see also Refs. [23,12]).

One decomposes the total Cauchy surface into two non-
compact left and right components by an appropriate co-
ordinate mapping, which in this case is equivalent to the
Rindler acceleration. Since the two components are non-
compact, in fact the origin (the position of the boundary)
is not part of the mapping. In other words, one writes
H' = H1 ®Hg, where H[ g are the left and right Hilbert
spaces, and H' is the total Hilbert space minus the field
oscillator at the boundary. This is the formal origin of
the missing point in the Euclidean manifold M.

The density matrix for the vacuum obtained by tracing
out degrees of freedom in the left half-space can be found
to be [23-25]

20,9

!
" sinh 27w }) ’

(35)

These results may seem disturbing at first, because
they indicate that the Euclidean construction for entan-
glement entropy is formally defined in terms of L in-
stead of the covariant operator £. On the other hand,
we know that the Hartle-Hawking Green’s function de-
fined without boundary condition on the Euclidean sec-
tion M is the correct thermal Green’s function for static
(lbservers‘ In fact, both Green’s functions are equal:
G(z,z') = Guu(z,z') and there is no contradiction.
Again, this follows easily from the freedom to choose dif-
ferent operators provided the inner product is changed
accordingly. The Green’s function of an operator £, de-
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fined as
Gp(z,a') = (z|L;|2") (36)
satisfies the equation
, -
£,(@)G,(a,a) = bp(a,a') = LEZT) - (a7)

Pz

Using the expression for L and p in terms of £ and p,
it is trivial to realize that Gyy and G satisfy the same
equation

d(z — ')
/_gm .

Therefore, Ggy and G are obviously identical when the
boundary conditions are the same, such as, in a brick
wall model. For the no-boundary case, the equality is
not obvious, because G(x,z’) cannot be extended to the

Em@(z,x') = (38)

horizon in terms of the eigenfunctions of L. However,
an explicit computation in Rindler space can be done
(see Appendix A) which ensures Ggg = G also in the
no-boundary case.

Thus, for local physics, the difference between M and
M is just the way in which the no-boundary condition
of Hartle and Hawking is introduced. However, the dif-
ference is important for the issue of the total number of
states of the black hole in low-energy field theory. This is
due to the fact that, in going from the Green’s function
to the extensive free energy, one has to give sense to the
expression

1

ETI'{,,} lnG(a:,a:) . (39)
Different prescriptions for the spatial trace and the coin-
cidence limit turn into the different determinants above.
The disease of continuous black hole spectrum arises
when one works with G, which leads to considering
det™Y/ 2(,7':) As explained above, this is naturally reg-
ularized by means of a brick wall cutoff. On the other
hand, use of Gyu in Eq. (39) is concomitant to the com-

putation of det™/ 2(L), which is free of the continuous
spectrum problem. In this case the regularization proce-
dure is fully covariant and we obtain the results of Sec.
II. In fact, both prescriptions are formally related by a
conformal transformation. To see this, we recall that,
according to Eq. (26), there are many path integral ver-
sions of the same determinant, because we can change
the operator at the price of rescaling the inner product
(thereby changing the functional measure). A particu-
larly nice variation is given by the “optical” inner prod-
uct, which is covariant with respect to the conformally-
related (“optical”) metric gog = gap/(—9goo) and has
weight p = v/—g/(—g00)¥? = (—3)~*/? in d spacetime
dimensions. Then the operator

2

L= (—goo)d‘*ﬂ L (—900)% (40)

has the same eigenvalues as L and det™'/2(L)
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det™2(L).

In the conformally-invariant case, a nice relation be-
tween the determinants of £ and £ can be written us-
ing the optical operator as an intermediate step. A
conformally-invariant fluctuation operator for scalars is
given by

d—2

Lc(g) = _vZ “+ mR.

(41)
A simple computation shows that £, = L£.(g) and we
may write

det™Y2(L,) = det™Y%(L(7))
_ doe 174
= / II /e
X exp [; / ﬁwcc(g>¢] L@

But the last path integral is conformally related to the
covariantly regularized path integral for the operator in
the physical metric. Then we obtain

det™Y/%(L.) = det™V/%(L,) = e~ Trlngoolget=1/2(£ )
(43)

(see also Ref. [22]). In two dimensions Iy, is the stan-
dard Liouville functional, while in four dimensions it is
in general a nonlocal action [26].

B. Brick wall regularization and renormalization

Equations (42,43) only make sense with a brick wall
in place, because otherwise the noncompact operators
have no well-defined determinant. In such a situation
I, ~ (B x finite; i.e., it contributes only to the vacuum
energy (not to the entropy). This means that one can
compute the entropy in the presence of the brick wall
directly from the ultraviolet finite part of det™!/ 2(L).
It is important to recognize that, in the absence of a
brick wall, Eq. (43) has a formal status, because it relates
infinite quantities.

The leading brick wall divergence is in fact indepen-
dent of the particular potential term occurring in £ =
—V?% +V(g), provided V(g) is regular in the horizon re-
gion. This is due to the fact that the leading divergence
depends only on the effective potential —gooV (g), which
vanishes exponentially in the horizon region. The poten-
tially troublesome angular degrees of freedom [27], which
may spoil the accuracy of the WKB approximation, sum
up such that the WKB result is surprisingly correct [this
is easy to check by using Eq. (43) and computing in the
optical metric [18,22]].

The final answer for the leading divergence per degree
of freedom in d > 2 dimension is
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Saiv = —(BuF — BaAB)aivd
__dI{d/2)((d) Anm
(d — 2)w3d/2-19d-1 L 2"

(44)

where egw is the brick wall cutoff. In two dimen-
sions Sgy = 1/61ln eg‘l,v Also, for fermions one ob-
tains the usual statistical correction factor Spermi

(1 - 21_d)SBose-

At this point one can adopt different attitudes. If black
hole entropy is primarily regarded as a quantum object
and Eq. (44) considered at least part of it, then the en-
tropy is clearly cutoff dependent. We cannot predict its
value using low-energy quantum gravity nor understand
what degrees of freedom Spy accounts for. In this view,
the final result Sy = Ay /4G with G the long distance
Newton constant, would seem to come out in a rather
“miraculous” way from Planckian dynamics in quantum
gravity. Variations of this idea have been put forward by
various authors [2,5].

Another possibility is to consider a classical entropy,
and take Eq. (44) as a counterterm renormalizing Newton
constant. However, there is some arbitrariness here since
the renormalization conventions appropriate for graviton
scattering far from the black hole and for Eq. (44) do not
agree in general. For example, the counterterms induced
by a scalar field on the vacuum energy are (in Schwinger
proper time regularization) readily found from the heat
kernel expansion

Vol(M) 1 JaVol(dM) 1
d(4m)4/2 €d " 2(d — 1)(4m)4/2 a1

- 2)47rd/2( [reif K)ee

(45)

Acounter - -

The last term induces a renormalization (in four dimen-
sions)

P (46)

Gl Gt
12me?

bare bare
Now, in order to compare Egs. (44) and (45) we would
need an invariant relation between both cut offs. It is un-
likely that such a relation exists because, as we pointed
out before, the physical interpretation of the brick wall as
an ultraviolet cutoff is fundamentally frame dependent.
If one insisted on comparing the results, the only possible
“natural” relation should be based on the fact that the
Schwinger proper time cutoff is a length cutoff for paths
in the first quantized path integral representation of de-
terminants. Then, one could declare that the Schwinger
cutoff is set by the minimum length noncontractible path
in the brick wall manifold,

€~ GBW?—Hﬂ , (47)

and this would lead to Sqiv = (7/90)(Ax/€?) in four
dimensions, which could not be absorbed with the renor-
malization above. As a consequence, if we wanted the
renormalization to work along the lines of Sec. II, we
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would be led to ad hoc choices of brick wall cutoff.

This situation may be summarized by saying that the
use of brick wall regulators has a heuristic value but, if we
assume that there is an inambiguous classical entropy, a
systematic treatment of the renormalizaton procedure in
low-energy theory requires the use of covariant schemes,
based on the Hartle-Hawking regular manifold M, as in
Sec. II, or a conical deformation of it (this agrees with re-
marks made in recent papers [28]). In fact, in the context
of the black hole nucleation approach, we can say that
the covariant method is the only possible choice. This is
due to the fact that the continuous spectrum operator 3
has positive spectrum by construction. There is no way
we could get a negative eigenvalue from this operator and
thus no imaginary part for the free energy. As a result,
this operator cannot appear if we want to maintain the
physical picture of hot space decay.

IV. REDSHIFT ARGUMENTS IN MIRROR
MODELS

In this section we argue on a heuristic basis that, in
semiclassical collapse models, the continuous spectrum
problem seems to be spurious. In the WKB approxi-
mation one basically gets the results of naive redshift
calculations, i.e., formula (44) can be obtained from [21]

d I'(d/2) {(d)

Sdiv = —d/2

[ avaeuv=gm*-t. s

This suggests that the divergence in Eq. (44) should
be properly related to the unphysical observers close to
the horizon. Any quantity computed from L refers to a
family of static observers which become singular at the
horizon—a physical static frame at the horizon has infi-
nite energy. Yet, this is an artifact of the eternal black
hole geometry as an effective approximation to a collapse
solution. This point deserves further explanation.

Hawking radiation is dynamically generated by the
time-dependent gravitational background in the vicinity
of the collapsing matter. In the asymptotic regime, the
time-dependent background can be eliminated in favor of
a dynamical boundary condition by an appropriate choice
of coordinates. This gives the mirror model description
of black hole emission. Locally, for free field propagation
in radial modes, the point » = 0 is a perfectly reflect-
ing boundary which behaves as a time-dependent brick
wall; following an asymptotic trajectory in tortoise coor-
dinates:

ro(r =0) >~ —t — Ae"/2CM L B, (49)

In these models, the position of the infalling matter
at late times stays asymptotically at a fixed tortoise dis-
tance from the origin, and provides a natural cut off for
the static Cauchy surfaces. At any finite ¢, the spectrum
of fields inside a large box is discrete, becoming contin-
uous only in the mathematical limit ¢ = oo, which is
totally unphysical because of the back reaction. We can
rewrite Eq. (48) in terms of the optical volume V outside



52 QUANTUM BLACK HOLE ENTROPY AND NEWTON CONSTANT ...

the infalling matter shell:

dT(d/2)¢(d) V
Saiv "y ﬁ}i{_l .

In two dimensions the optical volume diverges linearly
with the tortoise coordinate (logarithmically in proper
distance), whereas in four dimensions

(50)

Vi ~ AgGMe™™/2GM  (GM)3et/2GM (51)

If we want to regard Eq. (50) as the geometric entropy
outside the infalling matter we must get rid of the bound-
ary divergence at the position of the outer shell. This can
be done following Ref. [29], by subtracting the geometric
entropy in the vacuum (the mirror remaining stationary).
The result should be.an extensive entropy with respect
to the optical volume (this was explicitly checked in two
dimensions in Ref. [29], and it is very plausible in four
dimensions as well). In any case, as the tortoise posi-
tion of the infalling matter recedes to r, — —oo, the
optical volume diverges exponentially and we find the di-
vergence of 't Hooft. Notice that in Eq. (51) the Newton
constant is the one entering in the mirror trajectory, i.e.,
the renormalized G.

Therefore, if we regularize an eternal black hole by a
physical collapsing star, the continuous spectrum disease
becomes an artifact of the time slicing used inside the col-
lapsing star, or else it corresponds to the infinite entropy
production at t = oo.

The entropy source in these models is formally the mir-
ror itself, although a more accurate interpretation would
be that the time-dependent state of the infalling matter
and gravitational fields decays with a thermal cross sec-
tion. In this sense, the difficulties in locating the proper
degrees of freedom of black hole entropy are naturally
due to the classical treatment of the radiation source.

V. DISCUSSION

We have discussed several aspects, both technical
and conceptual, of the black hole entropy problem. In
Sec. II we have shown that classical “intrinsic” entropy
makes sense in low-energy effective theory even in a non-
equilibrium situation. The fact that it appears as a clas-
sical object could be due to the use of stationary saddle
points to approximate the path integral. After all, in
the sphaleron interpretation of black hole nucleation out
of hot flat space one is talking about a classical process
of excitation over the barrier; i.e., the nucleated black
holes are formed by physical collapse of graviton “mat-
ter.” But, of course, there are no temporal Killing vec-
tors inside the collapsing matter, even asymptotically.
The low-energy theorem of Susskind and Uglum can be
applied to this situation provided a covariant regular-
ization procedure is used throughout. We also found it
useful to distinguish between ultraviolet divergences in
determinants of operators with discrete spectrum, from
others with continuous spectrum, such as the ones ap-
pearing in the brick wall model. Then we have argued in
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favor of fully covariant path integral prescriptions (lead-
ing to operators with discrete spectrum before ultravi-
olet regularization) in systematic discussions of entropy
renormalization.

Some recent proposals for the solution of the black hole
entropy problem and the information puzzle involve, in
one way or another, a breakdown of low-energy effective
field theory in the vicinity of the horizon, even for big
black holes and early stages of the evaporation process.
Since the discussions of black hole entropy renormaliza-
tion (particularly those based on Euclidean methods) as-
sume the validity of low-energy field theory, this question
becomes very relevant to the matters discussed in this
paper. Therefore, we would like to end with some spec-
ulations on the related question of a low-energy descrip-
tion of the microscopic degrees of freedom responsible for
SBH-

From the point of view of mirror models, one would
associate the quantum degrees of freedom of black hole
entropy with the radiation source: the infalling mat-
ter and corresponding time-dependent gravitational field.
The problem, of course, is that this Hilbert space has
dimension ~ A3/%/63 , instead of the required A /f3,.
Here is where exotic quantum gravity physics, such as
the ‘holographic’ phase [8,30], seems unavoidable.

Actually, there is a natural notion of black hole en-
tropy, closely related to the phenomenological derivation
of 't Hooft given in Sec. I, which avoids explicit input
from Planck-scale physics. It is based on the idea that
a black hole radiates not because it is thermally excited
in some way, but just because its cross section for decay
happens to be thermal.

In Hawking’s approximation one computes the decay
rate by scattering the asymptotic vacuum off the time-
dependent classical gravitational field. In a full quantum
treatment the condition that the external field approach
is a sensible approximation can be formalized by tak-
ing a coherent state for the infalling matter state (and
the induced graviton condensate). By a coherent state
we mean a minimum spread wave packet or, a state in
which expectation values of operators are given as classi-
cal functions of the expectation values of the coordinates
and momenta in the regularized theory (with a cut off in
place). One would then work in a Hilbert space of the
form

HHaw = Hcoherent ® Hrad ) (52)

where states are approximated by the product of a coher-
ent time-dependent infalling state |¥.on(t)) and a dilute
radiation state |w;---w,) of n Hawking quanta. The
interaction Hamiltonian in the extreme coherent approx-
imation would induce an effective time-dependent back-
ground field potential for Hawking quanta:

(qJCOh(t)I ® (wl e wn|Hint|\I’coh(t)> ® |O>
~ (w1 wn| Ve (guv (1))[0) - (53)
This yields Hawking’s analysis. However, quantum

back reaction changes this picture, since after each ra-
diative transition the initial coherent state slightly deco-
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One has
[Teon(t)) ® [0) = [¥u(t)) ® |w), (54)

heres.

where |¥,,) is at best quasicoherent, and is distributed
depending on w (i.e., it is entangled with |w)). If |¥ on(t))
has mass M, then MI\II (t)) = (M —w)| T, (2)).

It is clear that most of the A /l p1 states of the in-
falling Hilbert space are not quasmoherent and, there-
fore, if excited they do not decay thermally at all. For
example, if a super-Planckian Hawking quantum is gen-
erated with w ~ M/2, then, obviously, the entangled
states |Wpr/2(t)) must be very far from being coherent.
Of course, during the first stages of the evaporation pro-
cess we know that, as long as Hawking’s computation
is accurate, most quanta have w ~ (GM)~! and, since
(GM)™! <« M, then all the states |¥;,Gp(t)) should
be quasicoherent. How many of these states are there?
This is a difficult computation to do, but one can esti-
mate their number by counting the number of ways to
extract independent subsystems of energy (GM)~! from
a system of energy M:

dim{[‘l’l/GM(t))} ~ (1—:}45 ~GM? ~ SBH - (55)
That is the correct order of magnitude. We think that
this notion of quasicoherence as a basis for black hole en-
tropy is the closest to the spirit of the phenomenological
derivation of the entropy based on Eq. (3) and, most im-
portantly, it does not necessarily rely on unknown quan-
tum gravity effects, which could pollute Hawking’s cal-
culation even in the earliest stages of the evaporation
process.

In any case, if important deviations from thermality
should occur from the beginning, variants of this picture
can be accommodated. For example, if we consider a set
of infalling states where the decay cross section has a (not
necessarily thermal) profile

Lout ~ AHe_f(M’SM) ) (56)

then, following the discussion in the introduction, the
entropy associated to this subset of the Hilbert space is

S ~ /dMa(éM (M,0), (57)

which does not necessarily scale as the horizon area.

It would be very interesting to further study these no-
tions in simplified models.

It is amusing to speculate what this picture implies for
the late stages of the evaporation process. With the defi-
nition (55), Spu is clearly decreasing in time, because the
quasiclassical infalling state progressively decoheres. It is
clear that, after a number of soft emissions of order GM?2,
so that the remaining mass is, say M /2, then the infalling
state is very poorly approximated by an external classi-
cal field. Therefore, further decay will not proceed with
a thermal cross section; it seems that the infalling mat-
ter can become “fuzzy” still at macroscopic masses, thus
spoiling Hawking’s prediction long before higher deriva-
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tive gravity counterterms become important. In contrast
with other scenarios [8,31], this would be a purely “soft”
resolution of the information puzzle. Of course, under
these conditions the “operational” version of the equiva-
lence principle is violated: any infalling observer trying
to experience a smooth transition through the horizon
would have lost its classical properties in a much earlier
stage.
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APPENDIX A

In this appendix we check explicitly in Rindler space
the equality of the Green’s functions of the operators
L and L, when both are computed with no-boundary
condition at the horizon.

The Green’s function of £ can be written as [see Eq.

(36)]
G(z,2') = (z|L7'|2')

-1
(4)2) e27rinA9/Bw:)(x)¢w (xl) ,

(A1)

(-

where 9,,(x) are eigenfunctions of Eq. (24) for the par-
ticular case of Rindler space. Clearly, this yields the so-
lution to Eq. (38) in the text.
The metric of d-dimensional Euclidean Rindler space
is
d—2
ds® = £2d6* + d¢? + ) da?,

i=1

(A2)

where 6 is the Euclidean time, £ is the coordinate that
labels constant acceleration trajectories, and x; are flat
transverse coordinates. In these coordinates, and after
separation of transverse space variables, Eq. (24) takes
the form of a Bessel equation. As stressed in the text, an
important feature here is that in the absence of a cut off
for small £, the spectrum of frequencies w is continuous.

The following expression for the Green’s function of a
massive scalar can be readily obtained:
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> dp; s .
GP(z,x") / — P AT / dw sinh 7w
T 2o [
+o0
X K (1€) Kiw (1€') Z ewIAOFKBl - (A3)
k=—o0
where u? = m?+Y j p?, and K, (u€) are modified Bessel
functions.

Now, the sum over k can be performed as

‘*i o—wlAO+kB| _ _ﬂ_coshw(AG - B/2)
2m sinh fw/2 )

(A4)

k=—o00

We will be interested precisely in 8 = By = 27.
Transverse momenta can also be integrated (details on
similar manipulations can be found in Ref. [32]):

/H dpJ P AT; Ktw(y.ﬁ)Kiw(ﬂ'gl)
j=1

_1 /= dw [T
—2/;°°dA€ (2#7)

d—2

2

Kea(my),  (A9)

with y2()) = €2 + €2 4 2£¢ cosh )\ + Zj(Amj)z.
Therefore,
A2 1 * < iwA
G*(z,2') = 5.2 dw coshw (A0 — ) /_oo de
m \ 94-2
—) 7 _2 . A6
><(2”) Ka_a(my) (A6)

At this moment we want to interchange the order of in-
tegrations. Convergence then requires ImA > |AO — 7|,
so that after integrating w we find

; AdA
N2 —_ S —
G*(2,2") 27r2/c)\2+(A0—7r)2

d—2

m 2
x (m) Kd_;_z(m’Y),

where the contour C runs from —oo to +o0o passing above
the pole at A = i|Af — w|. We can split the integration
contour into a straight line along the real axis and a clock-
wise contour encircling the pole. The former contribution
vanishes by antisymmetry of the integrand, whereas the
latter yields

(A7)

d—2

m) Kaa(mV20), (A8)

where 20 = €% 4 €2 — 26¢' cos AG + 3 (Ax;)? is the
geodesic separation between the points z,z’ as writ-
ten in Rindler coordinates. Then Eq. (A8) is precisely
the Euclidean, zero-temperature, Green’s function in
Minkowski space, i.e., the Hartle-Hawking Green’s func-
tion, with no-boundary condition placed at the horizon.
It must be noted that Eq. (A8) admits an expansion into
Bessel functions of integer order, corresponding to the

2w ’ ___L
G (m,m)—2w<
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standard solution of the Laplacian £ in disk x R%~2, reg-
ular at the origin and with discrete frequency spectrum.

APPENDIX B

In this appendix we briefly study the possible ther-
mal instabilities of the linear dilaton vacuum of two-
dimensional dilaton gravity, along the lines of the four-
dimensional analysis of Ref. [11]. This is an interesting
exercise because Euclidean gravity is on a much firmer
ground in two dimensions and there is a chance that all
manipulations have a meaning in Lorentzian signature.
For example, string theory in the light cone and the Eu-
clidean covariant approach provides an example of such
an equivalence.

The Euclidean action of two-dimensional dilaton grav-
ity is [33]

r=-1 / e 2[R+ 4(Vp)? + 427
2 Jm

—f e K + Cs,
oM

where Co, is determined for our purposes by requiring
that, on a Hamiltonian thermal manifold, I(cylinder) =
BMapmM-

In the conformal gauge gos = €2°8,3 we have

I= 1 / [—2e72¢0%(p — ) + 4A%e2(P~¥)]
2 Jpisk

-}{ e-szHf{ e
oM oo

The (Euclidean) classical black holes are parametrized
by the mass M,

(B1)

(B2)

do? + db?

ds? = —2 &
S T 1 r e oM/

(B3)

and a dilaton ¢ = —3 log[M/A — exp(2Ac)] where o is
a tortoise coordinate (the horizon is at 0 = —o0). The
solution with M = 0 is the linear dilaton vacuum: gog =
dap, ¢ = —Ao, which becomes strongly coupled at left
infinity. In this case, unlike in four-dimensional black
holes, the Hawking temperature is unrelated to the mass
and only depends on the cosmological constant, Ty =
A/2xw. This is an important difference, since it implies
that all black holes have the same temperature and that
the phenomenological entropy is proportional to the mass
Seu = 2w M /. The classical suppression factor for black
hole nucleation vanishes in this case as

I,(M) = BM — f e K =M —-p3M=0. (B4)

Also, if we set 8 # 27 /), thus going offshell,

Ii(M, )\, B) = BM — 2me™2¢¥ x(disk)
= oM - Y (B5)
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where ¢p is the value of ¢ at the horizon and x is the
Euler-Poincaré characteristic. Therefore the conical sin-
gularity method yields the right answer for the entropy,
as well as the classical method, Eq. (10), since, at the
critical temperature,

Son = BM — Ta = pM = 7.

Now, the one-loop computation of the free energy
around a particular instanton is similar to that in Ref.
[11]. Here we have a renormalizable theory, but the
position-dependent coupling g, = e¥ makes it very diffi-
cult the nonperturbative analysis of the path integral.

At a perturbative level there is a potential instabil-
ity coming from the fact that the dilaton field has the
wrong metric. In this respect, it plays a role similar to
the conformal factor of the metric in four-dimensional
gravity, and should not be considered as a physical exci-
tation. In fact, pure two-dimensional dilaton gravity has
no propagating degrees of freedom. This is readily seen
in the Lorentzian path integral with the action (B2). The
functional integration over ¢ induces the condition that
p— ¢ be harmonic, so we can choose a (Kruskal) gauge in
which p = ¢. If we want to maintain this in the Euclidean
path integral, we must integrate ¢ = ¢ + idp over the
imaginary axis, and this produces a functional é function
1, 6(— V2(p — pa)) = det~(~V*) [, 8(p — pcr). This
enforces p = . and the determinant is canceled by the
ghost determinant.

The analysis goes through if one adds appropriate
counterterms to take care of the one-loop conformal
anomalies. Here one finds many variants of the same
model. For example, the one-loop action studied in Refs.
[34,35] is constructed such that the manipulations above
make sense with exp(—2¢) replaced by Q2 = exp(—2¢) +
Ny/24. In general, the effective action must preserve
conformal invariance, and by means of nonlinear field re-
definitions from p, ¢ to new fields X, Y, one can map
the model to an open string theory [36]:

(B6)

I= —% /[—(8X)2 + (8Y)? + 4X2eCX Y]

+Iboundary + Ix(nIZ?:ter . (B7)
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So we see that Y works like a target time. In Lorentzian
quantization one must cancel X against Y, leaving the N
“transverse” matter excitations. In Euclidean quantiza-
tion one must rotate Y — 1Y as well, so that det ™' (—V?)
from the X, Y integrals cancels against the ghost deter-
minant.

As a result, for NV scalar matter fields the perturba-
tive partition function is proportional to det ™™/ 2(-Vv?),
which is positive definite. No imaginary part of the free
energy is generated, and consequently there is no black
hole nucleation. In addition, the absence of propagating
gravitons rules out any possible infrared Jeans instability.

This absence of tunneling barrier is compatible with
the classical canonical thermodynamical analysis. The
free energy for the combined system of two phases is (we
neglect the boundary free energy)

F = Fepq + Fau = —;—rNLT+ M (1 - %\TT) . (BS8)

At the critical temperature Ty = A/2m there is a flat di-
rection in M, and the canonical ensemble makes sense for
two-dimensional black holes, at least within perturbation
theory.

It is also interesting to analyze the classical micro-
canonical ensemble, where one maximizes the combined
entropy S = (n/3)NLT + 2rM/X at fixed total en-
ergy E = (w/6)NLT? + M. The result in this case
is very different from that in four dimensions [37]. If
the energy density e = E/L is less than a critical value
€. = A2N/(24r) then we have pure radiation with tem-
perature T = 4/6e/mwN. Above this energy the temper-
ature remains constant Ty = A/27 and the mass of the
black hole grows linearly as M = E —e./V.

Regarding the one-loop divergences of the entropy, it
is well known [9] that the logarithmic divergence Sg;y =
N/6loge™! from N matter fields contributes an infinite
additive constant to S and cannot be renormalized in A.
In this respect, two-dimensional black holes follow a pat-
tern different from their four-dimensional counterparts.
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