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Some new black string solutions in three dimensions
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We derive several new solutions in three-dimensional stringy gravity. The solutions are obtained
with the help of string duality transformations. They represent stationary configurations with
horizons, and are surrounded by (quasi)topologically massive Abelian gauge hair, in addition to the
dilaton and the Kalb-Ramond axion. Our analysis suggests that there exists a more general family,
where our solutions are special limits. Finally, we use the generating technique recently proposed
by Garfinkle to construct a traveling wave on the extremal variant of one of our solutions.
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I. INTRODUCTION

Recently we have witnessed a surge of interest in lower
dimensional theories of gravity, after the realization that
many of them contain structures with horizons [1—7]. In-
vestigation of these models is motivated by the hope
that we may be able to gain more information about
the physics of realistic four-dimensional black holes, since
mathematical difFiculties subside dramatically in fewer
dimensions. This approach appears to be particularly
&uitful in lower dimensional stringy gravity, where the
facilities of string theory provide us with very power-
ful tools to study black holes in the classical limit and
beyond [8—20]. Resorting to these techniques, we may
be able to tackle in a systematic way some of the long-
standing conundrums of black hole physics. For example,
it has been demonstrated that string theory may have the
potential to cure some of the singularity problems which
plague the classical theoryi [21].

In this paper we shall contribute several new black-
hole-like solutions to the existing collection. We shall
employ the Abelian duality symmetry as our main tool
to obtain them [8—15]. Such symmetries represent a
stringy generalization of standard toroidal symmetries,
stemming &om the presence of commuting translational
Killing vectors in a gravitational background. . They can
be combined and employed to derive new background so-
lutions. The general procedure is dubbed twisting, or
O(d, d) boosting, after the complete group of twisting
transformations [10—12]. At the level of the background
field theory on target space, after integrating out Killing
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This should be taken with some reservations, because the

speci6c conclusions obtained so far may not hold in general,
as shown recently by Horowitz and Tseytlin [22].

coordinates in the manner of Kaluza and Klein, this is
realized as a symmetry of the action under mixing of the
Kaluza-Klein matter fields with the metric. Although the
action is invariant under this group, the solutions are not,
because they employ specific initial conditions. There-
fore, the twisting transformations can generate new clas-
sical solutions. It must be kept in mind, however, that
dual solutions may not represent different string physics,
but merely be different pictures of the same string the-
ory, which for example occurs when one dualizes with
respect to the translation of a compact coordinate [14].
Moreover, the full O(d, d) group also contains diffeomor-
phisms and Kalb-Ramond field gauge transformations,
which must be modded out [11].Thus, the space of classi-
cal solutions is spanned by the orbits of the 0 (d, d) group,
modulo diffeomorphisms, and Kalb-Ramond gauge trans-
formations.

This symmetry is further extended to O(d, d + n) in
the presence of n Abelian gauge fields [9]. We will use
this extended boost symmetry to obtain two new three-
dimensional (3D) families of asymptotically flat solu-
tions. Our families are obtained by, respectively, "twist-
ing in" the gauge field on the black string of Horne and
Horowitz [3], and the axion on the two-dimensional (2D)
electrically charged black hole crossed with a fI.at line
[4]. They are characterized by three parameters, and for
certain ranges of the parameters they represent differ-
ent stationary, gauge charged configurations with regu-
lar horizons. Some of their properties are quite remark-
able. Namely, although all our nonextremal black strings
possess a scalar curvature singularity, which must be in-
cluded in the manifold because it is spacelike geodesically
incomplete, this singularity is quite harmless for pointlike
observers. The manifold is null and timelike geodesically
complete, since for arbitrary initial conditions at infinity
all causal geodesics have a turning point before reaching
the singularity except for one null geodesic, which comes
arbitrarily close to the singularity but never reaches it
for a finite value of the afBne parameter. The first fam-
ily possesses an interesting nonsingular extremal limit,
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difFerent Rom the extremal limits of previously known
solutions in that it has one hypersurface orthogonal null
Killing vector, and nonvanishing gauge hair. Therefore,
we can further extend this solution to include a traveling
wave, using the generating technique proposed recently
by Garfinkle in the context of string gravity [29]. Our
first family also contains a subclass of solutions with in-
teresting global properties. These solutions are without
curvature singularities, with spatial hypersurfaces look-
ing like a "cigar, " approaching asymptotically R x S .
However, the angular variable is "bolted" to time, and
hence near the origin there appear closed timelike curves.

The second family has, curiously, a critical value of the
boost parameter and a black string with two difFerent ex-
tremal limits. The critical boost gives the stringy version
of the 3D black hole [5,6). Away from this critical boost
we find another family of black strings, which displays a
peculiar combination of properties of both black strings
and four-dimensional black holes. Particularly interest-
ing is the presence of the ergosphere, which arises entirely
due to the axion and electric charges. Furthermore, this
black string has two extremal limits. One of them corre-
sponds to taking the critical value of the boost, but after
a coordinate transformation, in a fashion familiar from
the static black string case. The other extremal limit is
reminiscent of the extremal Kerr-Newman case, and rep-
resents a gauge charged black string, with ergosphere but
without null Killing vectors.

The paper is organized as follows. In the next sec-
tion, we will lay out mathematical background for the
subsequent study, explaining our approach and deriving
various forms of the solutions. A detailed investigation
of the solutions will be presented in Sec. III. Section IV
contains the derivation of the traveling wave solution,
using Garfinkle's techniques. The final section ofFers our
conclusions and presents arguments that suggest the ex-
istence of a larger family of 3D black objects which con-
tinually interpolate between our two solutions, as well as
the Horne-Horowitz and the stringy Banados-Teitelboim-
Zanelli (BTZ) solutions.

II. GENERATING SOLUTIONS

The efFective action of string theory describing the dy-
namics of massless bosonic background fields to the low-
est order in the inverse string tension o. is, in the world-
sheet frame [10—12,23],

S = d"+ x ge R+ O„C.B"4 ——H„pH"
l

1

FN FN&v +
4 pv (2.1)

The action above is written in Planck units ~ = 1. Here
~„=0~A „—O„A ~ are Geld strengths of n Abelian

gauge fields A~~, H„„p = Bi,B~„+c.p. —(n'/2)OM„„p
is the field strength associated with the Kalb-Ramond
field B'~, and 4 is the dilaton field. The Maxwell
Chem-Simons form OM~„g = P~ A ~I" „z+c.p. ap-

pears in the definition of the axion field strength due to
the Green-Schwarz anomaly cancellation mechanism, and
can be understood as a model-independent residue after
dimensional reduction &om ten-dimensional superstring
theory [24]. In fact, this term is a necessary ingredient
of the theory if one wants to ensure the O(d, d + n) in-
variance, as shown by Maharana and Schwarz [12]. The
n Abelian gauge fields should be thought of as the com-
ponents of a non-Abelian gauge field A residing in the
Cartan subalgebra of the gauge group, while the rest have
been set equal to zero. For convenience we will set o.' = 1.

In what follows we will be considering only those ex-
trema of (2.1) that possess d commuting isometrics; that
is, we will be considering field configurations of the form

ds' = I'(r) dr2+ G, i, (r) dx'dx",

B = —B,i, (r)dx' r dx,
2 2

A = A, (r)dx~. ,

4 = Il(r),

(2.2)

where G~g(r) is the metric of a d-dimensional submani-
fold of signature d —2. In this case the action (2.1) can
be rewritten in the manifestly O(d, d+ n)-invariant form
[10—12]

S.~ = dr re-~ —"+
(2.3)

where the prime denotes the derivative with respect to
r. Note that the physical dilaton 4 has been replaced
by the efFective dilaton P = 4 —(1/2) ln] det G~ after
dimensional reduction. Matrices M and 8 which
appear in the action (2.3) are defined by

r CT —1

l -g-'A
g

—1C
g+a+C g C

A+ C+g iA

ro 1v 0~
1g 0 0

lo o 1)

A+ C+g
1„+A

—'A)
(2.4)

Here g and b are d x d matrices defined by the
dynamical degrees of &eedom of the metric and the
axion: g = (G~k) and b = (B~k). The matrix A is a
d x n matrix built out of the gauge fields: Ay~ ——A
The matrices a and C are defined by a = AA and
C = (1/2) a + b respectively, and 1g and 1 are the d-
and n-dimensional unit matrices. Note that M
and M = ZMZ. Thus we see that ~ is a symmetric
element of O(d, d+n). Therefore a cogradient O(d, d+n)
rotation M ~ OMO is a symmetry of the action, and
the equations of motion, because it represents a group
motion which changes M while maintaining its symme-
try property.

In this paper we will apply this technique to several
well-known solutions of stringy gravity to the lowest or-
der in the inverse string tension expansion, describing
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rdr2
+ 1—

2A(r —m)(r —~)
q2i
mp)

1 ——49 )r

black strings. SpeciGcally, we will use the black string
family discovered by Horne and Horowitz [3], as well as
the 2D electrically charged black hole crossed with a Bat
line, discussed by McGuigan et al. [4]. We start with the
black string solution given by [3]

d8 2 P + d(
2A(p- „)(p-~)

q'i r p)1 —
i 1 ——/d~ ,

l

This form is suitable for comparison with our second so-
lution, to be presented shortly, but not useful for the
analysis of the causal structure, as can be immediately
seen &om the fact that ~ is not the asymptotic time co-
ordinate.

We now consider the electrically charged stringy 2D
black hole crossed with a flat line R [4]:

B = —dx Adt,r

e ~ = V'2Am

(2.5)

B=0, (2.9)

Following the prescription outlined above, and using

r
0= 0

0
&0

(1+c)/2

(1 — )/2
—s/~2

0 0 0
0 (1 —c)/2 —s/y 2
1 0 0
0 (1 + c)/2 s/y 2
0 ./~2 ~ )

(2.6)

where c = cosh(2cx) and s = —sinh(2n), we obtain the
new solution

dr-2

2A(i —mc2) (r" —ms2 —qz/m)
i —ms 2 —Q2/m+ „„dxr —m8

A A2

[(i —ms2)dt —s qdx],r r —m8
"2 A A

B = . dhn, dt, A = —~2—(qdx+mdt),r r
e ~ = y'2Ar, (2.7)

Q2)
+ I

1 —
2 Id+

2A(r" —mc2) (i —ms2 —qz/m) ( m2 )
qr mc'&—2—1 — „dad~ —

I

1—
mi i

m8
X 1 — „d7r

(2.8)

where c = cosho. , 8 = —sinho. , and r" = r+m8 . Clearly,
(2.7) generalizes (2.5), reducing to it when n = 0. It is
obvious that this solution, like (2.5), is asymptotically
Bat in the limit r" —+ oo. We also Gnd it useful to represent
our new solution in terms of the shifted time coordinate
w = t + (q/m)x instead of t. In this gauge, the axion
and the dilaton are the same as above. The gauge Geld
is oriented completely along dw, and the expressions for
it and the metric are given as

e ~ = v'2Ap,

To obtain our other solution we apply another O(2, 3)
twist to it, with 6 a real number:

r0
1

l

0= 0

1 b 0 0)
0 0 —6 0
0 0 1 0
0 1 0 0
0 0 0 1)

(2.10)

This yields the expression

d8
dp2 b (p —M) —f

2A(p w)(p p) ((1 —b2)p+ Mb2)2

2 62p — f
[(1 —b )p+ Mb ]2

26 2

[(1 —b )p+ Mb ]
d(d~,

b(p —M)
(1 —b2) p + Mb2

~2q
(1 —b2)p+ Mb2

v 2A[(l —b )p+ Mb ],

(2.11)

2
where f = (p —p, )(p —q /p) and M = p+ ~. Note that
6 = 1 represents a special point in the moduli space of
this family, as the dilaton Geld decouples there. Indeed,
after a closer look (and some coordinate transformations)
we recognize this case as precisely the stringy version
of the Banados-Teitelboim-Zanelli [5,6] black hole. In
what follows, for computational purposes we will assume
b ) 1 (the sign of b only determines the sign of the ax-
ion charge), without any loss of generality, as we will
now demonstrate. To start with, the solution (2.11)
can be simpliGed considerably with some judicious gauge
choices. We begin with the coordinate transformation
r =(1—b )p+"Mb2, z = (/gb —1, and t = r/gb —1
We can also apply the axion gauge transformation which
shifts the asymptotic value of the axion to zero. In this
gauge, the solution takes the form
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dr" f M q (g+ 1 ———
2A(r —p,b' —~)(r —p —~

)

( Mb q (5 —1)b i bq (b —1)—
l

1 — „+ „dt —2 „dxdt,r r"2 r"2

bMB= „dxAdt, A = —v 2 „(dx+bdt), e = +2Ar" (2.12)

It is straightforward to verify that if ~b~ ( 1, the same coordinate transformation, followed by Wick rotation t, x -+
it, ix, rescaling r" ~ r/b, a constant dilaton shift and the replacement of the parameter 5 ~ 6 = 1/b ) 1 reduces the
form of (2.11) again to (2.12). We will defer further discussion of the interpretation of the ~b~ ( 1 solutions until later.

The solution (2.12) is also an asymptotically Rat configuration with both axion and gauge fields. It is again useful,
for easier comparison, to perform another coordinate change, to put this solution in a form similar to (2.8). The
dilaton and axion remain the same as above, while the metric and the gauge field are given as

(
d8 ~b2 + l 1 ——

q
dx —2 — 1 —— „dxdw — 1—

2A(i —pb —~)(i —p —~
) ( 5 ) b ( & )

q2(5' —1)l'l+ d~',
r"2

(2.13)

~qbgb2 —1

Despite the conspicuous similarity between (2.8) and
(2.13), we will demonstrate later in our analysis that
they are indeed difFerent. This can already be glimpsed,
however, by realizing that the matter content of the two

configurations is exactly the same once the proper coor-
dinate rescalings are performed, and that since they are
stationary and contain a scalar, a vector and the vol-
ume form in the (x, w) subspace, we are left without any
freedom to perform further coordinate transformations
which do not alter the form of the matter. Specifically,
the fact that the dilaton of both configurations is essen-
tially the radial coordinate, and that x and ~ are Killing
coordinates restricts the available coordinate transforma-
tions to only linear transformations in the (x, v) plane.
These in general induce the changes of the two gauge
fields A and B which are proportional to the field com-
ponents themselves. Since the fields are nontrivial, i.e. ,
have nonvanishing field strengths, the changes induced
by difFeomorphisms are not pure gauges and hence can-
not be removed by gauge transformations. The last step
in the argument is the comparison of the two metrics,
which shows that they do not match; indeed, if we de-
note the (x, w) parts of the two metrics as gi and g2,
respectively, we can see that g~

——g2 + Cdx2, for some
given constant C. Since the horizons are determined by
the determinant of these matrices, the above shift induces
the corresponding shift in the locations of these surfaces.

In the next section we will investigate causal proper-
ties of these solutions. Our analysis will confirm and
elaborate upon the argument presented above, that they
represent different black strings. Before we close this
section, however, we should explain an apparent pecu-
liarity which appears in the gauge sector of the two so-

lutions. Namely, we see that in both (2.8) and (2.13)
the gauge field looks precisely like the field of a point
charge in three spatial dimensions, despite the fact that
it lives in two dimensions, where one would expect it to
be proportional to the logarithm of the distance from
the source. Indeed, such behavior has been noted in Ref.
[5], where charged black holes in 3D Einstein-Maxwell
theory were studied. The resolution to this lies in the
fact that in our background the gauge field acquires the
(quasi)topological mass term due to its coupling to the
Kalb-Ramond field via the Chem-Simons form [25,26].
The Kalb-Ramond field is trivially integrable in three
dimensions [26], and if nonzero, yields the gauge field
mass term. The standard Maxwell equation for the gauge
field should be replaced in this case by, in form notation,
dexp( —4)*F = 2Q~F, where Q~ is the axion charge,
defined by Q~ = —exp( —C)*H; it is straightforward to
verify that our backgrounds solve it. It is furthermore
interesting to note, that whereas in this case the gauge
field is (quasi)topologically massive, the gauge sector of
either solution does not represent a gauge anyon, as the
Chem-Simons form itself vanishes in both cases.

III. CAUSAL STRUCTURE

Here we will investigate the structure of the two new
solutions presented above. Whereas some aspects of the
geometry of these two solutions are remarkably similar,
there are interesting difFerences.

As a warm-up, let us review the static black string
(2.5) of Horne and Horowitz, which will be the basis for
comparison. This solution has three metric singularities
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at r = m, r = Q /m and r = 0, an.d obviously there
are three different cases: 0 ( ~Q~ ( m, ~Q~

= m, and

)Q( ) m, . When 0 ( (Q( & m, r = 0 is a scalar cur-
vature singularity and r = m and r = Q /m are the
event and Cauchy horizons respectively. The singularity
is "real" in the sense that the manifold is null geodesi-
cally incomplete. The causal structure of the solution is
qualitatively similar to that of the Reissner-Nordstrom
solution, with the exception that the timelike coordinate
inside the Cauchy horizon is x rather than t. Thus the 2D
Penrose diagrams are not completely adequate for the de-
scription of the geometry, but they can be used with the
proviso that one remembers that the timelike coordinate
makes a "right angle" turn on the inner horizon. As a
consequence, in this solution there are no static observers
inside the Cauchy horizon. This case is summarized in
Fig. 1.

When ~Q~ = m, the form of the solution (2.5) breaks
down at the (degenerate) horizon r = m. It turns out
that the coordinate r is not suitable for the extension
beyond the event horizon, which appears to be a turning
point for all geodesics. To see that the manifold does not
end there, the authors use the modified radial coordinate
r' = r —m, and show that the geometry contains an
event horizon at r' = 0 but has no singularity (Fig. 2).
It is interesting to note that this is identical to the causal
structure seen in the extremal Kerr solution along the
axis of symmetry [27].

I /+

I

FIG. 1. Causal structure for the two nonextremal black
strings (2.7) and (3.11),as well as for the Reissner-Nordstrom
and Horne-Horowitz solutions. The hyperbolas denote the
static limits present in our solutions, which do not appear
in the previous two cases. Whereas the static limit inside
region III is present in both of our two cases, the limit in the
asymptotically Bat region I is the ergosphere present only in
the second solution (3.11).

FIG. 2. Causal structure of the extremal limit of the first
family of black strings (2.7) and the extremal Horne-Horowitz
solution.

Finally, for the case ~Q~ ) m the authors find that the
manifold is completely regular, when using the appro-
priate radial coordinate r2 = r —Q /m. It terminates
at r = 0, and the potential conical singularity there is
removed by a periodic identification of the spacelike co-
ordinate x. Therefore, the spacelike sections have the
structure of a "cigar, " looking flat near the origin but
asymptotically approaching R x S .

I et us now turn our attention to our new solutions.
Both (2.7) and (2.12) share some of the features of the
static black string (2.5). They are both asymptotically
flat configurations with two Killing fields 8 and Bq with
infinity described by the limit r = lnr" ~ oo, where they
approach exponentially fast the linear dilaton vacuum,
with flat Minkowski metric and vanishing gauge fields.
They also have three metric singularities each, r" = mc~,
ms2 + Q2/m, and 0 for the first, and i = pb + q /p,
6 q /p + p, and again 0 for the second. The surface

= m8 in the first solution actually is not singular,
as can be seen &om expanding the square brackets in
(2.7) and collecting the like terms. The nature of the
singular points can be examined by investigating the be-
havior of curvature invariants as these points are ap-
proached. This arduous task is in fact easier in three
dimensions, because Weyl curvature is identically zero,
and the only scalar curvature invariants are B, B~"R~
and det(B&„)/ det(g~ ) [30], which all blow up as r" ~ 0
and are finite elsewhere. Thus r" = 0 is the only polyno-
mial curvature singularity for our solutions. We should
note here that our choice to rely on the conventional def-
inition of curvature singularities of general relativity is
equivalent to assuming that the space-time geometry can
be probed only by pointlike observers. Whereas this as-
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sumption is obviously of limited validity in string theory,
it is a useful working tool in the absence of a more gen-
eral definition, and we will restrict our attention to it (for
more general criticism, see Ref. J22]).

In order to analyze our solutions further, we have to
investigate them one by one. The results are summarized
in the following five sections.

A. The Brst fancily with 0 ( ~Q~ ( vn

Here we present our erst black string solution. The
surfaces r+ ——mc and r" = ms + Q /m are remov-
able singularities, where coordinates change signature,
and thus represent the event and Cauchy horizons, re-
spectively. This can be seen &om the fact that they
are both null surfaces, and that almost all timelike and
null geodesics cross them, as we will demonstrate shortly.
The behavior of the coordinates while crossing these sur-
faces is somewhat diferent from the situation enjoyed by
the Horne-Horowitz black string. While the radial co-
ordinate behaves the same, being spacelike outside the
event horizon and inside the Cauchy horizon, and time-

like in between, the time at infinity t, which turns space-
like after crossing the event horizon, regains the time-
like character again after crossing the interior static limit
rq ——m,s, inside the Cauchy horizon. Likewise, x also
changes signature, becoming timelike after the surface.. = q'/2~ + (q'"c' + q'/4~')'~'. Thus, as in
the static black string case, representation of the causal
structure by planar Penrose diagrams is not completely
accurate, since there is more freedom in choosing the time
coordinate, but the situation here is a bit more compli-
cated. As we see, there are regions where the time coor-
dinate is an r-dependent linear combination of t and. x.
However, if we keep this in mind, we can still employ the
diagrammatic technique as a descriptive tool.

Before completing the description of the causal struc-
ture, we will investigate geodesics of this solution. Again,
because of the presence of two Killing vector fields, the
geodesic equations take a particularly simple form. Intro-
ducing two integrals of motion associated with the cyclic
coordinates P„= ( E, P), —and the squared rest mass of
the particle moving on the geodesic p = 0, 1 (distinguish-
ing null and timelike geodesics), we obtain the following
formula for the radial coordinate (the overdot denotes
the derivative with respect to the affine parameter):

=Er-', (
2Ar" 2 mr

q2 Q2s2c2), ( ~c21 (—P 1 — „1—
) E ")& ")

qs' & mc'l ( mc'I & ms'+ q'/m)+2EP „ 1 —
i

—p 1 — „ 1—
r r r r

Upon the inspection of this equation, we note that while
all causal geodesics cross the event horizon, the subset
for which ms2E = QP terminates at the Cauchy hori-
zon. All other causal geodesics pass through the Cauchy
horizon too, and specifically null geodesics with P = 0
terminate at the surface r" & r", where 8 becomes null
(but does not vanish, as can be seen &om computing the
component of the tangent along x there). We note that
the behavior of the ms2E = QP geodesics is related to
the P = 0 case studied in the static solution by Horne
and Horowitz. They found that P = 0 geodesics ter-
minate at the Cauchy horizon, and ascribed this to the
fact that there is a world line along which the field 0
must be identically zero, and not just null. Note that
for our solution, the P = 0 null geodesics are protected

from this by the terms proportional to s & 0, but that
we recover the pathology in the limit 8 —+ 0, when the
above two geodesics coincide. Therefore we see that the
cross term in our metric has caused the pathological class
of geodesics to shift from P = 0 to msE = QP,. They
end at the equivalent region of the black string, with the
only difference that now it is the vector QD + m, s 0&,
that vanishes there, because it is orthogonal everywhere
to the class ms E = QP but becomes null on the Cauchy
horizon and timelike inside of it.

In order to see what happens in the region near the
singularity, it is helpful to rewrite the radial geodesic
equation (3.1) by collecting the terms of the same order
of divergence:

(QE + mP)(QE —m(c2 + s2)P) —pm, (c2 + s2)
2+r2 mr

(QE+ mP)2s c + pmc (nis + Q /m)
r"2 (3.2)
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2&me
(3.3)

As in the static black string and the Reissner-Nordstrom
case, as Q -+ m, the temperature vanishes. Thus the
string would settle down to ~Q~ = m in the absence of
charge-dissipating processes.

Finally, as we have indicated above, the solution has a
static limit at iq, where the coordinate t again becomes
timelike. Thus, inside this surface it is again possible
to find observers at rest with respect to the asymptotic
infinity, much like the Reissner-Nordstrom solution, and
unlike the static black string of Horne and Horowitz. In

The coefEcient of the O(1/r" ) term in this equation is
nonpositive for all causal geodesics. As a consequence,
no causal geodesic with this term being nonzero, begin-
ning outside of the black string, can reach the singu-
larity at r" = 0, because the O(l/rz) term forces it to
stop and turn. Thus, the only geodesics which do not
turn away from the singularity are null geodesics with
QE+ mP = 0. This is somewhat reminiscent of the be-
havior of geodesics in the Kerr solution. Noting that Q
is similar to angular momentum in this geometry, we can
de6ne a = Q/m in analogy with the angular momentum
parameter in the Kerr solution. For the geodesics in the
equatorial plane of the Kerr solution we can define the
impact parameter b = I/E, where / is the conserved an-
gular parameter analogous to our P. For the value of
the impact parameter I/E = a these geodesics hit the
ring singularity, and in essence behave in the same way
as all radial geodesics do in static black hole spacetimes.
Thus, we see that our condition QE + mP = 0 is analo-
gous to the Kerr case, again singling out only those radial
geodesics which reach the singularity.

There is a startling difference between our case and
Kerr, however. In Kerr, geodesics with b = a are linear
in the afIine parameter, r = EA + const. In contrast,
in our case the equation (3.1) reduces to the standard
linear homogenous equation, with exponential solutions
r" oc exp(A) [analogous to the case ~P/E~ = ~Q/M~ for
the static solution (2.5)]. Thus, although the singularity
is the attractor for these geodesics, as they can come
arbitrarily close to it, they cannot reach it for any finite
value of the afIine parameter. As a consequence, our
spacetime is timelike and null geodesically complete. The
singularity still must be included in the manifold, which
is spacelike geodesically incomplete. In addition, it can
also be reached by nongeodesic causal curves. Yet, it
is quite harmless for pointlike observers, living serenely
along causal geodesics. Remarkably, it would appear to
an observer inside the Cauchy horizon as some eerie but
ultimate warning against dangerous living.

Calculation of the Hawking temperature for this so-
lution is complicated by the presence of cross-terms in
the metric. Employing the approach of [31],designed for
such situations, we can obtain it by rewriting the met-
ric (2.7) in the Arnowitt-Deser-Misner (ADM) form, and
then Wick rotating the time coordinate t = i8. Requir-
ing that the horizon is a regular point, we must identify
8 with the period 2~2vrmc /QA(mz —Qz). This gives
the following expression for the Hawking temperature:

conclusion, the causal structure of this solution up to the
Cauchy horizon, is qualitatively similar to that of the
Horne-Horowitz black string, with the differences aris-
ing near the singularity. The corresponding diagram is
presented in Fig. 1.

B. The extremal limit ~Q~ = m of the Brst family

As usual, we define the extremal limit of our black
string by a choice of parameters which ensures the coin-
cidence of the two horizons i = r+. Naively, we would
then expect to obtain a solution with a singularity en-
closed by a single horizon. However, Horne and Horowitz
found that in the corresponding static case (2.5), the co-
ordinate i was not the proper extension across the hori-
zon r" = m. A hint that a difFerent extension was needed
was provided by the radial geodesic equation, which in-
dicated that the horizon is a radial turning point for all
causal geodesics. In analogy with this situation, we find
that (2.7) does not give the correct extension across the
horizon r" = mc in the extremal case. Namely, the radial
geodesic equation (3.1) for the extremal case ~Q~ = m can
be rewritten as

= (r —mc )((E + P) [(E —P)r + ms (E + P))

p(r" —mc —)). (3.4)

The right hand side of this equation vanishes at the hori-
zon, and thus it appears that no timelike or null geodesics
can cross this horizon. To rectify this problem, we follow
the approach of [3] and define the new radial coordinate
r = i —mc . In terms of it, the radial equation becomes

2r-'
= (E+ P)([(E —P)(rz+ mcz) + ms'(E+ P)]j

I )
-2

(3 5)

and thus we see that all causal geodesics (p ) 0) in fact
cross the horizon, located at r = 0. In terms of this
coordinate the metric takes the form

2 2 GT 7'
CL8 = — + CitX

A r2 r2+m
p2

(
—2 )(

—2 "2)2 [(T + m)dt —ms dx]

(3 6)

As in the static solution (2.5), the only metric singular-
ity is at the horizon r = 0. This, of course, is a removable
singularity, and the metric can be extended beyond it, to
the region r ( 0. Furthermore, (3.6) is invariant under
the reflection r ~ —r. Thus, after passing through r = 0
a particle finds itself in a universe identical to the one
which it just left. As a consequence, the maximal exten-
sion of this solution is based on a zigzag event horizon
along which an infinite number of asymptotically flat re-
gions are connected, with the causal structure identical
to the extremal black string of Horne and Horowitz (Fig.
2).
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C. The Brst family with ]Q] ) m

In this case, the signature of the metric changes at the
surface r" = ms + Q /m, since the change of sign of the
metric component g„-„- is accompanied by the change of
both eigenvalues of g2 to negative values, as can be seen

f'rom (2.7). The overall signature change is from (—,+, +)
to (—,—,—). This indicates that the metric (2.7) cannot
be extended beyond i = ms2 + Q /m.

To obtain the correct picture, we must redefine the
radial coordinate. This time, we employ r = r" —ms
Q /m. With this, our metric becomes

2 2 d' r2
+ 2dX~r2+ ~ —m

r-'+ ~ —m
+

(r + ~)(P + ~ + ms2)
dt —Qs dx

2

(3.7)

In these coord. inates, the surface r = 0 is singular, since the metric is degenerate there. In fact, if we expand this
metric near the origin, after introducing a new radial coordinate by r = g(Q2/m —m) sinh(QA/2z), we obtain

~ Q' —m',
ds =dz + — zdx

2 2

Q2(Q' —m') ( m2c4
1+Az(Q2+ m2s2)2 ~Q2+ m2s2

2 ~2 p 2 2

(3.8)

as z -+ 0. This metric looks like the metric of a spinning
point source in three dimensions [32], and hence r
0 represents the standard coordinate singularity at the
origin, provided that we have smoothed it by identifying
x with the same period II = 2v 2Qvr/QA(Q —m2) as
discussed in [3]. Otherwise, we would have ended up with
a conical singularity there.

The global structure of this manifold is considerably
different &om the static case. The manifold can still be
thought of as consisting of infinite "cigar"-shaped. spatial
hypersurfaces defined by adjusting the time coordinate
such that (r2 + Q2/m)dt Qs2dx —= 0 (or generated by
spacelike geodesics t = x = 0), planar near the origin
and deforming towards R x S as r -+ oo. However,

in this solution the angular coordinate x is "bolted" to
time in a nontrivial manner, and hence there now ap-
pear closed timelike curves. This can be seen by real-
izing that the coordinate x becomes null at the surface
&~ = gQ /4m + Q2s c —Q /2m —ms2 ) 0, and thus
for r (P the loops (r = const, t = const) are timelike.
Furthermore, there are geodesics which can reach this re-
gion. The geodesic equations in this case can be rewrit-
ten in a particularly convenient form by introducing local
coordinates x = x PA and t =—t ms2x/Q—. These coor-
dinates span a helical &arne along each geod. esic, twisting
around it as the afFine parameter A changes. Then, using
L = Q(QP —ms E)/m, we get

I
x =

r—2)

m~4

r-'+ Q'/m —m
' —m' L'= (r2+ Q2/m —m)(E —P —p) + (Q c E —L )—

(3.9)

If we ignore the first terms in the t and r equations, we ob-
tain precisely the polar parametrization of straight lines
in Minkowski space. The parameter L then represents
the conserved angular momentum along the lines, pre-
venting them &om hitting the origin unless L = 0. Thus
we see that the curvature effects are described by the first
terms in the last two equations of (3.9), and that their
effects (other than rescaling the constant parameters) are
essentially negligible near the origin, as indicated by the

expansion (3.8). Moreover, comparing the L-dependent
terms we confirm our choice of compactification of the
coordinate x.

To shed more light on this geometry we can look at
several typical geodesics. The first natural candidate is,
of course, the I = 0 case, generalizing rays through the
origin &om the Qat background. We note that in terms of
the integrals of motion E and P this condition translates
to QP = ms E. In the static case, when s = 0, these are
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D. Second family of black strings

Before proceeding with the analysis, it is useful to
rewrite the solution (2.12) using a diferent set of pa-
rameters. Specifically, we eliminate the parameters p, q,
and 6 in favor of the world-sheet kame ADM mass and
linear momentum in the x direction, as well as the elec-
tric and axionic charges, defined by Gauss laws for the
two fields. The ADM parameters are the components
of the Aux of linearized energy-momentum tensor inte-
grated over a spacelike hypersurface at infinity, where
the metric can be expanded around the Minkowski form:
g„= q~ + p~ . The necessary formulas are given in
[28], which in our case give the following expressions for
these quantities per unit length x of the string (with the
Gauss laws, which are the integrals of conserved currents
over the same spacelike hypersurfaces, given here in form
notation):

1 @ I I 1 + I
(w.'. + v-@')

2A
"" '

2A
1 @,, 1

(3.10)

The prime denotes the derivative with respect to the
"flat" radial coordinate z = 1n(r)//2A, and the addi-
tional ~2 in the definition af the electric charge e re8ects

just the lines of constant x and of infinite span in r, which
pass through the origin and escape to infinity on both
sides. In our case, when s P 0, this picture is correct
anly for s & lQl/m; if reparametrized in terms of the
original coordinate x, these trajectories are hyperbolic
spirals, approaching the spiral of Archimedes as 8 —+

~Q]/m. The main point is that these geadesics enter and
exit the region of space-time with timelike loops.

In contrast, when s &
l Q l/m, we have E —P —p =

E (1 —m s /Q ) —p & 0, and all causal geodesics of this
kind are bound orbits oscillating near the origin, looking
like r Ix sin(x) in the original variables. Their amplitude
is bounded from above by r2 „=(m2s2+Q2)/m(m2s4-
Q2), and for large enough s they remain within the re-
gion with cLosed timelike curves. Nonetheless, communi-
cation between the two regions is still possible. For ex-
ample, null geodesics with P = E, which correspond to
straight lines with impact parameter l in the Bat space,
can reach into the region with timelike loops. Their clos-
est approach to the origin is given by the minimal im-
pact parameter 1;„=(Q + m)(Q + ms ) /ms (2Q +
(Q + m)sz), which is less than r2, as can be seen fram
g (l;„)&0.

Thus we conclude that the two regions are always
geodesically connected, and the region with closed time-
like curves cannot be smoothly detached away from the
manifold. Because we can extend this solution to four
dimensions, by simply adding an additional Hat coordi-
nate, it might be interesting as an example of a spacetime
which allows time travel. However, its actual physical
significance would remain somewhat dubious, due to its
asymptotic topology.

our normalization of the I' term in the action (2.1).
This gives M = Mb, P = 0, e = qbi/b2 —1, and
Q = bM. Now we can solve for p, , q and b, to obtaiii
p = Q(i/M —Q +v'M —Q —4 )/2~i/~ —Q,
q = Q e/Mi/Mz —Q2 b = M/Q, and finally M =
Q /M. Using these parameters, we can rewrite our sec-
ond family of solutions (2.12) as

d82=
2A(r—

Q'
+ 1—

r+) (r —r )

e~zQe+ —„ l dt —2 „dxdt,r" r"z ) Mr" 2

2
~2p2

B= —dxhdt, A= —~2 —„dt+ dx ~,r ' r l M )'
e-~ = i/2Am,

with the horizons given by r~ = (M2 + Q
gWz —Q2i/1Hz —Q2 —4e-)/2~. We note the distinct
appearance of the factor of 4 together with e here. This
is, as we have pointed out above, due to our normaliza-
tion conventions for the gauge field F. We should also
point out that similar variables for our first family of
solutions give a representation far less transparent than
the one provided by (2.7). This comes about because
the first family has nonvanishing momentum 7, which
is nontrivially related to the axion charge [28].

From the formula for r~ we can now determine the
range of parameters which split this family into difer-
ent subclasses. Obviously the possibilities are M
Q +4e, Q &M &Q +4ez, andM &Q. Inthe
last two cases, although the square roots which appear in
the definition of r~ become imaginary, the denominator
of the lapse function (which is the only part of the solu-
tion containing explicit reference to these terms) remains
real, as can be readily verified. Thus, in general, these
two cases cannot be excluded. We will not study their
properties in detail for the following reasons. In the case
defined by the second inequality, Q & M & Q + 4ez,
we note that both r~ are complex numbers. Thus the
metric is regular everywhere except at r" = 0, where we
have found a curvature singularity. As a consequence,
this solution describes a geometry containing a naked sin-
gularity, much like the Reissner-Nordstrom solution with
M & e . Furthermore, because b = M/Q, and recalling
that the 6 ( 1 case is related to 6 & 1 by a simultaneous
Wick rotation of both t, x variables, we see that the case
represented by the last inequality is the proper extension
of the solution to 6 ( 1. Drawing on the similar relation-
ship between the first and the third subclass of our first
family of solutions, we conclude that this case must be
similar to the ~Q~ ) m subclass of our first family of so-
lutions, containing closed timelike curves, wherefore we
will not elaborate it further.

In the remainder of this section, we will concentrate on
the first inequality as well as the two equalities, fH
Q +4ez, and M = Q2. We will first elaborate the prop-
erties of the nanextrernal subclass M2 ) Qz + 4e . Here
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we find a surprisingly rich geometric structure, which
looks like a hybrid of black holes in four dimensions and
our first family of solutions.

To start with, we observe that this solution again
possesses the event horizon and the Cauchy horizon,
r+ & r", respectively. All causal geodesics starting from
infinity cross r+, while there still exists the patholog-

ical class of geodesics which terminates at the Cauchy
horizon, much like the previously discussed cases. This
can be seen as follows. After the integrals of motion
P„= ( E—, P) and the squared rest mass of the parti-
cle p are introduced, the radial geodesic equation can be
written as (again the overdot denotes the derivative with
respect to the affine parameter)

(QE + M P) (QE —M P) p(—M' + Q') /M

e'(QE+ MP)'+ p[M'Q'+ e'(M'+ Q')]
(3.12)

The terms proportional to the squared rest mass of the probe p do not acct the properties of geodesics near the two
horizons. Ignoring them, we can employ the radial coordinate shifted by the value of the event horizon p = r" —r+.
We can then rewrite this equation after introducing the parameters p~ = (gM —Q + gM —Q —4e2)/2 as

P (P+ME —P QP) M2E2 —QzP2 (E —P2) QM2 Q2+M2 Qz 4 2

For all inwards-oriented geodesics which emanate &om infinity (E2 ) P2) the right-hand side (RHS) of this equation
never vanishes for any p & 0. Thus they all cross the event horizon and fall into the black string.

Similarly, we can use the radial coordinate shifted at the Cauchy horizon, defining p = r" —r" . The radial equation
becomes

p (p ME —p+QP) 2 2 2 M E2 —Q P (E —P )v M2 —Q2+M2 —Qz —4e2
P. 3.14

Again, we look only at the arcs of geodesics outside of
the Cauchy horizon; hence p & 0. Because the coefEcient
of the linear term in p is always positive, the RHS of
this equation vanishes only when p = 0 and p ME =
p+QP simultaneously. The last condition is compatible
with E & P since p ( p+. Therefore, we see that
the class of geodesics for which p ME = p+QP stops
at the Cauchy horizon. This corresponds exactly to the
case ms E = QP studied in the first family of black
strings, and shows that the pathology found by Horne
and Horowitz still persists.

Another similarity between this solution and our first
family is that this black string is also causally geodesi-
cally complete. Once again, the only causal geodesics
which approach the singularity without turning are null
geodesics for which QE + MP = 0, which come arbi-
trarily close to the singularity but again according to
r" oc exp A. All other causal geodesics turn at a finite
r" ) 0, where the repulsive term of order O(l/r" ) in (3.12)
prevails. Thus, the singularity can never be reached by
any causal geodesics for finite value of the aKne param-
eter, and it appears very much the same as in the first
family of black strings.

There are, however, considerable differences between
the two families. Namely, the second family (3.11) pos-
sesses three Killing horizons: r~~ = (M +gM 2 —4e2) /2
and r" = Q(Q + QQ2 + 4e2)/2M where the metric is

regular but one of the coordinates t, z becomes null. The
first two, where t is null, satisfy rE+ & r"+ & r"

and resemble the situation found in the Kerr black hole in
four dimensions. The location of the last Killing horizon,
where x is null, is inside the event horizon, but depend-
ing on the values of M, Q and e it can be either inside
or outside the Cauchy horizon.

The outer Killing horizon r~+ defines the ergosphere,
and thus one might expect that there exist Penrose-type
processes for energy extraction &om this kind of black
string. This issue is far from clear cut, though, because
the energy extracted. &om the Kerr black hole is at the
expense of the hole's momentum, resulting in a slowdown
of its rotation, and disappearance of the ergosphere. In
our case, quite unexpectedly, the ergosphere appears due
to the charges of the axion and gauge fields, which are
protected by the Gauss laws at infinity. Therefore, en-
ergy extraction by a Penrose-type process would seem to
be inextricably linked to the diminishing of the string's
charge, which is in contradiction with the Gauss laws.
We believe that the consistent resolution of this prob-
lem should be sought by postulating the existence of a
more general family of solutions, which will be charac-
terized by a nonzero linear momentum along the string

This quantity would then be dissipated by Penrose
processes, thus opening the channel for eliminating the
ergosphere while keeping the gauge charges conserved.
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A more detailed study of this problem would seem to be
merited. Ultimately, one would like to determine the set
of all alowed conserved quantities for three-dimensional
stationary configurations, analogous to the approach of
the last of Ref. [17].

Finally we present the Hawking temperature for this
solution. It is obtained analogously to (3.3), and is given
by

gW2 —Q2&W2 —Qz —4"
gm2 —Q2+ gWz —Q2 —4" (3.15)

In this case, the Hawking temperature vanishes for both
extremal limits M = Q +4e and Q = M . Which of
these limiting situations will be reached by evaporation
could in principle be determined by a detailed study of
linear momentum transfer between the black string and
the Hawking radiation, which is beyond the scope of the
present work.

In sum, the causal structure of this solution is reminis-
cent of the first family. The associated Penrose diagram
is essentially the same. The most important difFerence is
the appearance of the ergosphere, which can provide for
interesting efI'ects in this geometry. The causal structure
for this case is also shown in Fig. 1.

E. Extremal limit(s) of the second family

As we have indicated above, we will look here at the
two special cases of the second family of solutions. We
refer to these as the extremal limits in a somewhat ten-
tative manner, because they represent such choices of
parameters where the two horizons become degenerate.
Yet, the case Q2 = Mz deserves its label as an extremal
black string only in an indirect fashion, as we will indi-
cate below, and show in the next section.

Our erst extremal limit is given by the condition
Qz + 4e, resembling the extremality condition

for dyonic Reissner-Nordstrom black holes. This case is
very difFerent &om the previously studied extremal lim-
its. There is now a singularity at i = 0, a single de-
generate horizon rh = (M + Q )/M and, in general,
three Killing horizons, located at r&+ = (M + Q)/2 and

= (MQ + Q2)/2~. By comparing the values of the
parameters, we see that there is an ergosphere r~+ out-
side of the event horizon rh, and that the remaining two
Killing horizons are inside of ih. Their relative locations
however depend on the ratio Q/M ( 1, and they coin-
cide for Q/M = ~2—1. To see that all of these are indeed
contained in the manifold, in contrast with our 6rst ex-
tremal limit and the extremal limit in the static case, we
need to look at the geodesic equations and demonstrate
that there are geodesics which extend to all of the above
surfaces. This is again controlled by the radial equation.
Qualitatively the behavior of geodesics is the same as
in the nonextremal case. Here we will just show that all
geodesics cross the event horizon in original coordinate r",

meaning that the proper extension is given by including
in the manifold the sector with r" ( rh. Since in the ex-
tremal limit, the parameters p~ degenerate to e, we can
rewrite the radial equation for null geodesics, in terms of

the radial coordinate shifted by the horizon p = r" —rh,
as

'2 e
2(ME —QP) + (E —P )p

M E2 —QzP
+ ~ p. (3.16)

I"IG. 3. Causal structure of the Q + 4e = m extremal
limit of our second family (3.11) of black string solutions,
as mell as of the extremal Reissner-Nordstrom solution. The
hyperbolas here depict the ergosphere (region I) and the in-
ner static limit (region II) present in our case, in. contrast to
Reissner-Nordstrom.

The RHS of this equation does not vanish for any p &
0 (i.e. , outside of the event horizon), and since similar
conclusion also holds for timelike geodesics, we see that
all inwards-oriented geodesics fall into the black string,
proceeding to p ( 0, as claimed.

To see that the other characteristic surfaces are also
reachable, we need only observe that there still exists the
class of null geodesics with QE + MP = 0, discussed
in the nonextremal black string background. These are
the only causal geodesics in the manifold that come ar-
bitrarily close to the singularity at r" = 0. However, since
their descent toward. s the singularity is controlled by the
exponential of the afIine parameter, they do not reach
it in any finite range of the parameter, and thus this
manifold is also causally geodesically complete. Thus we
conclude that the causal structure of this geometry is
similar to the extremal Reissner-Nordstr@m solution, the
difFerences being the ergosphere and the causal geodesic
completeness of our solution. This comparison of causal
structure is graphically summarized by the Penrose dia-
gram in Fig. 3.

We should also point out here that this solution does
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not have any null Killing vectors, in contrast with other
extremal black strings. This can be seen &om noting that
any Killing vector must be a linear combination a.0 +
POi. The null condition for this solution then translates
into a2 = P2 and o.Q + PM = 0. These two equations
can be simultaneously solved only if Q = +M, which is
not the case here.

The other extremal limit, Q2 = M2, as we have men-
tioned above, can be interpreted as a black string only
indirectly. For example, we can see &om the geodesic
equation for the radial coordinate (3.16) for this case,
that no causal geodesics starting &om infinity can ever
cross the horizon, although some may come arbitrarily
close to it before bouncing back. Nevertheless, if the hori-
zon were probed by nongeodesics worM lines, one would
discover a structure akin to the horizon of the extremal
static case or the extremal limit of our first family of solu-
tions, where the geometry consists of two mirror images
divided by the horizon (Fig. 2). In effect, in this case the
geodesics encounter an infinite potential barrier at the
boundary, due to the terms in the metric proportional to
the electric charge. We will present these arguments in
mathematical form in the next section, in a slightly more
general context.

The analogy of this case with an extremal black string
can be further strengthened if we employ the null coor-
dinates u = (t + x)/~2, v = (t + x)/~2, where the signs
are chosen according to whether Q/M is positive or neg-
ative unity, respectively. With these coordinates, we can
rewrite the solution as

such that

(4.1)

Without changing the matter, we can define the new Ein-
stein &arne metric by

g„'„=g„+E@k„k, (4.2)

where 4 satisfies

k"V'„@= 0,
V'"V'„4 = 0.

(4.4)

We can show that the configuration (g„',B„„,A„,4) also
represents a solution of the same equations of motion.
The key is to demonstrate that the equations of motion
are invariant under this transformation. An easy way to
see that this is true in the cases we consider is to recall
that the determinant of the metric changes under (4.2)
by a shift proportional to k k„. Since k is null, this is
zero and the determinant is invariant: det(g ) = det(g).
Furthermore, the field strength of the axion H is a three-
form, and thus its dual is invariant under (4.2), because
the metric appears in it only through the determinant.
Additional constraints must be imposed on the gauge
field, however. They are

ds = „—2 1 — „dudv ——„du,2Ai —M 2 r

B = „duhdv,r
A = —2 —„du, (3.17)

e
—~ = &2Am,

which we recognize as a plane fronted wave carrying elec-
tric charge, traveling on the extremal black string of
Horne and Horowitz. This interpretation will be given
a thorough justification in the next section, where we
will demonstrate that this solution is in fact directly re-
lated to the extremal limit of our first family by a wave
transformation due to Garfinkle [29].

IV. TRAVELING WAVE ON GAUGE-CHARGED
BLACK STRING

We begin by brieBy reviewing the wave generating
technique of [29]. This technique allows us to su-
perimpose traveling wave contributions on solutions of
Einstein-like theory of gravity with matter couplings of
quite general nature (including stringy gravity) which
have null hypersurface orthogonal Killing vectors. It
works as follows. Let (g~„,B&„,A~, 4) be a solution of
the equations of motion derived from the action (2.1)
and given in the Einstein &arne, with a null hypersurface
orthogonal vector k. The Einstein &arne is defined by
conformally transforming the world-sheet metric g&„ to
g&„——exp( —24)g~ . Then, there exists a scalar field E

where the last equation represents the requirement that
k I.ie derives the gauge field A. These identities then
guarantee the invariance of the gauge field sector under
(4.2) in the equations of motion. In the cases we consider
these identities hold, as we will show below. Finally, if
we compute the Ricci tensors, which govern the graviton
dynamics, we can show that R'"„—B" is proportional
to V'2@, which vanishes by the second condition of (4.3).
Thus, the Ricci tensor with one contravariant and one
covariant index is also invariant under (4.2), and so is
the Ricci scalar. This in turn means that all the separate
metric-dependent terms which appear in the equations of
motion are invariant, and that (4.2) indeed represents a
motion in the space of solutions, as claimed above. We
remark that the interpretation of the modified solution as
a wave traveling in the original background rests on the
property that the vector k remains a null Killing vector
of the final solution too. This is because the function 4
is independent of the Killing coordinate according to the
first of the conditions (4.3). Thus all disturbances in the
metric generated by it must propagate at the speed of
light, without changing its shape.

Now we can apply this technique to the extremal limit
of our first family of solutions. It is evident &om the
form of (2.8) that in the extremal limit ~Q~ = m the
Killing vector 0 becomes null. For our purposes it is
more convenient to use the shifted Killing coordinate ( =
x —w/2, because in the lixnit when s = 0, this solution
reduces to the extremal limit of Horne and Horowitz, and
then our coordinates y, 7 are exactly the null coordinates
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u, v. The Killing vector Bz remains null, as can be seen
Rom Bx ——(8 ) . After the conformal transformation to
the Einstein kame, we can rewrite the solution as

SAC
+2ATAS r I 1 — „~d7

r

e
—~ = v'2Am.

(4.6)

The most general solution to (4.6) is

@ =g(r)+ f(r)
(4.7)

The g term here can be dropped because its contribution
to (4.2) is only a diffeomorphism. The only nonvanishing
component of the matrix FC'k~k„ is FC kpkp = 4Ar f (r),
and thus the new Einstein frame metric is

d8

+2A ms r" 1— + 2Ar f(r) dr . (4.8)

Our null Killing vector is k = 0~, with the only nonzero
covariant component kp —— 2Ar"(r"——mc2). We can see
that the conditions (4.4) for the gauge field A hold, since
it is directed along dw and does not depend on y. There-
fore, we can apply the wave generating technique. To
proceed, we can see that the scalar F = 1/r"(r" —mc )
solves the condition (4.1). The final step of our calcu-
lation consists of finding a scalar Geld 4 which solves
the constraints (4.3). The first constraint requires 4 =
4'(r", r), and consequently the d'Alembert operator of the
second acquires a particularly simple form due to this
and the properties of the metric. This equation can be
written as

tion f (r)
In the remainder of this section, we will focus on those

solutions (4.9) where f = const. To start with, we note
that if f = —ms /2A, the solution is precisely the sec-
ond extremal limit of the second family of solutions, dis-
cussed at the end of the previous section. This coin-
cidence reaKrms our choice to label that solution as a
traveling wave on an extremal black string. By the same
token, our starting solution (4.5) can also be thought of
as a wave of constant amplitude, carrying electric charge
and traveling along an extremal black string. In contrast,
no choice of f will lead to the first extremal limit of the
second family of black strings. We see this because that
extremal limit does not have null Killing vectors, whereas
(4.9) has one.

Another interesting observation related to (4.9) with
f = const is the e8'ect of this term on the global structure
of solutions. Here the value of f plays the crucial role,
dividing the solutions into three categories, distinguished
by the accessibility of the horizon, located at rg ——mc,
to geodesics probes. If we look at the geodesic equation
for the radial coordinate, with P~, P the components of
the conserved probe momentum in y and 7 directions,
and p its squared rest mass,

ms (r —mc ) + 2Arf P- + 2r" (r —mc )PxP~

—p(r —mc ), (4.10)

we see that at the horizon, (r)2 = 4A2mc2fP .
depending on the sign of f, the geodesics either cross the
horizon, showing that the proper extension across it is by
including r" ( rh, (when f ) 0, and is similar to our first
extremal limit of the second family), cross the horizon
but with a mirrorlike extension as in our Grst extremal
limit and the static extremal limit of Horne and Horowitz
(when f = 0), or bounce back to infinity before reaching
the horizon (when f ( 0, as in our last extremal limit).
Therefore, the admissible global structure is similar ei-
ther to the extremal Reissner-Nordstrom black hole, the
extremal static black string, or the completely nonsingu-
lar geometry of our last extremal limit. In fact, all of
these solutions can also be thought of as extremal black
strings, as can be seen &om the fact that their Hawking
temperature is identically zero.

mc'l „„dydeer )2A(r —mc2) 2

+ 1 —
~

+ —f() d'.

e
—~ = v'2Am.

(4 9)

The wave behavior is completely determined by the func-

Consequently, we can rewrite the new solution in the
world-sheet frame by conformally transforming back, us-
ing the (unchanged) dilaton, to get

V. CONCLUSION

In this paper, we have presented several new solutions
of stringy gravity in three space-time dimensions. We
have found that several of those solutions admit interpre-
tation as electrically charged black strings, thus general-
izing the static, electrically neutral solutions previously
found by Horne and Horowitz. Our black strings have
shown a surprisingly rich geometric structure, and the
existence of several difFerent extremal limits, which are
possib1e final states which strings can reach by Hawking
radiation. This situation is somewhat akin to that found
in the case of gauge-charged stringy black holes in four di-
mensions, where the inclusion of the additional gauge and
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axion charges has introduced additional dimensions in
the space of allowed parameters describing a black hole,
resulting also in a collection of new extremal limits [33].
One of our well-defined extremal limits has a null Killing
vector, which we utilized for generating a traveling wave
solution on the string background, employing Gar6nkle's
techniques. In the special cases when the wave pro6. le is
constant, we have found that the solutions can be inter-
preted as yet new extremal black strings, since their asso-
ciated Hawking temperature is zero. We have also found
that two of our three extremal limits found directly are
mutually related by such wave transforms.

Our results are highly supportive of the existence of
an even more general family of black objects in three di-
mensions, which we believe could be obtained by includ-
ing an additional independent parameter, describing the
conserved linear momentum in the direction of the string.
Many properties we have observed indicate this; to name
just a few, we could quote multiple extremal limits, difFer-
ent nonextremal solutions, etc. We think that perhaps
the strongest evidence for this conjecture is our obser-
vation of the apparent inconsistency encountered in our
second black string family. There we have indicated that

on one hand, the presence of the ergosphere should indi-
cate the possibility of energy extraction via Penrose pro-
cesses, resulting in the disappearance of the ergosphere,
which, on the other hand, would be in contradiction with
gauge Gauss laws, since the ergosphere in this case is car-
ried solely by the electric and axion charges. A possible
resolution of this would be the existence of a more gen-
eral family with an arbitrary linear momentum along the
string, which would be the quantity to dissipate in the
energy extraction by neutral probes. In this scenario, the
string would eventually evolve towards the extremal limit
of our first family, with the gauge charges conserved, but
without the ergosphere, and hence with no possibility
of further energy extraction. We believe that this issue
deserves further attention.
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