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Solutions in self-dual gravity constructed via chiral equations
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The chiral model for self-dual gravity given by Husain in the context of the chiral equations
approach is discussed. A Lie algebra corresponding to a 6nite dimensional subgroup of the group of
symplectic di8'eomorphisms is found, and then used for expanding the Lie-algebra-valued connections
associated with the chiral model. The self-dual metric can be explicitly given in terms of harmonic
maps and in terms of a basis of this subalgebra.
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I. INTRODUCTION

Since the introduction of Ashtekar's variables in gen-
eral relativity [1], they were quickly applied to self-dual
gravity. Later, Ashtekar, Jacobson, and Smolin (AJS)
considered a new formulation of half-Hat solutions to Ein-
stein's equations. To be more precise, making a decom-
position of a real four-manifold M into R x Z, with Z
an arbitrary three-manifold (M has local coordinates
(xp, xj, x2, xs )), the problem of finding all self-dual met-
rics was reduced to solving one constraint and one "evo-
lution" equation on a field of triads V,. on E, that is,

DivV,. = 0,

morphisms of a two-surface JV, SDiff(A' )). Similarly to
Grant, starting from Eqs. (1) but using another choice of
the set of vector fields V, , Husain derived also the erst
heavenly equation. However, although the choice of vec-
tor fields is diferent, both formulations are equivalent to
that one from Plebanski. Thus, we have a class of equa-
tions (and therefore the corresponding class of solutions)
which will be equivalent. This class of equations we call
the Grant-Husain-Plebanski (GHP) class, and they can
be seen as equivalent to ASS equations. This because
they are only difFerent formulations of the same full the-
ory.

Here, we briefly review the Husain chiral model for
self-dual gravity. It is well known that Eqs. (1) lead to
the set

where i, j, A, = 1, 2, 3 [2]. Thus, all self-dual metrics can
'be described in terms of the triad just as

g = (det V) '[V, V, b" + Vp Vp],

where Vo is the vector Beld used in the 3+ 1 decompo-
sition.

Several authors [3,4], beginning with the AJS formula-
tion, made contact with the Plebanski approach to self-
dual gravity [5]. In [3] Grant has shown that Eqs. (1)
are related in a very close way with the first heavenly
equation of Ref. [5]. It was quickly recognized that the
relation was only a Legendre transformation on a conve-
nient coordinate chart [6]. Here the heavenly equation
was brought into a Cauchy-Kovalevski evolution form.

On the other hand in [4] Husain gives a chiral formu-
lation for the self-dual gravity. He has shown how self-
dual gravity can be derived &om a two-dimensional chiral
model the gauge group of which corresponds to the group
of symplectic diffeomorphisms [area-preserving diff'eo-

[7,Z] = [M, V] = 0,

[7,u]+ [X,V] =O,

where 7:= Vp + i', U:= Vp —i', Z:= V2 —iVs,
V:= V2+ iVs. The vector fields rl' and 7 can be fixed to
be

|9
Oz

(4)

where the Z = xo + ixi& Z = x2 —ixs& & = xo —ix
and v = x2 + ix3. The bar does not stands for com-
plex conjugation. The choice of vector fields enables four
possibilities.

(i) The first IIusain model [4] (see also [7]). We take

As we make only local considerations we assume the space
JV to be a two-dimensional simply connected manifold with
local coordinates (p, q}. This space has a natural local sym-
plectic structure given by the local area form u = dpi', dq. The
group SDiff(JV ) is precisely the group of diffeomorphisms
on JV preserving the symplectic structure u; i.e. , for all

g e SDiff(JV'), g (cu) = (u. 0 „0-~—0 gap ——1, (6)

where 0 is a holomorphic function of its arguments and.

p, q are local coordinates on the two-manifold JV . Equa-
ti.ons (3) lead directly to the first heavenly equation as
usual [5]:
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8 0where 0 „= q ~, etc.
(ii) The Grant model [3]. The difFerence with respect

to Husain's formalism is just the way in which the vector
fields U and V are chosen. Grant takes

M= ——h, q
—+h „—,19 19 l9

Oz Op Og

V = h;q ——hop —.i/ 0

Equations (3) lead to the Grant evolution equation,
which is of the Cauchy-Kovalevski form

directly to the set of equations

82; —Bi, + (Bi,82) = X;(z, z) + g, (z, z),

Bi,—+ 82, = X,(z, z) —g;(z, z), (14)

Ai(z, z, p, q) = Bi + g

for the arbitrary functions X and Q. In the above equa-
tion (, ) means the Poisson brackets in the coordinates p
and g.

Redefining

h --+h ph -q —h ~h -p ——0,

where the correspond. ing metric is

g = dz g)(h;, dq + h, ,pdp) + -dz C3 (h, qdq + h,„dp)

(h;qdq+ h ~avdp) .
jZZ

(9)

M= —h q
—+h „—,0 6

After a I.egendre transformation on the variable z we
recover the first heavenly equation as usual [6].

(iii) A variant of the Grant model [3]. This choice leads
to a formulation similar to that of Grant. Choosing the
vector fields as

A2 (z, z, p, q) = 82 —X,

(].4) transforms into a two-dimensional chiral model on
a two-manifold ~ with local coordinates (z, z), hav-
ing as gauge group the group of area preserving diKeo-
morphisms of the two-dimensional manifold A' . This
two-dimensional chiral model is

I' = A2; —Ai + (Ai, A2) = 0. (16)

Vanishing curvature I' = 0 implies that the gauge poten-
tials Ai and A2 are pure gauge. Thus, we can write the
potentials as

P= —+h-q ——h-„—,6
Oz Op Bg

(10)

and using once again Eqs. (3), one arrives at the Grant
evolution equation, which is of the Cauchy-Kovalevski
fol m

Ai ——(B,-g) g A2 ——(B,g)g

A. jL
-+ A2 ——0.

where g: JH x JV —j SDifF(JV ) given by g(z, z, p, q) p
SDiff(JV ). These potentials satisfy

h, + h;qh, p
—h -„h q

——0.

The corresponding metric is, of course,

g = dz (h qdq + h zdp) —+ dz — (h qdq + h zdp)

(h, qdq + h, pdp) .

And. , as before, the first heavenly equation is recovered
after a Legendre transformation.

(iv) The second Husain model [4]. For the self-dual
equations (1) there exists another possibility for an ap-
propriate selection of the vector fields. This choice leads
to the chiral equations, which appear to be nonequiva-
lent to that of the GHP class of equations. However, they
might be related. to them.

Introducing now two functions Bi (z, z, p, q) and
82(z, z, p, q), the vector fields U and V can be written
in a completely general form in terms of these functions
as

t9 g 6Q= —+n Bggg, P= —+n 0@82,
Oz Bz

wheren =(& )~ (& ) ~.

Using Eqs. (3), the above choice of vector fields leads

In this paper we work with the chiral formulation for
self-dual gravity as given by Husain. In Sec. II, using
the formalism of chiral equations approach to Einstein
equations we discuss the chiral equations of the Husain
model as harmonic maps in a philosophy similar to [S, 9].
In Sec. III we find a finite dimensional subalgebra of the
I.ie algebra of SDifF(A ), and then we use this reduction
to find solutions. We also find that the system induced
by the Husain formalism is completely integrable at least
for this subalgebra. Finally in Sec. IV we give our final
remarks.

II. CHIRAL EQUATIONS
AS HARMONIC MAPS

ls =tr(dg g Imdg g ), (19)

In this section we shall outline the method. of harmonic
maps for solving the chiral equations. This method con-
sists in applying the harmonic maps ansatz to the chiral
equations. Let us explain it.

First we enunciate the following theorem.
Theorem. Let g E G satisfy the chiral equations. The

submanifold of solutions of the chiral equations S t G
is a symmetric manifold (the Riemann tensor of S is co-
variantly constant, i.e., VRg = 0) with the metric
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e = g(A*, p, q), (20)

where A'(z, z) are affine parameters of the minimal sur-
faces of G: i.e.,

where (3 denotes, the symmetric tensor product. For the
proof see Refs. [9, 10].

The ansatz consists in supposing that g can be written
in terms of harmonic maps. Let Vg be a Q-dimensional
Riemannian space with an isometry group H C G =
SDiff(N2). Suppose that (A'j are local coordinates of
Vq. Let (P, j, s = 1, . . . , d = dimH & dimG
oo, and P, = gP, &&, be a basis of the Killing vec-
tor space of Vg and (('j the dual basis of (P,j. We
suppose that

(~ ~~j =&:~(p q)~- (24)

where C,"~ are functions of p and q only. 0
We shall now use the above approach to Einstein's

equations [8, 9], in order to apply them to self-dual grav-
ity. We show that it is possible to translate all relevant
tools of the AJS formalism in terms of harmonic maps.

For instance the vector fields U and V are

where a semicolon means a covariant derivative in Vg.
Equation (16) implies that (o,j are the corresponding
Hamiltonian functions of the simplectic form u = dp h, dq
on JV: i.e. ,

A'., + I';„A'.A", = 0, i, q, k = 1, ..., q. (21) B, , /Bo, B Bo, 8)
Bz ' "(BpBq BqBp)'

The sdiff'(JV )-valued connection one-form on the two-
manifold M2 in the basis (dA' j can be written as (see
Ref. [11])

A = a;(z, z, p, q) dA' = Aq(z, z, p, q)dz + A2(z, z, p, q)dz,

B, , (Bo, B Bo.. B
Bz ' (Bp Bq Bq Bp)

The vectors on K x Z are, therefore,

(25)

where Aq(z, z, p, q) = Aq(A', p, q) = a;(A', p, q)A', and
A2(z, z, p, q) = A2(A', p, q) = a, (A', p, q)A'-. The func-
tions a, (A', p, q) can be expanded in terms of a basis of
a finite dimensional Lie subalgebra H of sdiff(JV ), (oz j,
j = 1, 2, ..., d; that is,

a;(A', p, q) = (;. (A')o, (p, q)

(for details of this method see Refs. [8, 9]).
Theorem. The potentials Az(A', p, q) = a;(A', p, q)A's

and &2 (A', p, q) = a; (A', p, q) A', are solutions of the chiral
equations (16) and (18).

Proof Using (21),.Eq. (18) implies that the quantities
(;. (A'j are the components of the Killing vectors of Vq

&g,g+ Ag, , ——((;., +(; ,)o,A;A. ', =0, —

B 1, , (Bo, B
Vp ———+ —,'A*-2' "E»Bq BqB&)'

'A;
~2 ' ( Bp Bq Bq Bp)

B 1, , (Bo, B Bo, B't
V, = —+ —,'A',2' "(BpBq BqBp)

2 ' " ( Bp Bq Bq Bp)
(26)

The self-dual metric (2) can be expressed in terms of
harmonic maps,

4 . t'Bo., Bo..dz @dz + dz @dz + (q ~

'
dp — '

dq
~

g) dA"
(,". (. A',-A~, (o. , o„j ( Bp Bq ) (27)

Here it can be observed that similarly to the metric (3.4) of Ref. [4], it also appears a singularity for null Poisson
brackets (Abelian algebra) .

For completeness we can write also the inverse of (27):

(Q) ' [(A",;)' + (A",,) '] r' Bo-.„Bo,„) rBo, „. 'Bo,„)
(;(,"A', A',. (~. , ~„j g Bp Bq ) q BJ Bq ) (28)

From the metric (27) and (28) it is now clear that |
cannot vanish; thus, it is not possible to take an Abelian
algebra in (24).

III. TWO-DIMENSIONAL SUBSPACES

From the metric (28) we conclude that it is not pos-
sible to take one-dimensional subspaces Vq since all one-

I

dimensional Riemannian spaces contain only Abelian
groups of motion. We consider a two-dimensional Rie-
mannian space V2. In [9] it was shown that the chiral
equations imply that V2 must be a symmetric space. All
two-dimensional Riemannian space is conformally Hat.
So the metric of V2 can be written as [12]

dAd7.i'(l )s= ds2 = (29)
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( = [
—rdA + %dr], V = 1+kA~,

where i: V2 ~ S. The symmetry of V2 implies that k =
k(p, q) only, i.e. , k p = k = 0 (since all two-dimensional
symmetric space possesses constant curvature). Thus, V2

contains a three-dimensional isometry group H. Three
independent Killing vectors of V2 are

, [(k7'+ 1)dA+ (kA'+ 1)d~],
1

a2~. 2 10~. N2
2

t2 2 gt gt
8=1,3,

(36)

where we have defined l = (s, t). The solution to Eq.
(36) is

g — g p~( ) + b +(~)

which imply that k does not depend on t, which means
k = k(s). Deriving Eqs. (i) and (ii) with respect to t we
find difI'erential equations only for oq and o3.

[(kr' —1)dr+ (1 —kW') d~].
2V2 (30) where

dt

l
I (t) = 4k

The three Hamiltonian functions o, satisfy the algebra

(cri, o.2) ——4kcrs,
From (35) we find that ai ——a2 ——ci and bi —— b2 ———c2,
such that

(0'2, Os) = 4koi,

(0's, 0 i ) = —40'2, (31)

in order to have compatibility with the Killing vectors
(30). These Poisson brackets can be seen as three difFer-
ential equations for the three functions o, and the func-
tion k, and so we can take one of them arbitrarily and
determine the other three ones by integration. Knowing
the functions 0., we can determine the potentials A~ and
A2 by means of the formulas I (t) = 4k

dt

l
'

BCyC2
2k (s, t) = l.

2 2—03 —0 i = 4 CiC2.

The no dependence on t of o 3
—0

& implies that cq

ci(s), c2 ——c2(s) where 2k &" ———s. So we obtain

o, = c, (s) e~i'l + c,(s) e
— ~'&,

Ai ——(;O,A',—, A2 ——(;.o,A'„

in terms of the harmonic maps A'. The harmonic map
Eq. (21) transforms in this case into

Observe that k(s), ci(s), and c2(s) are subjected to
only one restriction; therefore, two of them are arbitrary.
So we have three arbitrary functions of p, q in general.

A
2k~

A A-=O,1+ kA~
IV. FINAL REMARKS

2kA
~,zz ~z~~ ——0.

1+kA7- ' (32)

In what follows we will solve Eqs. (31). I.et us write
Eq. (31) in terms of two new variables s = s(p, q) and
t = t(p, q) and without loss of generality we can suppose
that o2 ——s. The commutation relations (31) transform
into

(i) (s, t) = 4kcrs,
00i
Ot

003
(ii) (s, t) = 4kcr„

Ot

Ooi Dos )
Bs Bt )

If we substitute (i) and (ii) into (iii), we arrive at

In this paper we found an explicit exact class of solu-
tions to self-dual gravity [4]. We used the chiral equations
approach in order to obtain explicit solutions. Solving
the chiral equations with the harmonic maps method we
And that; the harmonic maps ansatz can be applied to
the chiral equations derived from self-dual gravity. The
difI'erence with previous applications of this method is
that here we have Poisson brackets in place of matrix
brackets in a similar spirit as in [ll]. Nevertheless, we
can solve the corresponding Poisson algebra by making a
coordinate transformation and finding the corresponding
Hamiltonian functions by solving the Poisson algebra as
di8'erential equations. We find that there exists a class of
such solutions in terms of two arbitrary functions (s and
t) of two variables (p and q). The coordinate transfor-
mation can be taken also arbitrary, but in the case when
the new coordinates are canonical the solution becomes
very simple.

k~(o' —oi) —28)88
and by combining (i) and (ii) we conclude that

~(os —oi)
Bt

(34)

(35)
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