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Abundant intrinsic heavy sea quarks in the proton
and their phenomenological implication
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It is shown that heavy sea quarks such as the charm, bottom, and top quarks intrinsic to the
proton exist abundantly in the small x region. The sum rule to test this phenomenon directly is
proposed. Then by taking the total cross-section rise in the hadron reactions into account with the
use of the soft Pomeron by Donnachie and Landshoff, we show that the rapid rise observed at DESY
HERA below x=0.01 may be related to this abundance. Further, the constraints at low x which
lead to this are matched to the perturbative leading twist behavior and the qualitative behavior of
the structure function at low x is studied.

PACS number(s): 13.60.Hb, 11.55.Hx. , 12.38.Lg

I. INTRODUCTION

Recently the data of the proton structure function E2
in the small x region at the DESY ep collider HERA has
been reported [1]. Though there still exist large errors, a
rapid rise of it with decreasing x and the large rapidity
gap events which suggest the existence of the Pomeron
component are very interesting. Concerning the rapid
rise, we cannot know whether or not this rise continues
into the smaller x region, but the behavior near the re-
gion x = 10 —10 reminds us of the hard Pomeron
[Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron] [2],
i.e. , E2 x with a relatively large A. Then phe-
nomenological analyses based on the BFKL equation [3]
or Altarelli-Parisi Q evolution with a BFKL-motivated
input distribution [4] have been given. Since both the
statistical and the systematical errors are large, the dis-
tinction between these approaches are difficult [5]. On
the other hand, the BFKL approach has serious ambigu-
ities as to the treatment of the nonperturbative region [3].
In view of these situations, it is important to investigate
whether or not there exist nonperturbative physical rea-
sons to give such BFKL-like steep behavior. The purpose
of this paper is to give such an example.

Our approach is based on the soft Pomeron proposed
by Donnachie and Landshoff [6] combined with the sum
rules based on the current anticommutation relations on
the null plane [7,8]. The modified Gottfried sum rule [9]
which explains the experimental value of the New Muon
Collaboration (NMC) is one example of these sum rules;
hence, this method stands on the same theoretical foot-
ing as this sum rule. Let us explain the facts. In the
course of the derivation of the modified Gottfried sum
rule, we obtained the constraint that the residue of the
Pomeron in the mN total cross section is related to the
small x limit of the structure function E2. The assump-
tion to reach this result was that the trajectory of the
Pomeron n~(t) satisfies nJ (t) ( 1 at some small t [8].
A simple moving pole in [6] satisfies this criterion. Even
when both the hard and the soft Pomeron exist, the het-
erotic Pomeron may become a simple moving pole [10].

In such a case this criterion may also be satisfied. In this
sense this method does not necessarily contradict with
BFKL method. Now by this constraint we obtain the
theorem that no Q scale exists where we can neglect the
sea quark as long as it has a soft Pomeron piece. This
theorem may be discarded efFectively if the soft Pomeron
component is restricted only in the very small x region
where experiments cannot reach. However for the light
sea quarks we already know that we cannot discard it.
This was the very reason why the Gottfried sum rule was
badly broken and should be modified as in [9]. Now since
the soft Pomeron piece enters every sea quark uniformly,
for heavy sea quarks we expect that this theorem also
cannot be discarded. Then we transform the sum rules
into the ones for the sea quarks and show that the heavy
sea quarks intrinsic to the proton are abundant in the
small x region. We explain these things in Sec. II. In Sec.
III, we study how the nonperturbative constraints match
the perturbative Q dependence by a simple toy model.
In so doing we explain another origin of the Q depen-
dence. This comes from the structure of the Pomeron and
in the present stage of the theory this is completely un-
known. Then we show that the abundance of the heavy
sea quarks electively produces the behavior E2 x as
in the hard Pomeron and that it may be related to the
rapid rise observed at HERA. The discussions are given
in Sec. IV. A review of the derivation of the current
anticommutator on the null plane is given in Appendix
A. Sum rules for SU(5) and SU(6) are explicitly given
in Appendix B, and some discussion which suggests the
intimate relation between low and high energies is given
in Appendix C.

II. THE DERIVATION OF THE
NONPERTURBATIVE CONSTRAINTS

ON THE SEA QUARKS AND THE
SUM RULES FOR THEM

Many years ago the hadronic matrix element of the
current anticommutation relations on the null plane were
proposed as [7]
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{pl(J.'(*) Js'(0))lp).~(*') =(pl(J."(~) Js+(0))lp).b(*')

lb'(= )~( )[d-..A. (p *,-'=0)+f...~.(p -,*'=0)l~,
&* )

where c means to take the connected matrix element and the state ~p) is the stable one-particle state. This relation
was derived by using the Deser-Gilbert-Sudarshan representation [11],the spectral condition of the hadrons, and the
current commutation relations on the null plane. Using a standard method to get the Axed-mass sum rule on the null
plane [12], we can get many sum rules from relation (1). All these sum rules come from the d g, term in it (for a
review of the derivation of the relation (1) see Appendix A). Setting aside the question of convergence, they are given
simply as

2f2 dv +„-„1 dn
gz(0) + —(0 "(v) + o "(v)) = P — ) a;A, (a, 0),

7f' V 271 ~ 0!
0

(2)

(F2"~—(x, Q') + F,~ (x, Q') }= P-
2x 2 2 '

27 ) bA, (n, 0), (3)

) c;A;(a, 0),
A

(4)

CX3

2

(5)

2 dv[»' (o)]'+ [g~'(0)]'+ &~+ —[~ "(v) + ~ "(v)] = —, P
0

) e;A;(a. , 0),
—OO

(6)

OQ OO

[g~' (o)]'+ U-+ —,[~ "(v)+ ~ "(v)] = —, P ) f'A'(~, 0),
0

where 0 means the total cross section of the ab scatter-
ing at q = 0, vo means the threshold in each reaction,
U„and U„are the contributions below the threshold, and
v = p. q. Only the coefBcients of the diagonal matrix ele-
ments are not zero. Table E summarizes these coeKcients.

Table I should be read as follows. For SU(3) the suKx
i stops at 8 and the zeroth component is given by the
one at the column 0 (3). The cases of 4,5,6 flavors are
read similarly. Except for the zeroth component, each
coefBcient is unchanged when the Qavor symmetry group
is enlarged. This simple rule has a clear physical meaning
in the parton language. For example, in the case SU(3)~
SU(4), the distribution of the charm sea quark is added
to the ones of up, down, and strange sea quarks without

I

changing anything of them. We will come back to this
fact later in this section. Now the coefBcient 6; is given
as follows. For SU(3), we obtain bo ——2~6/3, bs

0, bs ——2~3/3. For SU(4), bo ——2v 2, bs = bs ——bus ——0.
For SU(5), bo ——4~10/5, bs —bs ——0, b24 ——2~10/5.
For SU(6), bo ——2v 3, bs ——bs —bus ——bss ——0. This
complexity arises &om an asymmetrical treatment of the
charged weak currents in the cases SU(3) and SU(5). In
spite of this, if we look into the sum rules we will Gnd that
the change of 6; is made such that the interpretation by
the parton language as mentioned above is maintained.

Now before going into the details we first explain a Ha-
vor symmetry group such as SU(4), SU(5), and SU(6).

TABLE I. Coefficients a, , c, , d, , e;, f, , where 0(2V) means the zeroth component for SU(N).

a,.

d'
e,.

0(3)
2~6/3

2v6
2~6

2v 6/3
2v 6/3

0(4)

5~2
5~2
~2
v2

o(5)
2~10/5

iiv 10/5
11~10/S
2~10/5
2~10/5

o(0) 3

2v 3/3 O

5v3 3
5~3 —3

2~3/3
2~3/3

8

2v 3/3
+3
v3

-~3/3

15

~6/3
—~6
—~6
~0/3
~6/3

24

~io/5
3v iO/5
3v 10/5

v io/5
~io/5

2~15/15
—3v 15/5
—3~15/5
2~15/15
2v 15/15
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The hadronic currents in the standard model in the limit
to take the weak and the electromagnetic coupling zero
with the quark mass parameters zero is known to have a
U(N) x U(N) symmetry where N is the number of the
flavor [13]. If we switch on the quark mass parameters,
this symmetry is badly broken; however, we find that
there still exist the conserved quantum numbers such as
charge, baryon number, strangeness, charm, bottom, top
corresponding to the invariance under the global phase
transformation. This means that the Qavor groups such
as SU(4), SU(5), and SU(6) are useful for a classification
of the hadrons as a natural extension of SU(3). On the
other hand, the current algebra for good-good compo-
nents on the null plane makes the algebra of U(N) x U(N)
symmetry even when the mass parameters are switched
on. This is because the current algebra for good-good
component based on the canonical quantization on the
null plane needs no equation of motion. It is derived
only by the good component of the quark field where the
canonical anticommutation relation is assumed. These
are the reasons why we can extend the previous analy-
sis in SU(3) to the higher symmetry in spite of the large
symmetry breaking by the heavy quark masses.

Now all the sum rules (2)—(7) diverge if n~(0) & 1.
Since meaningful results can be obtained only when we
start Rom the finite sum rules, the sum rules (2)—(7)
were generalized to the nonforward matrix elements and
continued analytically to the forward matrix elements
[8]. The point of this discussion lies in the assumption
that the rightmost singularity in the complex n plane
or J plane was given by the moving Pomeron such that

I

at some small t the trajectory satisfies n~(t) ( 1. A
simple moving pole given by Donnnachie and Landshoff
[6] satisfies this criterion and gives a phenomenologically
good description of the high-energy hadron-hadron scat-
tering; hence, we give the results in this case in the fol-
lowing. Since the kinematics of the nonforward matrix
element is cumbersome, here we use the effective method
to take n~(0) = 1 + b —e with b = 0.0808 [9]. We
first let e approach b &om above, and then after tak-
ing out the simple poles from the sum rule we take it
to be zero. By this method we do not lose any gener-
ality, and always obtain the same results as in the non-
forward case. Thus we take the leading high-energy be-
havior of (o. "(v) + a "(v)) as P Ns ~~ i P N with
s = mN + m + 2v and P~N = 70.0(1/GeV), and sim-
ilarly for the kaon with PKN = 60.7(1/GeV) . For the
structure function we take

- (Qo'/Q') " 'P- (Q' 1 — (0))(2 )

with Q2o ——1 GeV, and I'2N(x, Q ) as

(q'/Q') "" 'P. (q' 1 — (o))(2 )

We expand PiN with l = v or e as

P,'„(q') + (.—b) P,'„(q') + O((. —b)').

Then we define

I = g~(0) + — v2 —m2Nm2[cr i'(v) + 0 "(v)] —vs p N + ln
7T' ~~ V (2vo

(8)

IK = [6' (o)1'+ [»'(0)1'+ —. v' —mKmNI~ "(v) + ~ "(v)] vs'PKN—
0

fKPKN l
2 ' / 1

7t' 2vo
(9)

IK = [g& (0)] + — v2 —m2Km2N[cr "(v) + 0 "(v)] —vs PKN + ln K + U„,

1 —P2"(» Q') —* 'p.', (Q') ) —p.'„(Q')
0 X

(10)

'd—(+:"(»Q') —& 'P.'.(Q')) —P.'.(q') .

Prom the experimental data I, 1~, I~ are determined
as I 5.17, IK 2.39, IK 1.61 [14]. The regulariza-
tion of the sum rules can be understood very simply in
SU(3). In this case we notice that the sum rules (2) and
(3) are related directly. Then, by the above parametriza-
tion, &om the coefficient of the simple pole we obtain

I

vrP N ——4f P N, and after taking out these simple poles
from the sum rule, we find that the finite part of it de-
pends on P N(Q ). To remove this PiN(Q2), we assume
that the Pomeron term corresponds to the Ao(n, 0) term
in the sum rule. By this assumption we obtain the re-
lation P„'„=6P.'„, P.'„=P.'„, P„'„=6P,'„, P.'„=P,'„.
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I —3C = (F—""+ F2""}—6F2 (13)

~3 ~3 ~ep Fen
p n 2 2

where E2 is defined as

Now, once we recognize that the divergence of the sum
rules comes &om the Ao(a, 0) term, we can see that
C„(C ) in SU(N) is di8'erent from the one in SU(N+1).
This is because the coefficient of Ap(a, 0) in SU(N) is dif-
ferent &om the one in SU(N+1). Thus we add the suffix
as C~(Cf ) to express that it is the value in SU(N).
Thus we obtain

I~P —3C„=I~ —3C„
= 3(P;"+F;"}—(F,""+F,""}, (16)

C„= 9(2I~~ —Ig-+ 2I ),

together with the relation f P~iv = f~P~~. Note that
F2 always appear in the combination where the leading
singularities which make each integral diverge cancel out.
Thus on the right-hand side of the sum rules (13), (14),
(16), every integral should be understood to be taken
after this cancellation. Then these sum rules give us the
relation

1 d
F2 —— —F2(x, 0 ) .

0 X
(15)

Similarly &om the sum rule in the KN reactions, we
obtain

The sum rules (14) and (18) give us the modified Gott-
&ied sum rule. Using the Adler-Weisberger sum rule for
the kaon, we can express this as

—(F, (x, q') —F;"(z,q') }= —
~

1 — —,gv' —(mxmN ) (~ "(v) —~ (v) } ~

.
~
e~

1
2

2
e~

1
2dx,„2,„2 I ( 4f~~ dv ~+ g+, (19)

In the parton language the sum rule (19) can be trans-
formed as

I

We can understand this increase in the parton model
easily. It simply means that

1

dz(A&(z, q') —A„(*,q') }= 0.11,
0

and the sum rules (13) and (16) as

dz(Ad(z, Q ) —A, (z, Q )}= 0.89,
0

(2o)

(21)

limz ~~ lA, (z, Q ) =a.
x—+0

I"urther we notice that there is a correspondence between
the integral of the sea quark distribution and a certain
combination of I (do./n)A, (n, 0). For example, for the

strange sea quark in SU(3), we have a correspondence [16]

where A;(x, Q ) specifies the sea quark of the i quark.
The constraints &om the coefticients of the simple poles
can be transformed as

dzA, (z, q ).::.
~

&o(o, 0) — &s(~, 0)
0

I
8 1

2 i!IIII
dn (~6 ~3
n ( 6 3

hmz~ ~lA (z Q2)=limz ~ Ag(z, q)+~0 x-+0

= lim z ~~ lA, (z, Q ) = a
a-+0

and, in SU(4),
22

f
~6

Ais(n, 0)
~

.
12 ' )

(28)

9C4 6P &P 1(P &P +P ~P
) (23)

I" —-'C' = 'P("+P "")—'F-"—3F"-
K 5 p 3 2 2 5 2 2 (24)

C„' = —,'(I" + 4r.), (25)

(26)

and the symmetry relations vrP„~ ——8f P~rv with P„~ =
6 P,„.Compared with SU(3), P„iv increases by 4f P„~.

with a 0.1. For SU(N) above N = 4, we use the
fact that [A, (p x, x2 = 0)] p can be decomposed as
if,pF(p x, 0) + d,pD(p z, 0) for c g 0, where n, P are
the symmetry index specifying the octet hadronic state.
In SU(4) we obtain [15]

(29)

The structure of the matrix on the right-hand side of
(28) is diag(0, 0,1), and that of (29) is diag(0, 0,1,0) where
diag( . ) means the diagonal matrix element. Since we
take the matrix element of the nucleon, we find that the
integral of the strange quark distribution in. SU(3) is the
same as in SU(4). Thus, by the extension of the flavor
group &om SU(3) to SU(4) we see that the SU(3) part in
SU(4) is unchanged. This fact is more directly expressed
in the sum rule (26). Here we see that the modified
Gottkied sum rule takes the same form whether we con-
sider it in SU(3) or in SU(4). Under this recognition we
find that the sum rules (23) and (24) can be understood
simply by the addition of the charm sea quark which has
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a correspondence

1

dzA, (z, Q )
0

A,(n, o) — A„(~,O)
~

. (30)q4

and that they are transformed to relations'(20) and

~ ~

1

(A.(z, q') —A. (z, q')} =1.39.
0

(31)

D= dz(Ag(z, Q') —az f l}, (32)

U=
0

dz(~. (z, q') — *-- fol}, (34)

1c= (35)

Since A„, Aq, A, are the same as those in SU(3), we see
that (C4 —C„) gives us information on the charm sea
quark where we have C„=1.50 and C„=2.48 from (17)
and (25). Thus if we define

region. Though the P dependence remains, the inequality
S & U & D & C B T holds. Hence we see that
the heavy sea quarks exist abundantly. Since they are
suppressed in the medium or the large x region, they
should be confined in the small x region. Now, even at
Q2 = 5 GeV, the threshold v for the charm sea quark is
2vth 20 GeV .

Then the threshold x becomes zip Q /2vti,
Q x 0.05 = 0.25. Hence in the kinematical region below
x 0.01, it can be excited easily if it exists intrinsi-
cally in the proton. The same kind of fact holds true
in the bottom sea quark case. On the other hand, a
preliminary study based on the phenomenologically suc-
cessful parameters in hadron physics together with the
nonperturbative constraints explained here suggests that
the charm and the bottom sea quarks become abundant
below x 0.01 even if they are suppressed greatly above
z 0.1 at low Q . To show these facts in a concrete ex-
ample we construct a toy model of the structure function
F2 in the next section. This model satisfies the vari-
ous constraints obtained. in this section which are based
on the phenomenologically successful parameters in the
hadron physics [6] and also takes into account the per-
turbative Q dependence. This shows that abundant in-
trinsic heavy sea quarks may explain the steep rise of
the structure function F2" with decreasing x observed at
HERA.

we obtain the constraint on C from (C4 —Cs), and &om
(20), (21), (31) on D, U, S as

D = 2op+ 0.60, U = 2op+ 0.49,
S = 2sP —0.29, C = zoP+ 1.10,

where P is Pi„ in SU(4). The same logic can be re-
peated by the extension from SU(4) to SU(5) and SU(5)
to SU(6), and we find

1

a = d*(~,(*,q') — *---f'l}= —,',p+ 1.10,

1

T = dz(Ag(z, q ) —az ~ l}= 2s P+1.10, (38)
0

where

limz~ f Ar, (z Q ) = limx l lA (z, Q ) =a. (39)
xmo xmO

Detailed formula are given in Appendix B.
Now P enters all the sea quarks uniformly. Hence the

following parton model sum rule for the isoscalar nucleon
target can be obtained as

dzF, (x, Q') = — dz(+s" (*,Q')

+S;"(z,q') }—2.78 . (40)

The first term on the right-hand side of the sum rule (40)
is roughly 3; hence, we will find that the left-hand side of
it becomes roughly zero. This sum rule is P independent
but needs experimental information in the very small x

III. MATCHING THE PERTURBATIVE Q~
DEPENDENCE TO THE NONPERTURBATIVE

CONSTRAINTS

The structure function F2 at low x is controlled by its
moments at small n. Various constraints discussed in the
previous section correspond to the ones at n = 1. As n
becomes large, the moments will be dominated by the
contribution given by the perturbative @CD [17]. Here
we assume that the values of the moments above n = 2
can be given by this contribution. Let us explain this
more. The integral of the parton distribution function
introduced in the previous section is nothing but the de-
composition of the moment of the structure function F2
at n = 1 into the quantity which has a correct quantum
number of each sea quark. Thus these are the physical
quantity and are not necessarily the ones in the pertur-
bative /CD. The difference lies in the nonperturbative
dynamics. What we assume here is that the asymptotic
behavior of these distributions is controlled by the soft
Pomeron and not by the hard Pomeron. Even if the
gluon in the perturbative sense gives the behavior of the
hard Pomeron, we think that it should be screened by
the nonperturbative dynamics in the hadron level. On
the other hand, we assume that the moments of these
distributions above n = 2 should coincide with the ones
in the perturbative @CD. Thus we can expect that the
gluon in the very small x region is completely diferent
from the perturbative one, but as we go to the large x
region it becomes similar to the perturbative ones. The
latter should be observed as a rise of the F2 as we go to
the large Q region. In our approach, the rapid rise in
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the small x region should be explained not by the pertur-
bative evolution but by the intrinsic heavy sea quarks. It
goes without saying that the gluon is relevant to these
sea quarks, but it is in the nonperturbative sense. Now
among the moments of each sea quark given by the per-
turbative @CD, only the one at n = 2 is increasing with
increasing Q2. In other words, a rise of the I'2 with in-
creasing Q2 at low x is controlled mainly by the moment
at n = 2. Since such a rise is observed roughly below
x 0.1, we try to take into account a typical pertur-
bative behavior below x 0.1 by considering only the
moment at n = 2. Thus our inputs are the following:
The constraint in the x -+ 0 limit given by (22), (27),
and (39) with a 0.1, where a is determined by the P ~
in [6] through the sum rule. The nonperturbative con-
straint for each sea quark at n = 1 given by (36)—(38).
The moment at n = 2 is given by the perturbative @CD.
Then we parametrize each sea quark as

1

(A;)2 —— d2:2:A;(x, Q )

= aB(1 —b, n, + 1) + h, B(2 —k, n; + 1) .

Then Rom (42) and (45), we obtain

(45)

((A') i —~(n') )
(((x,), —aa(i —tn;+ y),) )

creasing function with respect to n, , for the noninteger
n;, we use the value determined by

~(n') = ~([n']) + (n' —
[ '])(~([n']+ 1) —~([n']))

(44)

where [n;] is the largest integer satisfying [n;] ( n;. In
terms of (A;)i, U; D, S, C, B, and T are expressed as

(A„)i, (Az)i, (A, )i, (A, )i, (As)i, and (Az)i, respectively.
The moment at n = 2 is given by

A'(, Q') =(.+h' ')(I- )" /*'+', (41) (46)

I'(I —b)
)'I'( +1 —b)

(43)

Since the right-hand side of (43) is a monotonically de-

where a = 0.1, 6 = 0.0808, and b = 0.5333, and de-
termine 6, and n; to satisfy the above-mentioned con-
straints. Here we 6x b to agree with the next-to-leading
order term in [6]. This is due to the fact that the com-
plex n plane singularity at n = o. corresponds to the J
plane singularities at J = n, n —2, . . . [18]. As is clear,
the distribution obtained in such a way can never be ex-
trapolated above x 0.1.

Now from (41), we obtain

1

(A;)i —— dpi A;(x, Q )—*'+')

dx, + h;B(1 —k, n; + 1),a((1 —*)"' —I)
0 x'+

(42)

where k = 1+ b —b, and B(a, b) is the P function. For
the integer n; we obtain

a((l —x)"' —1)
0 x1+6

((A') i —~(n') k

B(1 —k, n; + 1)
((A;) 2 —aB(1 —b, n; + I))

B(2 —k, n; + 1)
(47)

Thus, by giving the value (A;) 2 we can numerically search
the value n, which satisfies (46), and once we find this,
we can determine h; by (47).

I et us discuss how we determine (A;)2. As already
explained we use here the moment determined by the
evolution equation in perturbative @CD. Since the pur-
pose of this paper is not in the quantitative prediction
but in the qualitative study to see how the nonperturba-
tive constraints match the perturbative behavior, we use
here the evolution at the one-loop order. However since
the mass effect of the heavy quarks can be expected to
be very large we take their effects approximately by us-

ing the momentum scheme procedure to set M = Q in
the Georgi-Politzer formula [19] where M is the scale
parameter. Because the anomalous dimension pqg is pro-
portional to Q2/m~~ for mq )) Q, the evolution of the
top quark can be neglected below Q2 1000 GeV for
the top quark mass parameter mz ) 100 GeV. Hence we
take the effective fiavor number as 5. In this case, the
massless evolution equation is

(A'(Q')) 2 = —,'. (g'(Q')) 2 + —,'o (»A'(Qo) —g'(Qo)) exp(-d»)

(g (Q ))2 = ((I o'2)(g (Qo))2 p2(g(Qo))2)exp( —d2 s) + (a2(q'(Qo))2+ p2(g(Qo))2) exp( —d2 s),

(48)

(49)

where

(q')g=(u. +d. +2 ) A)
i=u, d, s,c,b

(50)

and (g(Q )) is the nth moment of the gluon distribution function at Q2, and n2 ——P2 ——0.4839, d2+ = 0.8986, d2

0, d2 ——0.4638. Here the antiquark distribution is included by assuming A; = A;. To take the mass effect of the charm
and the bottom, we calculate the second moment of them by the equations
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(&.(q')4 = (& (Qo))2 ~()bf(Qo))2 f M Y g (51)

(Ab(Q ))2 —Ab(Qp))2 (g(Qp))2 M Ybg ~10 ~, M (52)

where we consider the evolution only through the gluon and keep the term only up to order g . The anomalous
dimension of p; and the effective coupling g are given in [19] as

—5g2 1 m 4 ( g] + 4m. /M2 —1) 4m4 ]
2 4 lni +

47r2 3 M g] +4m. /M2 (g] +4m. /M2+ ]) M 1+4m, /M2

4m 2 ( /1+ 4m. /M2 —11
lnMs (1 + 4m2/M~)s~~

~ g] + 4m2/M2 + ] r
(53)

and

] ] 1 ( 2 ) (M) 2 (M)
11 — f ln—

~

+ — »~
~

—,' +~'(M') u'(Q'. ) 8 '
& 3 r &Q r 3,- EQ r

1 (2m' ~ 4m2 ( 1+4m' /M +1.1
~ —1

~

1+ ln
+ 4m2/M2 —] r

] (2m2 ) 4m2 ( 1+4m'/Qp+ 11—1
/

1+ 2 ln
1+4m'. /Q' —1)

(54)

where the explicit integrations are done. Here we take
m, = 1.5 GeV and mb = 4.5 GeV, and g (Qp) 4.266
by setting A = 0.2 GeV and Qp

——5 GeV . The mo-
ments (A, (Q ))2 and (Ab(Q ))2 calculated by (51) and
(52) are, in general, overestimated; however, compared
with those calculated by the massless evolution, they are
suppressed enough up to some Q . Hence, as a measure
of the mass efFect, we use (A, (Q ))2 and (Ab(Q ))2 de-
termined by (51) and (52) until they become larger than
those determined by (48).

Initial values of the valence quarks are (u„(Qp))2
0.2706, (u„(Q()))s ——0.085 58, (d„(Qp) )2 ——0.1074, and
(d„(Qp2))s ——0.02668. Initial values of the sea quarks are
constrained by (A;) ) . These (A;) ) depend on P, and this
P in general depends on Q . The important fact is that
this P enters uniformly all the sea quarks. Thus exper-
imental information of the up and the down sea quarks
can in general restrict the allowed value of P. For ex-
ample, an extremely large ~P~ can be excluded. However
we do not have enough experimental information yet to
investigate such a restriction. We just know through the
experimental value of the Gottfried sum rule that they
are asymmetric. Further we do not have theoretical in-
formation yet of this P. Thus we studied the distribution
P =

2p P = 0, 0.2, 0.4, and 0.6 by 6xing the perturbative
evolution. The set of parameters (n;, h;) at Qp

——5 GeV
for P = 0 are given in Table II. We also give these pa-
rameters for other values of )9. In these cases the scale
Q is not clear as explained above.

Here we erst set the value n;, and then determine h; by

(A;) z. The second moments (A;) 2 and (p) 2 under these
initial values are also given. As is clear &om the table,
n~, n„, n, for the difFerent values of P are chosen to keep
the second moments at roughly a constant value. It goes
without saying that such a restriction can be relaxed and
that here we have a large freedom to choose parameters.
Initial values of n, and nb are taken large to express the
threshold eKect due to their masses electively.

nd
h, g

(Ag) 2

(A )g
Ag

h,
(A )2

+C
6

(A )g

hg

(Ab) 2

(~ )~
(~)2

0
15.0
1.75

3.54 x 10
18.0
1.73

2.80 x 10-'
40.0

0.623
5.96 x 10

300
13.0

346 x 10
500
17.2

2.17 x 10
0.528
0.472

3.52

2.76

5.98

3.77

2.35

0.2
18.0
2.33

x 10 3.50
22.0
2.36

x 10-~ 2.73
60.0
1.59

x 10 5.90
300
14.4

x 10 406
500
18.9

x 10 2.53
0.528
0.472

0.4
21.0
2.94

x 10
26.0
3.05

x 10
80.0
2.71

x 10
300
15.7

x 10
500

20.6
x 10

0.528
0.472

0.6
24.0
3.60

3.48 x 10
29.0
3.71

2.79 x 10
100

3.94
5.86 x 10

300
17.1

4.37 x 10
500

22.3
2.71 x 10

0.529
0.471

TABLE II. Parameters n;, h, for the input sea quark dis-
tributions.
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1 1 1

I(x ) = dxF —— dx(I"" + I'" )
Kp Xp

= 2 dx(A, (x, Q') —A, (x, Q'))
Xp

1

+2 dx(Ab(x, Q ) —A, (x, Q )) .
Xp

(55)

A typical behavior of I(xp) in our toy model at
Q2 = 5, 15, 54 GeV for P = 0 is given in Fig. 5.
Here we neglect the contribution to I(xp) &om the re-
gion above x = 0.1 and use the top quark distribution
of nq ——10000. We will first see a small rise in the re-
gion 0.01 & x & 0.1 due to the strange quark. Then
the Battening or decrease by the charm quark follows.
Once the bottom quark begins to contribute, I(xp) in-
creases rapidly and finally it turns to decrease by the
top quark and converges to the asymptotic value —2.78.
Such a large dip-bump structure with a large negative
asymptotic value is typical of our model. In the case
of perturbative @CD without intrinsic heavy sea quarks,
at low Q such as 5 GeV2 we will encounter the mono-
tonic increasing behavior as we go to the small x since
only the strange sea quark contributes, to the right-hand
side of (55). Even if we take into account the charm sea
quark, since it will be produced only through the gluon,
its magnitude will be very small in such a low Q region.
Hence we will again see the monotonic increasing behav-
ior. If Q2 becomes large, extrinsic heavy sea quarks are
produced rapidly. In such a case we will see a dip-bump

i(x)

0.8

x ~ 0 is Q2 independent.
Our analysis in this paper is based on the standard

model with the three generations, hence if the particles
other than the ones in the standard model exist below or
near the top quark mass, our result will change. Within
the standard model, to get the quantitative prediction we
have many things to do. First of all, we need the theory
to determine the explicit Q2 dependence of P. This will
be equivalent to know the Pomeron in @CD. Next we
should reduce the free parameters concerned with the sea
quarks. The sum rule for E3~ for the isoscalar nucleon
target will be helpful in this respect. For example, the
sum rule (40) suggests that we investigate the quantity

structure, but such a behavior is pushed to the smaller
x region compared with our case because of the mass
suppression e8ect in the anomalous dimensions. Further
the asymptotic value will not take a large asymmetric
value since the gluon is Bavor singlet. The fact that in
our case the asymptotic value is negative comes &om the
fact T B C && S. The origin of this large asymme-
try lies in the spontaneous chiral symmetry breaking of
the vacuum.

Prom phenomenology, there is an indication to suggest
existence of the intrinsic heavy sea quark. Many years
ago, the existence of the hard intrinsic charm quark was
suggested [21], and &om then this model has been consid-
ered one of the most hopeful candidates to account for the
charm production data at low p~ in the large xf region
[22). A recent experiment by E769 strongly supports this
picture [23]. Though the intrinsic component suggested
in this model will have little effect on C = (A, ) q since this
value is dominated by the contribution from the small x
region, it surely gives us the idea that the intrinsic heavy
sea quark is not a strange thing. Moreover the hard in-
trinsic component [21] may be dynamically related to our
abundant intrinsic component at low x by some mecha-
nism. The existence of such a mechanism which relates
the low-energy region to the high-energy one is one of
the most important physical messages from the modified
Gottfried sum rule [8,9,24]. This is the physics suggested
by Weinberg many years ago [25]. In Appendix C we give
another discussion which suggests the existence of such
a mechanism.

APPENDIX A

The derivation of relation (1) breaks up into two parts.
The first part is the derivation of the Deser-Gilbert-
Sudarshan (DGS) representation of the current anticom-
mutator. The second part is the study of the condition to
restrict it to the null plane. We explain these parts step
by step in the following. The DGS representation itself
is not popular these days, however, we erst give a brief
review of its derivation focusing on the spectral condition
which plays an important role in these discussions.

Step (0): A review of the DGS representation [11].Let
us take a scalar current J (x), and consider the integral
representation of the matrix element of the current com-
mutator between the stable one-particle state defined as

0.4

—Q.4 do, d expi o.x + p. x G g o.,

I I I ~ I I I I I I I III
0.01 x

(A1)

FIG. 5. I(xp) as a function of xp for q
= 5 (a), 15 (b), 54 (c) GeV where the contribution above
x = 0.1 is neglected.

Since the current commutator is zero for the spacelike
separation, G b is analytic in the lower half-plane in a
complex o, plane. Expressing this analyticity as
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G g(n, )9) = dA exp(iA /4n)H s(A, P),
0

(A2)
C s(2:,p. z)

and introducing the Hilbert transform of H b as

fI e(Ae, )q) = P f dP h e(A', 0),

it is straightforward to show

(A3)

dA d exPi P xhbA iAx A

0

(A4)

where numerical factors are absorbed in 6 b. The mo-
mentum space representation of C b becomes

C e(p q, q ) = f d x exp(iq x)C e(x,p. x)

dg2 d g q+ P
2 P2 6 qD+ PO f4b $2

0
(A5)

Let us now consider the support property of the weight
function h b Any ph.ysical vector satisfies (p q) & m q,
where p = m . We take the set of points satisfying this
condition as the universal set O. The s-channel physical
region is s = (p+ q) & M2 and the u channel is u =
(p —q)

2 & M2. We call the union of the s-channel and the
u-channel physical regions as R, and its complement with
respect to 0 as R. For any point in R, if the integration
path in the (P, A ) plane determined by the b function in
(A5) exists, h s inust be zero there. Thus, by taking a
union of the lines for all points in R, we can see in what
region of P the weight function should be zero. For this
purpose we first define 0 as 0 = A —P2m, and consider
a set of paths generated by 0' = 2P(p q) +q and (p. q)

2 =
m q . The condition for these two curves in the (p q, q2)
plane being tangent to each other is 0 = —P2m2. This
parabola plays a very important role. The integration
path for any point in the set 0 intersects or is tangent to
the parabola. The condition A & 0 required by causality
corresponds to cr & —P2m2. The point determined by

I

the sign function where it changes its sign always lies in
the causality forbidden region 0 & —P m . The next
step is to search the region where the integration path
exists for the points in R. We 6rst note that the path
always passes the point Po ———q2/(2p q) for p q g
0. Let us take the s-channel boundary. At this point
Po ——1—(M2 —m2)/( —q2+M2 —m2). Since M, & m, 0 &
Po& lforq2&0. Ontheonehand, o =M, —m at
P = 1. Thus we see that the paths for p. q & 0, q & 0 in
B sweeps the region P & 1. For q2 & 0, since (p q)2 &
m q, q is bounded as q & (M, —m) at the s-channel
boundary. Thus by using the fact that the path always
intersects or is tangent to the parabola 0 = —P2m, the
region o & 2m(m —M, )P + (m —M, ) is swept by the
point in R. Applying the same kind of discussion to the
u-channel boundary, we finally find that the support of
the weight function lies at least in the regions —1 & P & 1
and 0 & niin[(M, —m), (M„—m)2] & 0.

Step (1): Derivation of the DGS representation of the
current anticommutator. Let us decompose the C b as

&-~(p q, q') = ).(2~)'~'(p+ q —n)(s I& (o) ln)(~l J~(0) Is) —):(2~)'~'(p —
q —~)(pl~~(0) l~)(nl~-(0) lp) (A6)

By taking a kame at rest, p = (m, 0), we see that the first and the second terms are disconnected under the assumption
m & (M, + M„)/2. On the other hand, in the s channel where p. q & 0, the path (7 = 2P(p q) + q2 intersects the
support of the weight function only in the region where e(q + Pp ) = 1. This is because the sign change occurs only
in the region (7 & Pm & 0. H—ence we obtain [11,26]

OO 1

dpi'((q+ pp) —x )a (& P)~(q + Pp ) = ) (2~) ~ (p+ q —~)( I
1

(0)l~)(nlrb

(o)lp) .
0 —1

(A7)

By the same kind of discussion in the u channel we obtain
OO 1

d~~((q+~p)' ~') h(~', ~)~(--(q'+~p')) = ) (2-)'&'(p- q--)(plJ. (0)l )(-IJ-(0)lp) (A8)
0 —1

Equations (62) and (63) give us the DGS representation of the current anticomniutator as

We(p. q q') = /d x exp('q x)(p~(J (x), de(q))~p).

= 2vr dA dPh((q+Pp) —A )h s(A, P) .
0 —1

(A9)
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Step (2): Restriction of the current anticommutator
to the null plane. Restriction to the null plane can be
done by the integration over q with some assumption
for the weight function. To investigate this assumption
we consider

(A10)

where H b denotes C b or TV b. Here we replace the sign
function s(q6+ pp ) in C 8 by e(q+ + pp+) appropriate
to the null-plane formalism. Since the constraint (q +
Pp) —A = 0 is linear with respect to q, no constraint
on P and A2 can be obtained by the integration over q
Then we consider under what condition on the weight
function we can take the limit A —+ oo. Since p+ ) 0
and q+ are arbitrary parameters, we take q+/p+ ) 1. In
this case the sign change occurs at P ( —1. Since the
point of this sign change always lies in the region ~ (
—P m2 and since the integration path 0 = 2P(p . q) + q
always intersects the parabola, it passes the support of
the weight function only in the case p q ) 0. Thus
we can safely set s(q+ + Pp+) = 1. The same kind of
thing holds for the case q+/p+ ( —1, where in this case
p q & 0. After all we find that the weight function should
be h 8(A, p) A ' as A -+ oo, where 8 is an arbitrary
positive number. Since this constraint has no dependence
on p and q, it must hold irrespective of the constraint
lq+/p+l ) 1. Then where is the difFerence between the
current commutator and the anticommutator? We have
investigated only the right-hand side of (A5) and (A9). In
order to get the fixed-mass sum rule we introduce another
assumption on the left-hand side of them. We integrate
TV b or C b over q and change the variable &om q to
v = p q. Then q becomes

on the null lane, we get one equation which expresses the
fact that these parts are zero. This equation contains the
sign function 8(q+ + Pp+). However, as discussed when
we derive the condition for the DGS representation to be
restricted to the null plane, if we take (q+/p+) ) 1 we
can set 8'(q+ + Pp+) = l. By repeating the same kind
of reasoning there, we find that the equation where the
sign function is replaced by 1 holds except at q+ = 0.
Then, since the limit q+ + 0 is the correct one to reach
the fixed-mass sum rule, we can understand the value at
q+ = 0 by this limiting value. Thus we find that in the
current anticommutator the terms corresponding to the
ones which are zero in the current commutator are also
zero. In this way we reach relation (1).

APPENDIX B

(B-1): The sum rule for SU(5). In this case a piece of
the charged weak current corresponding to the third gen-
eration is absent and the Cabibbo-Kobayashi-Maskawa
angles lV„bl and lV, 8l are very small and can be set zero.
In this approximation we obtain the symmetry relation
vrP ~ ——8f Pe~ = 11P,„and the sum rules

18 g& 16pep 3 pe~ 1 (p
pp +p +p)

m
—

11 p ll 2 7 2 7 2 2 )

Ip 18~5 9 (p~p + p~p) 18pep 18pen, (g2)

(B3)

Thus, we find Cp 2 72 and C„=2.46.
(B-2): The sum rule for SU(6). The symmetry relation

is vrP6~ ——12fzP ~ with Pe~ ——
8 P,„. The sum rules

are

l(~ —p q++p q ) —(q )'.
&p+~

(All)
6~6 9Pep Pen 1P(&p +P &p) (84)

Now the fixed-mass sum rule can be obtained by assum-
ing that v integration and setting q+ = 0 can be inter-
changed. If this is allowed, q2 becomes —(q+) 2. How-
ever, as is clear in (All), q2 can take positive values
above some v9 for q+/p+ ) 0. Hence, to allow for this
interchange, we must assume that contributions &om the
positive q regions are zero. Since vo M oo as q+ M 0,
this condition becomes the one as v + oo and is called
a superconvergence relation. It is at this point where
the difference between the current commutator and the
anticommutator appears.

Let us move to the vector current or the axial-vector
current. In this case the DGS representation has many
terms corresponding to different tensor structures. How-
ever, all the discussions in the scalar current case can be
applied. A new feature appears when we are restricted to
the null plane. Let us consider the good-good component
which is equivalent to take the tensor pv as ++. On the
null plane, the DGS representation of the current commu-
tator has many terms which have no counterpart in the
usual current algebra. Hence, by assuming this algebra

Ip 6~6 ]3(P Pp +P vp) 6Pep 4P en
p yg 2 2 5 2 2

(&6)

Thus, we find C„=3.70 and C = 3.44.

APPENDIX C

Here we consider the suzn rules for SU(3) and consider
the efFect of the SU(3) symmetry breaking on the symme-
try relations. Now if we look into the modified Gottfried
sum rule (19), we notice that it depends only on the
quantity P f (dn/n)A3(n, 0). On the other hand, the
relation f p ~ = f~plc1v obtained by the flavor singlet
assumption seems to be violated at the 10—20% level.
The deviation of the value of the Gott&ied sum &om a
naively expected value —is at the 20% level. Hence it is
important to make clear how far we can relax this flavor
singlet assumption.

Let us set
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Ao(n, 0) = Ao(n, 0) cosg+ As(n, 0) sing, 7rPvN = 4f~PxN (C2)

As(n, 0) = —Ao(n, 0) sing+ As(n, 0) cos0, (C1)
f2 P ~ 2(~2cosg+ sing)

f~ Pziv 2~2cos 0 —sing
and assume the contribution of the Pomeron is given by
the term Ao(n, 0). In other words, we consider that
the residue of the Pomeron has an SU(3) symmetry-
breaking piece. Then by comparing the coeKcient of
P I (dec/n)Ao(cr. , 0) in each of the sum rules, we ob-
tain the relations

3P,p PvN

2~2cosg+ sing 4(icos 0+ sin. g)

By using these relations, we obtain

(C4)

6(icos 0 + sing) s dx „-z „„12(v2cos 0 + sing)

2~2cos 0 + sing "
o 2x 2~2cos 0+ sing

(C5)

3(2~2cos0 —sing) s d x,„,„„-„„„3(2~2cos0 —sing)

2~2cosg+ sing "
o x 2~2cos0+ sing

(C6)

3(2~2cos 0 —sing) s dx,„,„„-z „3(2~2cos0 —sing)

2~2cos 0 + sing o x 2~2cos 0 + sing
(C7)

These sum rules give us the relations

C„= s~(2I + 2I~ —IIc), C„= s(2I —I~ + 2I~) .

(CS)

Thus we find that not only the modified Gottfried sum
rule but also the values of C„and C are the same as
in the case 0 = O'. Further by using the experimen-
tal values, we obtain 0 —13 . In this case the sea
quarks need some modifications. Though we de6ne the
mixing angle the same way as in the mixing angle of
the singlet and octet pseudoscalar mesons, it is rather a
surprise that it takes roughly the same value with the
same sign as the canonical value of this mixing angle.
In other words, the mixing angle in our case exactly re-

I

Beets the Gell-Mann —Okubo mass relation. This is the
reQection of the following facts. The lightlike axial charge
does not commute with the generator P because of its
nonconservation. Thus the mass operator P does not
commute with the lightlike axial charge, and the mass
spectrum of the hadron in general contains a chiral non-
singlet piece. This makes it possible to mix the singlet
and the octet. On the other hand, the nonconservation of
the lightlike charge is essential to the divergence of the
sum rule which is related to the Pomeron. Concerned
with this, steinberg gave a very interesting discussion
by using the pion-coupling matrix which is very similar
to the lightlike axial charge [25]. in the SU(2) x SU(2)
model, he related the existence of the Pomeron to the fact
that the hadron mass spectrum has a piece transforming
like the fourth component of a chiral four-vector.
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