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We discuss the averaging hypothesis tacitly assumed in standard cosmology. Our approach
is implemented in a "3+1" formalism and invokes the coarse-graining arguments, provided and
supported by the real-space renormalization group (RG) methods, in parallel with lattice inodels
of statistical mechanics. Block variables are introduced and the recursion relations written down
explicitly enabling us to characterize the corresponding RG How. To leading order, the RG Bow
is provided by the Ricci-Hamilton equations studied in connection with the geometry of three-
manifolds. The possible relevance of the Ricci-Hamilton Qow in implementing the averaging in
cosmology has been previously advocated, but the physical motivations behind this suggestion were
not clear. The RG interpretation provides us with such physical motivations. The properties of
the Ricci-Hamilton How make it possible to study a critical behavior of cosmological models. This
criticality is discussed and it is argued that it may be related to the formation of sheetlike structures
in the Universe. We provide an explicit expression for the renormalized Hubble constant and for
the scale dependence of the matter distribution. It is shown that the Hubble constant is affected
by nontrivial scale-dependent shear terms, while the spatial anisotropy of the metric in8uences
signi6cantly the scale dependence of the matter distribution.

PACS number(s): 98.80.Hw, 11.10.Hi

I. INTRODUCTION

A successful physical theory usually enables us to iso-
late some limited range of length scales, or select a not
too big set of variables, to render the problem tractable
and at the same time preserve its essence. Fortunately,
in many circumstances it is not necessary to resolve the
details associated with each scale, since generally phe-
nomena of each size can be treated independently. For
example, in hydrodynamics there is no need to specify
the motion of each water molecule and yet waves can be
described as a disturbance of a continuous Quid.

There are also problems that have many various scales
of length, that is to say, phenomena or processes where
each length scales contribution is of equal importance. To
handle them one has to take into account the entire spec-
trum of length scales, dealing with fluctuations of almost
any wavelength and consequently many coupled degrees
of &eedom. For example, critical phenomena, turbulent
How, the internal structure of elementary particles, and
confinement in @CD belong to the above class of prob-
lems [1]. We argue here that in gravitational physics we
encounter a problem of a similar nature, namely, the so-
called averaging problem in relativistic cosmology.

Relativistic cosmologies rely on some form of cosmo-
logical principle. The latter is usually a smoothing-out
hypothesis imposed a priori on the distribution of mat-
ter in the Universe. A well-known example is provided by
the Friedman-Lemaitre-Robertson-Walker (FLRW) met-

ric which is assumed to describe the real Universe.
There are at least two reasons why one should be very

careful in doing so. Firstly, observations of the distribu-
tion of matter have shown that the scale at which the
background homogeneity is reached, is probably of the
order of hundreds of Mpc, meaning that locally, i.e. , at
least up to this scale, the Universe is quite lumpy. Conse-
quently, the local geometry is very complex and its nature
not very illuminating &om the point of view of cosmology.
Seen this way, the approach usually taken is to average
out all the matter, i.e., to redistribute them in the form of
a homogeneous perfect Quid and use continuous functions
(e.g. , matter density, pressure) in modeling the Universe,
assuming that they represent "volume averages" of the
corresponding 6ne scale quantities. In doing so, one tac-
itly assumes that such a smoothed-out universe and the
real locally inhomogeneous one behave identically under
their own gravitation. However, it has been stressed in
[2] that the above assumption, although usually taken
for granted, is by no means justi6ed. First of all, Ein-
stein s equations are highly nonlinear, which is why any
averaging process on them2 is far from trivial in general.

If this scale has been reached. at all is still a matter of
controversy.

Moreover, additional care is required since a volume average
of a tensor is not a covariant quantity, unlike scalars.
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Secondly, and this is a remark of a philosophical faa-

vor, most of the observational data are theory dependent;
i.e., their meaning can be interpreted only by assuming
a particular theoretical explanation.

Thus it is of great importance that the very founda-
tions of a cosmological model should be as sound as pos-
sible. In particular, they should be fjI.ee &om assumptions
which may not be warranted.

II. COARSE GjR.AININC IN COSMOLOCY

A possible solution to the averaging problem would be
to explicitly construct a procedure for carrying out the
smoothing process in the full theory. Almost all existing
attempts were concerned with the linearized theory, with
a possible exception of [3] (see also [4]); for a review see
[5]

In [3] a covariant smoothing-out procedure was put
forward for the space-times associated with gravitational
configurations which may be considered near to the stan-
dard ones, generating closed FI RW universes. The pro-
cedure makes use of Hamilton's theorem about smooth
deformations of three-metrics and is adapted for smooth-
ing out an initial data set for cosmological solutions to
the Einstein equations. While interesting in its own right,
this approach seemed rather ad hoc and not yet capable
of resolving the issues of actual limits of validity of the
FI RW models in cosmology.

Now, our hope is that there is a clear and simpler way
to the heart of the problem, borrowing Rom the known
theories and methods of statistical mechanics, based on
the real-space renormalization group (RG) approach for
studying critical phenomena in lattice models [6,7]. Al-
though the usual renormalization trans formations, invok-
ing averaging over square blocks, are designed mostly
with ferromagnetic systems in mind, there are many more
problems suitable for RG methods. These are difBcult
problems where the reductionist approach fails and where
the effective degrees of &eedom of a physical system are
scale dependent. The difhculty of this kind of issue can be
traced to a multiplicity of scales and, moreover, there can
presumably be a gross mismatch between the largest and
smallest scales in the problem. The averaging problem in
cosmology can be looked at and studied as belonging to
precisely this kind of problem. This is our main objective
in this paper.

Some form of RG is active on any system where there
are fluctuations present (they by no means have to be
quantum). This is so since one can integrate the fluc-
tuations out of the physical quantities of interest, e.g. ,
the partition function, and depending on the "scale" up
to which one is integrating the same emerging quantities
are different. The functional relations between them pro-
vide recursion relations between the physical parameters,
the coupling constants, which characterize the physics at
each scale, and this is precisely what RG is all about.

Often a major step consists in ending a way of look-
ing at things. Therefore we stress that the problem we
face with the averaged description in cosmology is effec-
tively a question of how a system behaves under changes

of "scales." As such it is most naturally addressed using
the RG approach, understood here rather as a general
strategy to handle problems of multiple length scales
enabling us to extract the long-distance behavior of the
system by making the scale successively coarser. In cos-
mology, we have curvature inhomogeneities and to con-
sistently tackle this problem we will have to consider a
procedure operating on the metric, not only on or apart
from the matter present.

To provide even more support in favor of the presented
above idea, that RG arguments might be applicable to
the problem of the inhomogeneous universe, let us note
that one can also be guided by scaling ideas. Scaling
is exhibited (approximately or exactly) by many natu-
ral phenomena and mathematical models. The universe,
namely, the distribution of matter in it, does exhibit cer-
tain scaling properties [8,9], of which the power law be-
havior of the two-point correlation function for galaxies,
clusters, and quasars, is a fair example. Scaling, on its
own right, is deeply understood within the underlying
mathematical scaffold which is RG. These are hints there-
fore that one can regard the universe as a gravitational
dynamical system not far from criticality (understood in-
tuitively by analogy with, e.g. , a ferromagnet). Later one
can also try to qualify the precise nature of the critical
behavior within the phase transition context, but this
will not be of our concern in the present paper (apart
from a simplified example in Sec. IV C).

In passing, let us note that interesting results were
obtained in [10] on spherical scalar field collapse and
in [11] on axisymmetric gravitational waves collapse,
which show a surprising scaling and critical behavior
reminiscent of that found in many (second-order) phase-
transition phenomena in condensed matter. They could
be described, we believe, using RG approach again, treat-
ing the Einstein equations as generating a RG Bow on the
space of initial data.

The real-space renormalization techniques are mostly
applicable to discretized models, based on a lattice.
Therefore, we now turn to describing a suitably dis-
cretized manifold model we are going to work with.

A. Discretized manifold model

The approach taken is that of a 3+1 formulation of gen-
eral relativity (GR) [12]. Let us assume that we have a
difFerentiable, compact Riemannian three-manifold with-
out a boundary Z, to be thought of as a particular hyper-
surface in a four-dimensional space-time. Generally, we
will always assume that the three-manifolds we consider
posses certain natural constraints on their diameter, vol-
ume, and curvature (diameter bounded above, volume
and sectional curvature bounded below). The point of
this requirement is that such manifolds of bounded ge-

Although the renormalization procedure might seem purely
formal there are important physical ideas behind it, namely,
that of scaling and universality.
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ometry, or more precisely the corresponding Riemannian
structures, can then be classified according to how they
can be covered by small metric balls (to be defined later).
Moreover, this set of Riemannian structures has some re-
markable compactness properties. This is a classical re-
sult obtained by Gromov [13], related to the possibility
of introducing a distance function, which roughly speak-
ing enables one to say how close Riemannian manifolds
are to each other. The explicit definition of this distance
function is not needed for our purposes, but of particular
relevance to us is the fact that nearby Riemannian man-
ifolds (in the sense of Gromov distance) can be covered
with metric balls arranged in similar packing configura-
tions [14].

In order to define such covering [15], let us parametrize
the geodesics by arc length, and for any point p p E let
dg(x, p) denote the distance function of the generic point
x &om the chosen one p. Then for any given e ) 0 it is al-
ways possible to find an ordered set of points (pi, . . . , piv)
in Z, so that [15] (i) the open metrix balls (the geodesic
balls) Bg(p;, e) = (z e Z(dp(x, p;) & s), i = 1, . . . , N,
cover Z, in other words, the collection (pi, . . . , p~) is
an e-net in Z, and (ii) the open balls Bg(p;, e/2), i
1, . . . , N are disjoint, i.e. , (pi, . . . , piv) is a minimal&-net
in Z (see Fig. 1).

It is fair to say that as a consequence of the compact-
ness properties of the set of Riemannian structures that
we consider, for each "length scale e" there exists a fi-
nite number of "model" geometries which describe, with
an e approximation, any given Riemannian manifold of
bounded geometry. Namely, given a ball of radius ) e
in any Riemannian manifold of bounded geometry there
exists a ball metrically similar (up to an s scale) in one of
the model geometries which does not retain the details of
the original manifold on scales smaller than e. Roughly
speakiag, e is a measure of the typical curvature inho-
mogeneity with respect to the model background. I et us
stress that this is a highly nontrivial result, in the sense
that the metrical properties of the manifolds &om an in-
finite dimensional set are, up to an e scale, described by
the metrical properties of just a finite number of model
Riemannian manifolds.

The e-nets underlying the ball coverings precisely pro-
vide the discretized manifold model. This coarse graining
of a manifold according to Gromov is the most natu-
ral coarse graining one can think of, pertinent for mani-
folds with bounded geometry. This assumption does not
limit the generality of our analysis, which is basically
motivated by a concrete physical problem, whose na-
ture allows us to deal &om the beginning with manifolds
that are already in a certain sense quasihomogeneous (cf.
comments on the solvability of the Ricci-Hamilton Qow,
later on).

In what follows, when speaking of balls we will always
mean geodesic balls here.

B. An empirical averaging procedure

C

FIG. 1. A portion of a xrunimal geodesic balls covering.
The dotted disks are the ej2 balls which pack a given region.
The larger, undotted disks, represent the e balls which provide
the covering.

vol(Z, g)
'

where vol(Z, g) = jZdps and ps is the Riemannian mea-
sure associated with the three-metric g of Z. Since at this
early stage we simply wish to put forward a few elemen-
tary geometrical considerations, we do not specify yet the
choice of the hypersurface Z and we do not attribute any
particular physical meaning to the function f

If the geometry of Z is not known on a large scale,
we cannot take Eq. (1) as an operational way of defin-
ing the average of f From a. more pragmatic point of
view, supposing that we can only experience geometry in
suKciently small neighborhoods of a finite set of instan-
taneous observers, it makes much more sense to replace
Eq. (1) with a suitable average based on the geomet-
rical information available on the length scale of such
observers.

For simplicity, given a finite set of instantaneous ob-
servers, located at the points xq, . . . , x~ F Z, we may
assume that these susceptible to observation regions are
suitably small geodesic balls of radius e, scattered over
the hypersurface Z so as to cover it. In other words, we
assume that (xi, . . . , xiv) is a minimal e-net in Z. Fur-
ther, we denote by U, the corresponding set of geodesic
balls (B~(x;,e)),i = 1, . . . , N. It is important to stress
that N is finite and that it can be uniformly bounded
above in terms of e, of the diameter and of the lower
bound on the Ricci curvature of Z [15].

I et us consider a partition of unity
subordinated to the covering generated by the balls
(B~(x,, s)}. Namely, a set of smooth functions, $;, such
that 0 & (; & 1, for each i = 1, . . . , ¹ the support of
each (; is contained in the corresponding B~(x;,e); and

(;(p) = 1, for all p E Z. Then, according to the
definition of integration over a compact manifold, we can
write (1) explicitly in terms of the geodesic ball covering
as

On the three-manifold Z, the average of a scalar func-
tion f:Z + IR is given as



4396 MAURO CARFORA AND KAMILLA PIOTRKOWSKA

In order to replace (2) with a more manageable expres-
sion, we employ a preferred system of coordinates on the
set of balls (B;) given by the local diffeomorphism

exp:T E —+Z,
i.e., we make use of the exponential mapping

p' —= explexp B;=D, Di ~ +i (4)

where D; = D(x;, e) is the ball in4 T,Z.
On D, we use polar coordinates and. pull back the Rie-

mannian measure accordingly: namely,

p,*(ps) = 8(t, x;)dt C3 dx;,

where dx; denotes the canonical measure (Euclidean vol-
ume form) on the unit sphere D(x;, 1) = Si2 C T, Z and
where dt is the I ebesgue measure on R(t ) 0).

For t small enough one can prove Puiseux's formula

0(t, x) = t" '[1 ——r(z)t + o(t )], (6)

where n = dimZ and r(z) is the Ricci curvature Ric(g)
(at the point z). Notice that we can choose the partition
of unity ((;); i ~ in such a way that for any p C Z,
we have

(('. exp. )(p) =
A; p

and where A;: A —+ B, is a smooth bump function with
the properties 0 ( A;(z) ( 1, for all x E R, A;(z)
1 if and only if d, (O, x) ( 2, A;(z) = 0 if and only if
d, (O, x) & e [d, (0, z) denotes the Euclidean distance in
Rs]. For ease of notation, we shall still denote by (;, the
function (; exp. .

FIG. 2. We can approximate the average over Z by aver-
aging over Euclidean balls chose Lebesgue measure has been
locally weighted through Puiseux's formula. In this drawing,
the e/2 geodesic balls are represented by curved disks on Z,
while the corresponding Euclidean balls are correctly depicted
as three dimensional.

Using these results we have (see Fig. 2)

(;fdps — (;f0(t, x)dx;dt .
B(X;,4) S1

Let us consider the asymptotic expansion with respect
to t [17]

&'«~. = ~-t" (&'f)(z')+ I &((&'f))(z') — *
(&'f)(z') l+o(t')f R(x;)

~(,)
' s " ' ' 2(n+2) ( ' ' 3

where w is the volume of the unit ball of R, B is the scalar curvature at the center of the ball, and 4 the Laplacian
operator relative to the manifold. Since for the chosen partition of unity Ag(z, ) = 1, the above expression reduces to

f(*')+
l (&f)(z') — ' f(*') l+o(t')~„t" t' f R(x;)

gy(~ t) ~Ay x; 2 n+2 ( 3 j (10)

Substituting f = 1 in the above formula we get

The transition from (Z, g), at a given moment of time to,
to a tangent space parallels the prescription in Riemannian
geometry for measuring [16]. Let U be a given neighborhood
of an instantaneous observer in Z and suppose it is so small
that there is a neighborhood A of 0 g T Z such that exp
A(C T Z) —+ U(C Z) is a diffeomorphism. One can then
replace the considerations in (U, g) by those in A (with the
Riemannian measure pulled back) via exp~ . Namely, we
can say that an instantaneous observer in (Z, g) observes the
universe with the help of the exponential mapping, which just
means projecting structures from an open neighborhood U (

Z of x by exp~ and treating them as structures on T Z.

a(..f.t) E~ ~~(z')

(
R(z') + o(t')

I (»)6 n. +2
which yields for the asymptotic expansion of the volume
of a geodesic ball,

vol(H(z, , t)) = ~„t"
l

1 — ' t + o(t ) l
. (12)

R(z;)
6(n+ 2)
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According to these results we can write, to leading or-
der

~i I. 6(n+2)

where f, = f(x;). This expression suggests the consider-
ation of (f), as a suitable scale-dependent approximation
(f)~(s) ~

There are certain problems lurking that we have to
clear up. Obviously, there are "unwanted" details afFect-
ing this averaging over the manifold associated with a col-
lection of geodesic balls. The important question to ask
is what happens to the average (f), when we change the
length scale represented by the radius of the balls. De-
pending on whether we are actually increasing or decreas-
ing it, respectively, less or more detail of the underlying
geometry will be felt by the average values. The natu-
ral philosophy is that over scales big enough, no details
should be discerned since the homogeneity and isotropy
prevails. This is the reason why on constant curvature
spaces averaging is well defined, since there one can move
the balls freely and deform them, but by so doing no new
geometric details that measure the inhomogeneities will
be felt in the averaged values of quantities we are inter-
ested in.

A natural question to ask now is how the geometry,
specifically curvature inhomogeneities, should depend on
scale so that the average (f), over the balls is scale inde-
pendent, or equivalently, how do we have to deform the
geometry in order to achieve the scaling limit when size
of the balls matters no more?

Since we are interested in discussing how (f), behaves
upon changing the radius of the balls (B(x;,e)), let us
consider the average (f)„+„,with rl a positive number
with g/ep (( 1. Upon expanding (f),,+„ in q, we get to
leading order [o(ep) in ep, and o((g/ep) ) in rI/ep],

(f)..+. = (f)..+,[(&f)..]".—" (14)

+3 „+2 [(R) .(f)..—(R&)..]"o—, (»)

d« —(f)..+~i~y..=p — ((&f) .]dg n+2

+ „[(R)"(f)" —(Rf)"]

(17)

to leading order. In the following sections we will discuss
the consequences of these formulas and the connection
of our averaging procedure with the Ricci-Hamilton fIow
(see Fig. 3).

where (f)„is the average of the function f over the set of
K instantaneous observers U„, (with similar expressions
for (R)... (Rf)«, and (Af),, ). Thus, under a change of
the cutofF we can write

1I~ii mt'

~
',.' I . ,: '.)~,

e

~ 0 ~ P

FIG. 3. The local average of a function f over a geodesic
ball B(x, ep) feels the underlying curvature of the manifold
through Puiseux's formula. In particular, in passing from
B(x,ep) to the larger ball B(x,ep+ g) we get correction terms
which depend on the 8uctuations in curvature.

III. THE RENORMALIZATION GROUP VIEW

A. Block variables and recursion relations

The real-space RG technique is based on the recursive
introduction of block variable8. A method of "blocking"
is trivial to introduce on regular lattices. In particular,
in the case of the Ising model (two-dimensional) it con-
sists of a subdivision of the spin system into cells, which
supposedly interact in a similar way as the original spins.
The can be done by introducing the block-spin variables
via the majority rule or decimation procedure [18). The
behavior of blocked lattice on large scales is equivalent to
the behavior of the original lattice corresponding to a dif-
ferent temperature. The slopes of the parameter's surface
close to the critical fixed point determine the macroscopic
characteristics of the model (see, e.g. , [18]).

In the context of the problem we are considering, the
application of RG method forces us to invest some ana-
log of Kadanoff's blocking (block-spin transformation)
applied to the geometry itself. This appears to be a dif-
ficult problem since in a general case when the geom-
etry is curved the "lattice" itself takes on a dynamical
role. Moreover, since the manifold Z we are dealing with
is compact (closed, without boundary), we must imple-
ment a renormalization group strategy in a finite geome-
try, and thus the relevant phenomena are here related to
finite size scaling. Roughly speaking, the size of our man-
ifold is characterized by a length scale, say I (actually
the volume, the diameter, and bounds on curvatures),
which is large in terms of the microscopic scale (the ra-
dius of the typical geodesic ball coverings we shall use in
the blocking procedure). A continuous theory, describing
the (universal) properties of the field f on Z, arises when
the correlation length associated with the distribution of
f is large (of the order of L, or bigger). This being the
underlying rationale, let us proceed and be guided by the
formula Eq. (17).

Let us consider our system as nearly infinite, i.e. , the
manifold E divided by the collection of the geodesic balls
of radius e—:(m + 1)E'p for m = 0, 1, 2, . . . , and where
eo, the chosen cutoff, is much smaller than the typical
length scale associated with Z (this length scale can be
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r

rJ

Ns(m, m+1) open sets (B(xs, e +i))fl(B(x~, e )), then
the above de6nition of block variables can be written
recursively in terins of the values the function f takes
correspondingly to balls of larger and larger radii. To
this end, let us consider again the partition of unity
((s,)s—] iv&(p ~+i) but now subordinated to the cover-
ing of the generic enlarged ball B(x&, e +i), induced by
the geodesic balls (B(xs ep)). Namely, a set of smooth
functions such that: 0 ( (s ( 1, for each h; the support
of each (s is contained in the corresponding B(xs ep);
and g&(p, (p) = 1, for all p E B(xs, e +i).

Under such assumptions, the block variables vP (k; f)
can be written recursively as

FIG. 4. The intricate but symmetrical intersection pattern
of an array of e/2 balls in the 2D plane. Here, the e/2 balls
are dotted while the overlapping e balls, providing the cov-
ering, are the dashed circles. The solid circles and the arcs
of circles describe the intersection pattern of a —e ball. On
a curved manifold of bounded geometry, the pattern is more
complicated and not symmetrical at all. Nonetheless, one may
easily obtain a recursive definition of blocking by exploiting
a partition of unity argument, explained in the text.

identified with the injectivity radius of the manifold) (see
Fig. 4). Each ball will be labeled by k in the sequel
and the original geodesic packing covering is for m = O.
We can introduce this way a convenient notation for the
integral of the generic function f over the ball B(xj„e )
as

(k; f)—: f dps,B(*„.)

which can be seen as the block variable since it allows
us to eliminate from the distribution of the field f all
Buctuations on scales smaller than the cutoK distance

We wish to emphasize that if the geometry of the
ball B(xs, e ) is not flat, then the definition of Q (k; f)
can be interpreted as that of a weighted sum over a Bat
ball, namely,

(k; f) = fe(t, x)dt g dx,
exp —1B(e )

@-+i(h f) = (k;f) .

Indeed, we have

Wi(h;f) = f4,
B(ya, ~1)

Np, (0,1)

B(»i«)
N„(o,i)

) vtp(k; f)

4f dp,

and

A(i;f) = f dog
B(z~ icy)

N, (i,2)

B(yp, ,e1)
Gf dp,

N, (&,2) N&(o, x)

= ): ). B(*.,")
N&(~, 2)

) y(h f),

66,f dp,

Vp(k;f) = (sf dV, ,
B(»,«)

N„(m, m+i)

(20)

(21)

where the weight 0(t, x) is provided by Puiseux's formula
Eq. (6).

If we consider the covering of B(xs, e +i) induced
by the geodesic balls (B(x~,e )), i.e. , the collection of

where we have exploited the fact that the functions
((s(,)(p) = 0, except for a finite nuinber of indices (k, i),
and g& P,. (s(;(p) = 1, for all p 6 Z. The above expres-
sions readily generalized for every m (see Fig. 5).

More explicitly, we can write these block variables as

/'A(f)(h) —B(h) f(h)/3i

Notice that in terms of the block variables @ (k; f) we can rewrite the empirical averaging Eq. (2) as
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(f) (@ ) = iv(" )) vol[B(xi„e )]
(24)

where N(e ) denotes the number of distinct B(xr„e ) balls providing a minimal e covering of the manifold Z.
Thus, when m is sufficiently large, the variation in (f), (@ ) under a block transformation @ (k; f) -+ g +i(h; f)
is given (to leading order) by

(f) .(@-+i)—(f) (@ ) = „+2(&f). &' +, + 3(„~2)[(R) (f) —(Rf) ]&' (25)

The above choice of block variables brings out the cou-
pling between averaging a scalar field over a manifold
and the presence of Buctuations in the curvature of the
underlying geometry.

In order to be more precise, let us assume that the vari-
ables f (k) are randomly distributed according to some
probability law P((f (k) })(later on we shall come back
to this point with a definite prescription). Upon blocking
the system and thus renormalization the variables f(k)
by increasing the scale size, the probability distribution
P((f (k) })induces a corresponding probability distribu-
tion on the variables @,viz. , P((@ (k; f)}).

From Eq. (20) it is clear that if the geometrical prop-
erties of any two balls, B(x;,e-) and B(x~., e-) [with
B(x;,e - ) 8 B(x~, e - ) = P] are not correlated, then the
corresponding block variables g (i; f) and @—(j;f) are
uncorrelated. Such length scale L = e — characterizes
the correlation (or persistence) length of the manifold
(Z, g). It is a measure of the typical linear dimension of
the largest ball exhibiting a correlated spatial structures.
This correlation length can be seen in close analogy with
the usual correlation length in condensed matter systems.
It depends there upon the coupling constants, in partic-
ular upon temperature, and diverges to infinity at the
phase transition point.

Since g plays here the role of a running coupling, or
if you prefer, of "temperature, " the existence of a finite
correlation length corresponds to a rather "irregular, "
crumpled geometry (as seen on scales of the order of I),
or, equivalently, a high temperature phase of our system.

According to the central limit theorem it follows, for
m large enough (e )) I), that the block variables

(k; f), being the sum of uncorrelated variables, are
normally distributed (let us say around zero, for simplic-
ity) with a variance

This shows that by rescaling the block variables
(k; f) according to

y (k;f) =[N("-)]-'~'y (k;f), (28)

dP((P })= (dP (k; f)(2vrg)

xexp[ —P (k; f)/2g]} . (29)

The above remarks, paradigmatic of the real space
renormalization group philosophy, show that the defini-
tion of a sensible blocking procedure, in our geometrical
setting, consists of a transformation increasing the scale
size, realized by passing from the variables f(k) to the
variables Q (k; f) (namely, by taking the average over
all values of f in a larger and larger ball), followed by
a rescaling obtained by dividing @ (k; f) by a suitable
power of the number N~"' & of elementary 6'p balls con-
tained in the e ball considered (for random geometries
this power is 1/2).

Following standard usage, and in order to arrive at
an interesting geometrical notion of blocking, we assume
that for a generic metric g this rescaling follows by di-
viding vtr (k; f) by [N&"' )),where w will in gen. eral
depend on m. Thus, the rescaled blocked variables of
relevance are

(k. f) [N(cP)rn)] —!!!!!
@ (k. f)

we get new block variables with a finite variance as m —+
oo, and for random metrics (Z, g) we can write (see Fig.
6)

Es(@' (~ f)) = N" 'X,

dP((@ })= (dvP (k f)(27rN(" &y)

[—@' (k; f)/2N(" -) -]}. (27)

where Ep(. ) denotes the expectation according to the
probability law P((@ }),y is related to the variance of
the variables f(k), R(k); N&"' ) denotes the number of
eo balls in the m ball (x;, e ).

Thus, irrespective of the details of the local distribu-
tion of the random variables f (k) and R(k), we can write,
for the distribution of (g (k; f)}P over (Z, g),

FIG. 5. The intersection pattern of a 2e ball B(x~, 2&) with
five e balls B(xi„e). The 2e ball is represented by a dotted
disk, while the e balls are represented by solid circles. The
white disks represent the packing of B(x~, 2e) with c/2 balls.
The standard representation of the integral over B(x~, 2e)
through the partition of unity subordinated to the B(xp„,, e)
covering, yields the recursive relation @ +i(j) = P„@ (h).
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In fact, since in the present epoch the universe is
mainly matter dominated, i.e., the pressure can be safely
neglected, it would be justified to start our analysis with

Tab = P&ab+ Ja&b+ Jba ) (34)

FIG. 6. Even if the function f is constant over Z, its aver-
age values over the geodesic balls, B(xi, c) and B(x2, e), are
generally uncorrelated owing to the random Quctuations in
the geometry of the balls.

for the stress-energy tensor. Even the terms involv-
ing the momentum density can be eliminated if we pick
up a sensible slicing Zq (the comoving frame), provided
that the cosmological matter fluid is an irrotational fluid
in equilibrium. In any case, wishing to maintain the
following discussion to a suKcient degree of generality,
without particular restrictive assumptions on the mat-
ter sources, we assume in our analysis that the matter
energy-momentum tensor has the perfect Quid form

+ab = P~a&b + Ja&b + Jba + gabP y

The value of cu will be fixed by the requirement that,
as m ~ oo, and for some (critical) metric g„;t (in general
for an open set of such metrics), such normalized large
scale block variables have a limiting probability distribu-
tions with a Gnite variance. Namely,

Notice that if (Z, g) is a nice manifold, e.g. , a constant
curvature simply connected three-manifold, we are obvi-
ously expecting that the corresponding u is

In general, we can assume that there is a set of criti-
cal metrics and a corresponding u, such that the above
requirements Eq. (31) are satisfied. Such critical met-
rics are not necessarily constant curvature metrics and
the corresponding ur is not necessarily 1 (one may con-
jecture that 1/2 ( u ( 1, as happens in the renormal-
ization group analysis of many magnetic systems). At
this stage, this is only a tentative assumption in order to
arrive at an interesting concept of geometric renormal-
ization group in our setting. Later on, we shall see tha, t
such assumptions are justified by exhibiting examples of
such nontrivial metrics.

IV. AVERAGING MATTER AND GEOMETRY

Until now, our discussion has addressed mainly geo-
metrical issues and the function f entering the cutoff de-
pendent averaging (f), was not specified. Now we wish to
apply the obtained results to the averaging of the matter
sources, namely, the matter density p, the spatial stress
tensor 8 b, and the momentum density J, entering in
the phenomenological description of the matter energy-
momentum tensor with respect to the instantaneous ob-
servers comoving with Z, viz. ,

+ub Pab + Jab + Jba, + ~ab

where u. is a unit, future directed normal to the slice
Z(u u = —1).

with a pressure p which is a priori not vanishing, and

where g b is the three-metric of Z, namely, g b
——g b +(4)

n nb, g b den~ting the space-time metric.
As argued in the preceding section, smoothing out the

matter sources as described by a set of instantaneous ob-
servers (represented by the three-dimensional hypersur-
face Z) means eliminating from the distribution of such
sources on Z all fluctuations on scales smaller than the
cutoK distance e, leaving an effective probability distribu-
tion of fluctuations for the remaining degrees of &eedom.
The underlying philosophy is that this effective distri-
bution has the same properties as the original one at
distances much larger than s (i.e. , for fluctuations with
wavelengths much larger than e).

In order to implement this idea along the geometrical
lines discussed in the preceding section, we first need to
specify better what we mean by the assignment of a col-
lection of instantaneous observers (endowed with clocks)
on Z. Since we are adopting a Hamiltonian point of view,
such observers are specified by the assignment, on the
(abstract) three-manifold Z, of the lapse function a and
the shift vector field o.'. The former provides the local
rate of the coordinate clocks of such observers, while the
latter is the three-velocity vector of the observers with
respect to the set of instantaneous observers at rest on
Z.

The macroscopic variables of interest characterizing
the matter sources are in the present &amework, the mat-
ter density p, and the momentum density J. Actually, it
would make more sense to consider the cosmological fluid
phenomenologically, described by a pressure p, a baryon
number density nb, energy density p, specific entropy 8,
and temperature T; such variables being related by

The fact that we are adopting a stress tensor with a nonva-
nishing energy Hux can be traced back to the observation that
even in an exact k = 0 or k = +1 FI RVf universe there can be
a nonzero particle Qux tilted with respect to the frame of the
fundamental observers, even though T g has the perfect Quid
form. This is possible if the inacroscopic quantities (e.g. , a
particle 6ux) are derived from kinetic theory with anisotropic
distribution function f(x', p ) [19].
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dP = flbdh —77,bT ds

p+p
Ab

(37)

where 6 is the specific enthalpy. However, for simplicity,
we shall in the sequel consider a barotropic fluid.

Thus, the field f characterizing the matter sources, as
described by the instantaneous observers on Z, is given
by

f =np+n'J;. (38)

Notice that 2np(p) is the Hamiltonian density of the
fluid in the Hamiltonian formulation of Taub's variational
principle for relativistic perfect Huids [20]; we also assume
that the dominant energy condition holds (see Fig. 7).

The averaging of the matter sources along the lines
described in the preceding section would then re-
quire considering a finite set of instantaneous observers,
(x, . . . , xiv}, located on K and setting a standard for the
cutofF distance eo over which the (experimental) distri-
bution of matter sources [i.e. , the probability that the
matter variables, p(i) and J(i), conform to a given dis-
tribution p(i)dp, J(i)dJ] is determined. Then we proceed
with the blocking prescription for eliminating unwanted
degrees of &eedom and consider the behavior as the av-
eraging regions become larger and larger.

We may decide to treat the Riemannian geometry of
Z as uncoupled with the matter sources if we are simply
interested in smoothing out the sources, or if we wish to
consider fluctuations of the matter as essentially uncou-
pled to the Quctuations in geometry. Namely, the curva-
ture Quctuations appearing in the definitions of the block
variables, Q (k; f) and P (k; f), can be thought of, un-
der appropriate circumstances, as independent random
variables with a given distribution.

In general, however, the sources are coupled to the
gravitational field, and we ought to treat the full dynam-
ical system, the cosmological fluid plus the geometry of
E, in the procedure of blocking. Moreover, we should
bear in mind that without taking explicitly into account

the backreaction of the geometry, one cannot really pro-
vide a reasonable averaging procedure for the sources.

In order to do so, we consider for a given cutofF distance
eo, the variables p(k) and J(k) associated with a mini-
mal geodesic ball covering (B(xg, eo)}& i. The change
of the cutofF is naturally realized by considering balls
(B(x~, e = (m + 1)eo)}with m = 0, 1, . . .. The block
variables, $0(k; p, J) and @ (k; p, J), are defined to Eq.
(20) with f given by Eq. (38). This transformation can
be seen as thinning out the degrees of freedom which is
at the heart of any coarse graining.

The original cutoB eo is chosen to set the scale over
which general relativity is experimentally verified and it
can be taken as, say, the scale of planetary systems. We
can thus safely assume that the Einstein field equations
hold on that scale. It is, however, rather impossible to
provide a mathematical model of the distribution of mat-
ter in the universe going down to such fine scales; besides
this task would be impractical. What one does instead
is to use continuous functions assuming that they rep-
resent appropriately "volume averages. " The results of
such an averaging in an inhomogeneous medium obvi-
ously depend on the scale. The point is that if the Ein-
stein equations hold on the scale where they have been
veri6ed (here taken to be that of the planetary scale),
then they do not seem to hold a priori on larger, cosmo-
logical, scales that require averaging. To see this, note
that the Einstein tensor G„, calculated &om an "aver-
aged" metric g~, cannot be equal to the Einstein tensor
G„„which was first calculated &om the fine-scale metric
g„„and then averaged. This is so due to the noncommu-
tativity of "averaging the metric" with calculating the
Einstein tensor being strongly nonlinear in the metric
components.

Below we shall assume a Hamiltonian point of view.
Then the probability P((p(k), J(k)}) that the matter
variables, according to the records of the instantaneous
observers (B(xy, e); o.(z~), n'(xg) } in Z, take on some
particular set of values (p(k), J(k)}is given by the equa-
tion (we set c = 1, and numerical factors are arranged
to get Einstein's gravitational field equations in the form

Q
&

—ig4&R~4l = 8vrGT ~ where G is Newton's constant),

1
&(&@o(k;p, J)},.. ., ) = — p[—II((p(k) J(k) })1

(39)

where Z is a normalization factor, and H((p(k), J(k)})
is the Hamiltonian associated with the matter variables

p and J. Namely,

~((~.(k;,J)}. ) =
pe[x—(o.p+ n" gJ)„]

'

FIG. 7. The matter distribution p, J, the lapse function n,
and the shift vector 6eld o. associated with the instantaneous
observers on Z. Here, n denotes the four-dimensional unit,
future-pointing, normal to Z. The vector field o,n+n connects
the corresponding points in the two infinitesimally close slices
Z and Zhg.

where P &
. . denotes summation over all possible

p, J
configurations of the matter variables p and J that
can be experienced by the instantaneous observers,
(B(xj„e);n(xy), n'(xi, )}in Z.
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The validity of general relativity at this scale implies
that this Hamiltonian is a part of 'RADM((p(k), J(k) j),
the Arnowitt-Deser-Misner (ADM) Hamiltonian, associ-
ated with the data of the three-geometry g b of Z, its

I

conjugate momentum vr b and of the matter variables p
and J, evaluated in correspondence with the (B(xy, e)j
approximation associated with the net of points (xA, j.
Namely,

RQDM ((p(k) ) J(k) j) ~~
—(CX 8(g) ir) G) p) + & Rh(g) 7I ) G) J)) ) Vol(B(x' E) ) (41)

where

'R(g, ir, G, p) = [det(g)] ' '[~ 7r i, ——,'(~ )'] —[det(g)]'~'R(g) + 8vr[det(g)]' 'Gp (42)

'R~(g, 7r, G, J) = —2ir .~ + 167r[det(g)] ~ GJ (43)

and where the momentum conjugate to the three-metric g b is given in terms of the second fundamental form K b of
the embedding of Z in the resulting space-time, as

ir = [det(g)]'~ (K —K;g ) .

We wish to recall that the lapse and the shift appear in the Hamiltonian as arbitrary I agrange multipliers (their
evolution is not specified by the equations of motion), and as such they enforce the constraints

1
'R(g, ir, G, p) = [det(g)] '~ ir m. i, ——(ir ) —[det(g)]'~ B(g) + 8~[det(g)]'~ Gp = 0 (46)

'8 (g, ir, G, J) = —2ir .s+ 16ir(det(g))'~ GJ = 0 .

(46)

As is well known, these constraints are related to the
invariance of the theory under the (four-dimensional) dif-
feomorphisms group of the space-time resulting from the
evolution of the initial data satisfying them. The mo-
mentum constraint 'R (g, vr, G, J) = 0 generates the (spa-
tial) difFeomorphisms into Z, while the Hamiltonian con-
straint 'R(g, ir, G, p) = 0 generates the deformation of the
manifold Z in the resulting space-time, i.e., the dynam-
ics. (Note that such deformations can be interpreted as
four-dimensional difFeomorphisms only after space-time
has been actually constructed. )

The Hamiltonian 'RADM((p(k), J(k) j), apart from the
lapse and the shift, depends on the three-metric g b on
Z and its conjugate momentum vr b, the gravitational
coupling G, and on the confIguration which the matter
variables, p(k) and J(k), take on the set of instantaneous
observers, (B(xr„e);n(x~), n'(xy) j, chosen to describe
the distribution of matter at the given length scale e.

The basic question to understand is how the block
transformations

(&-(»p J)j ~(@-+i(»p J)j
followed by rescaling, afFect the Hamiltonian associated
with the matter variables p and J, and then discuss how
this in turn afFects the full Hamiltonian 'RADM.

Starting &om the probability distribu-
tion P((@e(k;p, J)ji iv) we can inductively define the
probability distribution Pl + l((vP +i(k; p, J)j) of the

block variables (vP +i(k; p, J)j (and of the correspond-
ing rescaled variables (@ +i(k; p, J)j). Since the block
variables (g +i(k; p, J)j are recursively obtained from
the knowledge of the block variables at the mth stage,
(vP (k; p, J)j, the distribution Pl + ~ (vP +i(k; p, J)j)
only depends on the knowledge of Pl ((Q (k; p, J)j).
We can formally write

P +'(8-+ (k J)j) = ). P' '((@-(k»J)j)
(Q (Ic;p,J)

(48)

where the sum is over the probabilities of all the con6g-
urations (g (k; p, J)j consistent with the configuration

+i(k; p, J)j of the block variables.
As usual, this allows us to de6ne the efFective Hamil-

tonian for the matter variables after m iterations of the
block transformation, according to

P' '((&-(k p J)j) =
Z, , exp[—H' '((&-(k p J)j)]

1

(49)

where

Zc-)—
(A:;p,J))

Such Hl l ((@ (k; p, J)j) are defined up to an addi-
tive constant term (e.g. , [18]). If we also stipulate, as is
standard usage in the renormalization group approach,
that the efFective Hamiltonian Hl + ~((@ +i(k; p, J)j)
takes the same functional form as H~ l((@ (k; p, J)j),
i.e., if
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exp[ —(np(-+') + nhZ(-+")
(51)

exp[ ( op(Tel+1. ) + o,h J( )
)

then this indeterminacy can be transferred to the ef
fective matter variables p( + ) and J( + ), in terms of
which H( +i) ((g +i (k; p, J))) is defined.

It is immediately checked that such effective matter
variables are defined by Eq. (49) up to the transforma-
tions

(m+1} ~ (m+1} + h )

g(m+1) ~ g(m+1) + (52)

where h and v are, respectively, a scalar function and a
vector Beld defined on Z.

Among the various normalization conditions that we
may adopt, in order to avoid the indeterminacy con-
nected with Eq. (52), the natural one comes about by
requiring the divergence and the Hamiltonian constraints
to hold at each stage of the renormalization. This being
the case, upon coupling matter to the geometry, the lapse
o. and the shift o.' maintain their role of I.agrange mul-
tipliers enforcing the (four-dimensional) diffeomorphism
invariance of the theory.

In this way, the renormalization is set up so that the
constraints, if initially satisfied, will remain satisfied at
every renormalization step. The three-inetric g (and the
second fundameiital form), in its role of running cou-
p/ing describing the interaction between matter and ge-
ometry, is then governed through (Coulomb-like) effects
that are expressed by these constraint equations. In this
sense, the Coulomb-like part of the gravitational interac-
tion is driving the renormalization mechanism, and such
requirements imply that the full effective Hamiltonian
(matter plus geometry) takes on the standard ADM form
pertaining to gravity interacting with a barotropic Huid
at every stage of the renormalization (see Fig. 8).

According to the remarks above, we can consider as
an independent parameter in the (effective) ffuid Hamil-

tonian H( )((@ (k; p, J))) the three-metric g b of the
three-manifold Z, whereas the matter density p( ) and
the current density J( ) are at each stage connected
o g &

and K b by the Hamiltonian and divergence
constraints that hold at each stage. Then the effect of
the renormalization induced by the blocking procedure

(k; p, J)) —+ (vP +i (k; p, J)) and the corresponding
rescaling can be symbolized as a nonlinear operation act-
ing on the metric (g b ) so as to produce the metric

(m+X)
(g( b) ), i.e. ,

FIG. 8. Given a probability law, according to which mat-
ter is distributed at a given length scale (say, the planetary
scale), we can get the corresponding probability distribution
obtained by averaging the matter variables over regions of
ever increasing scales. The resulting effective Hamiltonians
are defined up to additive constants which acct the renormal-
ized mass density and the renormalized momentum density.
Such indeterminacy can be naturally removed by enforcing
the Hamiltonian and divergence constraints at each step of
the renormalization procedure.

One moves on such trajectory by discrete jumps. How-

ever, in what follows we shall replace such discrete dy-
namical system by a smooth dynamical system, describ-
ing renormalization of the parameters (g~b) and (K~b).

The deformation of the initial data set for the Ein-
stein field equations, symbolically denoted by 'R above
in Eq. (53), realizes in fact a forvnal (at least 'at this
stage) mapping between the initial data sets for the field
equations. As we have seen above, the renormalization
acts in such a way that at each step the deformed data
satisfy the constraints. The time evolution, in turn, of
any such data set generates a one-parameter family of so-
lutions to the Beld equations which interpolates between
the initial inhomogeneous space-time to be averaged-out
and its renormalized (deformed) counterpart.

(g(ab) ) (g(ab) )
(m+1) (m) (53) A. The Ricci-Hamilton Bow

whereas the renormalization of the second fundamental
form K( b) is generated by the linearization of Eq. (53),
as will be discussed in Sec. V.

This way, this normalization transformation R defines
a trajectory in the space of Riemannian metrics of Z.

In order to replace the discrete 'R, describing the effect
of renormalization of g g, with a continuous Bow we can
start by discussing some geoxnetrical implications of Eq.
(17). According to the renormalization group analysis
of the preceding section, they follow by considering the
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average (f), as a functional of the metric and thinking of
the metric g b as a running coupling constant, depending
on the cutoK In this connection, it can be verified that
we can equivalently interpret Eq. (17) as obtained by
considering the variation of (f), under a suitable smooth
deformation of the background metric g b, rather than by
deforming the (Euclidean) radius of the balls (B(x,, e))
(see Fig. 9).

As a matter of fact, we can equivalently rewrite the
second term on the right hand side of Eq. (17) as

(54)

where D(f),Bg s/Brt denotes the formal linearization of
the functional (f), in the direction of the symmetric two-
tensor Bg s/Bq, and where

mined up to a constant factor), the renormalization of
the matter fields is intrinsically tied with the renormal-
ization of the three-metric.

The invariance of the long distance properties of the
matter distribution, under simultaneous change of the
cutoK e and the parameter g b, can be expressed as a
difFerential equation for the efFective Hamiltonian Q(p, J)
(actually for the partition function associated with this
effective Hamiltonian), namely,

+&-~(g)
I ) e»[-&(~ J)] =oB B

Be Bg~s j
where P s (g) —:eB/Beg s is the P function associated with
(58).

Recall that 'R(p, J) is explicitly provided by (in the
given approximation)

Bg b(g) 2= -(&(~))g-~(~) —»-~(~) Q(p, J) = (np(p) + n'J, ),) vol(B(x~, e)), (59)

R g(rj) being the components of the Ricci tensor
Ric(g(g)), and (R(il)) is the average scalar curvature
given by

(B(g)) = R(il)dP„.
1

Indeed, the linearization of (f), in the direction of the
generic two-tensor Bg s/Brj is provided by

gab 1 ab '9 1 ~b '9
D(f)e = fg gab (f)e g gab

E 6

(57)

so Eq. (54) follows, given the expression Eq. (55) for
Bg~g/&g.

According to what has been said in the previous para-
graphs, the efFective distribution of matter sources, ac-
cording to a set of instantaneous observers (B(z;,e)}, is
characterized by the underlying three-geometry thought
of as an effective parameter depending on the cutofF e.
Since the Hamiltonian and the divergence constraints
hold at each stage of the renorrnalization procedure (they
fix the efFective Hamiltonian which otherwise is undeter-

where the average (ap(p) + o."J,), is a functional of the
three-metric g b, here thought of as the running coupling
constant.

Thus, in order that Eq. (58) is satisfied, it is sufhcient
that

B B
eB +—&-s(g) B l (~J(s)+ ~'J'). = o.

BE Bg~s )

0
gs = P ~(—g)86

is exactly provided by Eq. (55), namely,

(61)

& i(g) = = —(&(&))g s(&) —2& s(&) (62)
Bg s(il) 2

[Note that +&vol(B (xh, e) ) remains invariant under
(55) ]

The renormalization group Eq. (60) states that in-
creasing the cutoff length (i.e. , the radius of the averag-
ing balls) &om e to e~e, while deforming the metric g s
by fiowing along the P function P b(g) for a parameter
time p, has no net eKect on the long distance properties
of the considered system (see Fig. 10).

According to the above remarks, and Eq. (24), it can
be verified that the P function yielding for Eq. (60),
defined by

FIG. 9. Upon enlarging the ball, fram e to e~~, ere alter the
average value of the matter variables p and J (even if p and J
do not vary appreciably), since there can be strong curvature
Suctuations in the annulus B(x,e~s)(B(x, s)

where the parameter g is the logarithmic change of the
cuto8' length ~.

Since the manifold Z is compact, Eq. (55) has to be
interpreted as a renormalization group equation in a 6-
nite geometry, and thus the relevant phenomena are here
related to finite size scaling (see, e.g. , [21]). A contin-
uous theory, describing the (universal) properties of the
cosmological sources and of the corresponding geometry,
may arise when the correlation length associated with the
distribution of cosmological matter is of the order of the
size of the underlying manifold.

The metric flow Eq. (55) is known as the Ricci-
Hamilton fiow [22], studied in connection with the quasi-
parabolic Bows on manifolds; quite independently it has



52 RENORMALIZATION GROUP APPROACH TO RELATIVISTIC. . .

ical value of the correlation length L is of course un-
changed by the process of blocking, thus L = L (e ) =
Lp6p& so

Lp
L m+1 (64)

FIG. 10. If we enlarge the ball from e to e"e, while deform-
ing the metric according to the Ricci-Hamilton How Eq. (55)
(for a parameter time q = p), then the average value remains
as constant as it can be since Eq. (55) smooths the curvature
fluctuations in the annulus H(x, e~s))B(x, s).

been discussed in investigating the renormalization group
How for general o models (see, e.g. , [23] and references
quoted therein). The Ricci-Hamilton How is always solv-
able [22] for sufficiently small rl and has a number of
useful properties (apart from being volume preserving,
which is simply a consequence of the normalization cho-
sen), namely, any symmetries of g b(rIo) are preserved
along the g b(rt) How for all il ) rlo, and the limit-
ing metric (if attained) g b = lim„~ g b(q) has con-
stant sectional curvature. Thus Eq. (55), with the ini-
tial condition g b(0) = g b, defines (when globally solv-
able) a smooth family of deformations of the initial three-
manifold, deforming it into a three-space of constant cur-
vature.

B. Fixed points and basins of attraction

The point of the above discussion is that in order to
arrive at a fixed point of the RG Eq. (17), the geome-
try has to be deformed according to the Ricci-Hamilton
How Eq. (55). In this setting of the problem, the Ricci-
Hamilton equations appear naturally and in fact the ap-
proach proposed enables us to attain a physical meaning
to them within the coarse-graining picture. This element
was lacking in [3] where Hamilton's theorem appeared
rather ad hoc. On the other hand, our approach demon-
strates that the smoothing issue is deeply connected with
the geometry and. exhibits how this relationship works.

First some general remarks. A fixed point is a point in
the coupling constants space that satisfies

g:b = ~(g.*b)

i.e., it is mapped onto itself by RG transformation.
Under RG transformation length scales are reduced by

a factor m + 1. Namely, for the block variables, the cor-
relation length measured in units appropriate for them,
L (e ), is smaller than the correlation length Lo of the
initial system measured in units of ep. The actual phys-

Since L & Lp, the system with Hamiltonian Q~

must be further Rom criticality than the original system.
Thus, we conclude that the system is at a new effective
"temperature" g b). At a fixed point Eq. (63), L' can
be only zero or infinity since then L* ~ L'/(m + 1).

As is standard in RG analysis, we will refer to a fixed
point with L = oo as a critical fixed point; when L = 0
we will call it trivia/. Each 6xed point has its domain
or basin of attraction, namely, the points in the coupling
cons~ants space in such a basin necessarily Bow towards
and end up at the 6xed point, after an in6nite number
of iterations of RG transformation.

I et us, for the purpose of clarity, employ for a moment
the ferromagnetic analogy. In this case, for a system ex-
hibiting a phase transition, there are two attractive 6xed
points. One is the high-temperature fixed point which at-
tracts each point with T ) T„;q in the coupling constants
space, and it corresponds to the efFective Hamiltonian for
the system as T —+ oo. In this phase the variables assume
random values and are uncorrelated. Upon a sensible
blocking of such a system the probability distribution of
the block variables remains unchanged.

The second fixed point is the low-temperature fixed
point which is the e8'ective Hamiltonian for the system
when T —+ 0. This corresponds to a system in a complete
spin alignment and the block variables are ordered then.
Every point corresponding to T & T„;q is eventually at-
tracted to this 6xed point.

Across the Hamiltonian space there should exist then a
surface, the so-called critical surface, which separates the
effective Hamiltonians flowing to the high-temperature
6xed point kom those flowing to the low-temperature
fixed point. Notice that the word surface here has rather
a heuristic meaning. Indeed, the Set of metrics, sepa-
rating those Bowing towards a "low-temperature" fixed
point &om those flowing towards a "high-temperature"
fixed point, has quite a complex structure whose under-
standing is deeply connected with some, yet unsolved,
conjectures in three-dimensional (3D) manifold topology
(see below for more details).

If we now choose to start with a point on the crit-
ical surface, then upon RG transformation it will stay
within the critical surface. There is a possibility that
as the number of iterations of RG goes to in6nity, the
Hamiltonian will tend to a finite limit 'R*. This point
is the critical 6xed point and within the critical surface
it is attractive (this is roughly speaking the basic mech-
anism for universality); along the direction out of the
critical surface it is repulsive. This fixed point is related
to the singular critical behavior of the system due to the
fact that all points in its basin of attraction have in6nite
correlation length. The simplest case is when the fixed
points are isolated points, but it is also possible to have
lines or surfaces of 6xed points.
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With these preliminary remarks along the way, let us
discuss how some of the above general characteristics of
the renormalization group flows hand their proper coun-
terpart in the particular situation we are analyzing.

In the previous paragraphs we showed that it was
possible to replace the discrete operation of increasing
the scale size of the observational averaging region by
a "transformation, " smoothly deforming the background
metric g b, which turned out to be the Ricci-Hamilton
flow. In this setting, following the example above, we
would like to adopt the fundamental hypothesis linking
RG to the critical phenomena, namely, the existence of
a "critical" metric (on the critical surface) g's', and of a
"Axed point" metric g*b, such that

lliil Kl l(g s ) = g~s .
m —+oo

(65)

In Eq. (65) g b is a mathematical object invariant un-
der RG and we assume that g'b' represents the physics
(in a sense to be clarified further) of curvature fluctua-
tions of a manifold at its critical point ("critical mani-
fold" ). Since the Ricci-Hamilton flow can be interpreted
as a dynamical system on a set of closed Riemannian
manifolds, we can adopt the following interpretation of
Eq. (65). Suppose, that we look at our manifold through
a "microscope" and are able to discern the curvature fluc-
tuations down to a size e . Then 'R~ ~ represents the
operation of decreasing the magnification factor, by m,
say; i.e. , the sample seen appears to shrink by this factor.
We have to assume that the system is suIIiciently large
so that the edges of the sample will not appear in the
view. The hypothesis Eq. (65) states that if we decrease
the magnification by a suKciently large amount, we shall
not see any change if we decrease it even further.

We are going to describe to what extent such hypoth-
esis holds. We already said that the Ricci-Hamilton flow
Eq. (55), while always solvable for sufFiciently small g
[22], may not provide a nonsingular solution as g in-
creases. Hamilton noticed that there are patterns in the
kind of singularities that may develop. Typically, the
curvature blows up, but in a very regular way (e.g. , for
8 x S2 with the standard syminetric metric). This has
led him to a research program which, roughly speaking,
amounts to saying that any three-manifold can be de-
composed into pieces on which the Ricci-Hamilton flow is
global, and thereby each of these pieces can be smoothly
deformed into a locally homogeneous three-manifold.
Singularities may develop in the regions connecting the
smoothable pieces, but such singularities should be a 6-
nite number of types and all of a rather symmetric nature
(namely, if they are blown up, they should be associated
with symmetric manifolds as, e.g. , S x S [24,25]).

It may be said that Hamilton's program is an an-
alytic approach to prove Thurston's conjecture, which
claims that any closed three-manifold can be cut into
pieces, such that each of them admits a locally homoge-
neous geometry. The rationale, underlying this analytical
program towards Thurston's geometrization conjecture,
lies in the above nice structural properties of the Ricci-
Hamilton flow. Several steps are involved in this pro-

gram. I.et us briefly recall them since, even if some of
them are yet unproven, they shed light on the assump-
tion Eq. (65) and on Eq. (55) when interpreted as a
renormalization group flow.

The first step is the assignment of an arbitrary metric
g on the three-manifold Z. In the renormalization group
approach, this corresponds to picking up an inhomoge-
neous and anisotropic geometry for the physical space
(here equivalent to the high-temperature phase). Such a
choice may not conform to the actual quasihomogeneou8
three-geometry of the physical space as is experienced
now. However this quasihomogeneity, in our opinion,
may be related to the possibility that the actual universe
is near criticality, a circumstance that we want to discuss
rather than assume from the outset.

The second step is to deform this metric g via the Ricci-
Hamilton flow, Eq. (55). In general, this flow develops
local singularities which should be related to the mani-
fold decomposition in Thurston's conjecture. Away from
each of the local singularities it is conjectured (but not
yet proved) that the Ricci-Hamilton flow approaches that
of a locally homogeneous geometry in each disconnected
piece.

This picture may be consistent with our blocking pro-
cedure yielding for Eq. (55) as the renormalization group
flow. According to the analysis, carried. out in Sec. III A
a highly inhomogeneous and anisotropic geometry (E,g)
can be characterized by Ininimal geodesic ball coverings
(B(x;,eo)), whose balls are to a good approximation
largely uncorrelated. when seen on a suitable scale. This
means that the values of the scalar curvatures, B(i), eval-
uated at the centers of the balls of the covering, are ran-
dom variables. Upon enlarging the balls and rescaling,
certain regions of the manifold might be such that corre-
lations develop among the corresponding R(i), whereas
in other regions, no matter how we enlarge the balls and
rescale, the B(i) will remain independently distributed
random variables. The former regions, exhibiting a per-
sistence length, are those that should approach a locally
homogeneous geometry under blocking and rescaling [i.e. ,

under the flow Eq. (55)]. The latter regions should rather
develop singularities under Eq. (55), since no matter how
much we block and rescale, the curvature will maintain
its white noise character.

The third step is to study the behavior of Eq. (55) for
the locally homogeneous geometries, for this accounts for
the structure of the critical set of Eq. (55). This has been
accomplished [25], and one finds that, depending on the
initial locally homogeneous geometry, the Ricci-Hamilton
flow either (i) converges to a constant curvature metric,
(ii) asymptotically approaches (as g ~ oo) a fiat degen-
erate geometry, of either two or one dimensions (pancake
or cigar degeneracy), with the curvature decaying at the
rate 1/g, or (iii) hits a curvature singularity in finite time,
with this singularity being that of the Ricci-Hamilton
flow for the standard metric on S x S . Note that con-
stant curvature geometries always occur whenever the
manifold can support them (in dimension three, constant
curvature manifolds and Einstein are synonymous). It is
also quite interesting to note that the Ricci-Hamilton flow
of homogeneous metrics usually (with a few exceptions)
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tends to approach or converge to the maximally symmet-
ric homogeneous metric in the class considered (see [25]
for details).

Interpreting Eq. (55) as the renormalization group
Bow, it follows that locally homogeneous geometries
evolving under Eq. (55) towards an isolated constant
curvature manifold are sinks describing a stable phase of
the corresponding cosmological model. For instance, a
FLRW model (with closed spatial sections) characterizes
such a phase. Nonisolated constant curvature manifolds
(e.g. , flat three-tori) provide less trivial examples of lim-
iting behavior of Eq. (55) (see, e.g. , [26,24]). The locally
homogeneous manifolds nonadmitting Einstein manifolds
[e.g. , there are no left-invariant Einstein metrics on the
group SL(2,R)] provide even more interesting behavior.
In this case, a metric renormalized under the action of
Eq. (55) develops degeneracies and one gets, in our set-
ting, an effective cosmological model with spatial sections
of lower dimensionality.

All these limit points of Eq. (55), either fixed or not,
have their own basins of attraction. Rigorously speaking,
they are the sets of three-metrics flowing under Eq. (55)
to the respective limit points, briefly discussed above.
There are nine such basins of attraction, corresponding
to the nine classes of homogeneous geometries that can be
used to model (by passing to the universal cover) the local
inhomogeneous geometries on closed three-manifolds. By
labeling these classes according to the minimal isometry
group of the geometries considered, we distinguish the
following basins (here we follow closely the exposition
in [26]; note also that the use of nine classes of locally
homogeneous geometries rather than the standard eight
classes used by Thurston is dictated by the fact that in
discussing the Ricci-Hamilton flow one needs to consider
metric not of maximal symmetry):

(i) The R basin. It contains all three-metrics flowing
towards the homogeneous flat R metrics. This basin is
eventually attracted by flat space (flat tori, when revert-
ing to the original manifold rather than to its universal
cover .

(ii) The SU(2) basin. It contains all three-metrics flow-
ing towards the three-parameter family of homogeneous
SU(2) metrics. This class admits Einstein metrics, in
particular the round metrics on the three-sphere. This
basin is exponentially attracted to the round three-sphere
(xnodulo identifications). It is the basin of attraction
yielding for closed FLRW cosmological models.

(iii) The SL(2,R) basin. It contains all three-inetrics
flowing towards the three-parameter family of homoge-
neous SL(2,R) metrics. This class does not admit Ein-
stein metrics. This basin goes degenerate, yielding for a
pancake degeneracy whereby a two-dimensional geometry
survives: Two of the components of the metric increase
without bound while the other shrinks to zero.

(iv) The Heisenberg basin. It contains all three-metrics
flowing towards the three-parameter family of homoge-
neous Nil-metrics. Again, this class does not contain any
Einstein metrics. This basin too undergoes a pancake
degeneracy.

(v) The E(1,1) basin, where E(1,1) is the group of
isometrics of the plane with flat Lorentz metric. It

contains all three-metrics flowing towards the three-
parameter family of homogeneous Solv metrics. Also this
basin fails to contain Einstein metrics. This basin even-
tually exhibits a cigar degeneracy: The curvature dies
away, and while one diameter expands without bound,
the other two diameters shrink to zero.

(vi) The E(2) basin, where E(2) is the group of isome-
trics of the Euclidean plane. It contains all three-metrics
flowing towards the three-parameters family of homoge-
neous Solv-metrics containing the flat geometry. This
basin is eventually attracted by flat metrics.

(vii) The H(3) basin, where H(3) is the group of isome-
trics of hyperbolic three-space. It contains all three-
metrics flowing towards the one-parameter family of ho-
mogeneous metrics constant multiples of the standard
hyperbolic metric. This basin is attracted to hyperbolic
space.

(viii) The SO(3) x R basin. It contains all three-
metrics flowing towards the two-parameter family of ho-
mogeneous metrics obtained by rescaling the standard
product metric on S x 1R . It does not contain Ein-
stein metrics. This is a singular basin, it is attracted
towards a curvature singularity: the round two-sphere
shrinks while the scale on R (or if you prefer, the S
factor in the original manifold), expands.

(ix) The JI x R basin, where H(2) is the group of
isometrics of the hyperbolic plane. It contains all three-
metrics flowing towards the two-parameter family of ho-
mogeneous metrics obtained by rescaling the product
metric on the product manifold, 1R x H2. Again, this
basin does not contain Einstein manifolds, and it is at-
tracted towards a pancake degeneracy.

The basins of attraction just described, and in partic-
ular those yielding for fixed points (Einstein manifolds),
are relatively uninteresting in connection with the renor-
malization group interpretation of Eq. (55). Such fixed
points, e.g. , the round three-sphere, or the flat three-tori,
are all totally attractive. As already recalled they can
be thought of as distinct stable phases yielding for dis-
tinct cosmological models, characterized by the nature of
the metric (and of its infinitesimal deformations) at the
fixed point. For instance, the SU(2)-basin characterizes
FLRW models with closed spatial sections, and the re-
lated homogeneous anisotropic model (see Sec. VI for
more details).

C. Critical 6xed points: an example

The existence of critical fixed points [critical in the
sense of Eq. (65)], characterizing the (universal) prop-
erties of (continuous) phase transitions between two dif-
ferent cosmological regimes, cannot be immediately read
oIII' &om the above analysis. It is rather the consequence
of the (conjectured) existence of the decomposition of
a manifold into pieces that is associated, according to
Hamilton, with the local singularities of the flow Eq. (55)
(see the second step of Hamilton-Thurston geometriza-
tion program). The origin of this connection between
critical behavior of Eq. (55), in the sense of the renor-
malization group, and Hamilton's program can be seen
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by considering the following detailed example.
Let us assume that topologically Z is a three-sphere,

Z S . We shall consider on Z a metric gq obtained by
gluing through a smooth connected sum two copies of a
round three-sphere

3 3~ = s( )]Is(2)

and endowing each S(,-), i = 1, 2, factor with a round
metric of volume vq ——1, and the joining tube

S x ([0, 1] C IR'), (67)

with the standard product metric of volume const e
(r is a suitable parameter, see below), for r )) 1.

To explicitly construct this latter metric we can pro-
ceed as follows. Let yq and y2, respectively, denote two
chosen points in both factor copies, S~z) and S(2). Let

h(, ) . 1R ~ S(,.),i = 1, 2, be two imbeddings given by the
exponential mappings

3 3 3
expyq '. Ty&S(q) 1R m S(q) )

3 3 3
expy2 '. Ty2S(2) 1R m S(2) (68)

We assume that h(q) preserves the orientation while h(2)
reverses it.

Let n: (0, oo) ~ (0, oo) denote an orientation revers-
ing diffeomorphism, and define nq . Rs/(0) -+ Rs/(Oj
by the map ns(v) = n(~v~)v/~v~ for every vector v C
IR /(0). For every point xq ——hz(v) in the geodesic ball
B(yq, r)/(0) C S(s~), with 0 & r & vr/2 (with x/2 the in-

jectivity radius of the unit three-sphere S(,.) ), we identify

hq(v) with h2(ns(v)) C B(y2, r)/(0) C S(2).
The space obtained in this way,

s('„ts(» (s„,—(»)) (-)„.„,(s('„—(»)), (69)

g(x) = dr + r h;~do'do~ ~ O(r ), (70)

where r = dist(x, yq) is the distance between yq and the
point considered, h,~do'd0~ is the metric on the two-
dimensional unit spheres S, and as usual, the higher
order correction terms involve the curvature.

Now, if we blow up this metric by rescaling it through
r we get, up to curvature corrections, a distorted cylin-
drical metric

is a particular realization of the connected sum [27] of
two copies of unit three-spheres.

In order to give to the neck, joining the two S(,-), a
cylindrical shape we blow up [28] the metrics of the three-
spheres in the neighborhoods of the points yq and y2.
Consider, for simplicity, only the S(z) factor since the
argument goes in an analogous way also for the S(2) factor
(see Fig. 11).

Exploiting the exponential mapping, the round metric
of S(z) (actually any sufficiently smooth metric) can be
written in a neighborhood of yq in geodesic polar coordi-
nates as

FIG. 11. If we blow up the metric of two three-spheres S&~&

and S(~) (here represented as two-spheres), around the points
yz and yz and then join the resulting manifolds, we obtain the
connected sum S(~)!IS(2). According to this procedure, the
neck S x R inherits a cylindrical metric up to exponentially
small correction terms.

dp
g(x) =, =, +h;, do'de'+O(r') . (71)

r = exp[—r] (72)

When expressed in terms of w we get that the blown up
metric g(x) reduces to

g(x) = dr + h;~de'do~ + O(e ) . (73)

Thus, the blown up metric approaches the cylindrical
metric exponentially fast as v —+ oo. In order to intro-
duce smoothly such a metric on the neck of S~z)t!S(2) we

can proceed as follows.
Choose smooth functions h(, ) (r), i = 1,2, satisfying

1 7r
8()(r;) = —,0&r; & —,

r,'
ir 7r

h(;) (r;) = C, decreasing, —& r,
4 2

7r
h(;)(r;) = 1, r; & —,

2

(74)

where r, =dist(x, y(;)). Also, let us introduce the inclu-
sion maps

In order to eliminate the axial distortion due to dr /r,
we substitute for the radial variable r, introducing a new
coordinate w defined as
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X(1) S(1) (Ill) ~ (S(1) ('gl)) Ub(q)~qb
—& (S(2) (JJ2))

x(2): S('2) —(») ~ (S('i) —(y~)) b(,).,b,
— (S(.) —{»))

~(.):I ~(Tw~S('i) —(0k) «2(Tu2S(2) —(0)) ~ (S(i) —(»7) Ub, .b- (S('2) —(»))
(75)

(y(q) and y(2) denote the inclusions of the spheres, mi-
nus the points y~;~, into the connected sum; y~3~ is the
inclusion of the neck).

If ( is a partition of unity associated with the covering
corresponding to the above inclusions y~ ~, with n
1,2, 3, we can then de6ne the following metric g

&(*) = ).&-~{.)[~( )&(')(d t(* y(')))] . (76)

For x not in the geodesic balls (of radius m/2), centered
on yq and y2, this is the standard round metric on the unit
three-sphere; for x in the geodesic balls of radius vr/4,
centered on yq and y2, this is, up to curvature corrections,
the cylindrical metric introduced above. For x in the
annuli between such balls g is a smooth interpolating
metric joining the spheres to the cylindrical neck.

By expressing Eq. (76) in terms of the variable 7, we
get the metric on S~~z) tS{2) which is the round metric on

each S{,.)/B(y, , e ) factor, and these factors are con-

nected, for v large enough (i.e. , nearby y;) by a thin flat
cylinder.

The Ricci-Hamilton evolution of g can be explicitly
constructed as follows. According to [24] let us write the
metric on S X R as

(* ) = ).&- '. ( )[ ( )~(')(d ~ (* (* ))] ( o)

where the inclusion maps y~ ~
depend now on the defor-

mation parameter q. We assume that the metric g(x)
(the round metric on the spheres S{,) and the standard

product metric on the neck S x IR ), being locally
homogeneous, is preserved by Eq. (55) since the Ricci-
Hamilton How preserves isometrics. As the plumbing be-
tween the spheres and the neck shrinks as g increases
(as the S factor in the neck), the inclusions y( ) are
necessarily g dependent. The dynamics of y~ j can be
obtained as follows (see Fig. 12).

The Ricci-Hamilton flow Eq. (55) for g(z;q) is given
by

= —(R(rl))g b(g) —2R b(g),

0 b(n = o) = g.b,

and in terms of the pulled-back metric it is

0 2-
Bg [~(.) (~)~(*)~{')]-b = -(R(~))h{.) (~)g(~) ~(')]-b3

—2R(y( ) (g)g(x) b(;) ) b . (81)

9lneck ofs~ )Is DglR~ + Egs~
(1) (~)

where gRi is the metric on R, g~~ is the round metric
on the unit two-sphere, and D and E are constants. The
Ricci-Hamilton flow Eq. (55) preserves the structure of
this metric and reduces to the coupled system of ordinary
difFerential equations

CC.

d 2

dg 3

4 (D)
dq 3 gE)

j ~, ~,

which immediately integrate to

2E —Ep ——g3

DoEp'

[Eo —(2/3)~l' '

where Eo = E (q = 0) is the initial radius of the round
two-sphere, whereas Do ——D(g = 0) is the scale on R~.

Given this solution of Eq. (55), we can construct the
Ricci-Hamilton evolution of g by looking for a solution
of Eq. (55) in the form

FIG. 12. The Ricci-Hamilton flow of S{~)IIS{~)can be ex-
pressed in terms of the g evolution of the inclusion maps

), n = 1,2, 3, and of the known evolution of the locally
homogeneous metrics on S{,.))B(y,) and S x IR .
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The left-hand side of Eq. (81) can be evaluated according to a suggestion first exploited by DeTtirck, viz. ,

0 ~ ~ 0
~ [X(.)(~)g~(')1-b(~) = ~(.)(~) ~ [y~(')]-b[~(~ *)] +~(.)(~)IL-(q)[y. ~(')]-b[~(~ ~)]lBg 8'g (s2)

where the Lie derivative I (z) [gh(;)] b(y(r), z)) is along the vector field tv(rl; n) which generates the r) evolution of the
inclusions g(~) ) viz.

~

&x(.)(n) = m(g' X( )(r))) X( )(rj = 0) = X( ) .
Ofj

Let us denote by (R)( } the average of the scalar curvature R(y( }(z)) over the images of the inclusions z( } (viz. ,
for a = 1, 2, (R)( } is the average over S(,.},while for n = 3, the average is over the neck). In terms of these averages,
the Ricci-Hamilton fiow Eq. (81) can be written as

|9'fI
I~(')& b(&( )(*))]= s(R(r)))( }~('}&b(&( )(*))—2R b(&( )(~))

+-.'~(')y-b(~(. )(*))[(R(~)) —(R(~))(.)] —L-(,) Iy~(;)]-b(~(n, *)) . (s4)

As can be checked, the Ricci-Hamilton Bow preserves the local homogeneous geometries over the spheres S~,~, and
on the neck, if and only if the vector field m(i); a) satisfies

3~(')y-b(~(-) (*))[(R(~)) —(R(~))(-)1 = L-(9) [g~(')]-b(~(n *)) .

For n = 1, 2, i e , on S. (s,..)
—B(y;, r(r))), Eq. (85)

can be interpreted in terms of the geometry of the
two-sphere S2, boundary of S(,.}

—B(y;, r(i))). Con-

sider, in S(,.}
—B(y;, r(g)), a tubular neighborhood of

c}(S(,)
—B(y;, r (g))) foliated by a one-parameter family

of two-spheres S„with outer normals zv = m /liUl. Let
V be the Riemannian connection with respect to gb~;~.
Let us respectively denote by h c = g c —tb tb and by
a g ——h h, &V' mg the first and the second fundamental
form of the embedding of S„ in (,}

—B(y, , r(q)). Then
(85) can be rewritten as (say, for n = 1, the argument is
completely symmetrical for n = 2)

—,'~(')Ii.d[(R(r))) —(R(rI))(1)] = lu (rl)lo.d(g) . (88)

By taking the trace with respect to h g, we get

dist„(x, y(, })= exp[ —r(il)], (89)

with

r(rI) = (oo)

and by rescaling the unit two-sphere metric h, ~ according
to

For n = 3, i.e. , for the neck, Eq. (87) yields that as
the S (i)) factor in the neck shrinks, the scale length of
the Ri factor grows, so that the volume vol(S (rI) x R )
remains constant during the Ricci-Hamilton evolution
(since (R) —(R)( s) is, up to small correction terms,
coming koln the collars joining the spheres to the neck,
the average curvature over the spheres S(s,.),i = 1, 2).

Notice that by introducing, as above, a new variable

-'. [(R) —(R)(»] = l~l~: . (87) (o1)

Since for a. = 1,2 (R) —(R)( } is proportional to the
average scalar curvature of the neck, the term on the left
side of Eq. (87) blows up as (Eo —sg) as i) increases.
On the other hand, by the Gauss-Codazzi relations for
the embedding of S2 into S(,.}

—B(y;, r(rl)) we get

R(S„) = sR(S(,)) + z(o,') (ss)

which implies that the blowing up of o as g —+ 2Eo
is associated to the blowing up of the curvature of the
r)-dependent two-sphere boundary of S(,}

—B(y, , r(r))).
Thus, Eq. (87) implies that as r) increases, the sur-
face area of Sz(r)) shrinks to zero, as (Eo —sr)), by
moving along the outer normal direction of S (g) C
(S(,.}

—B(y;, r(

the above analysis of the Ricci-Hamilton flow Eq. (81)
provides on the neck the metric

g(2:; g) = dr (rI) + h; (r))do'de~ + O(e ("}), (92)

and on S&,.
&

the standard round metric.
Notice also that Eq. (92) goes cylindrical exponentially

fast in g. As g increase 0 & g ( &, the neck becomes
longer and longer while getting thinner and thinner. In
the limit, r) ~ 2, we get (with a slight abuse of notation)

(i)" (2)'y) (i) (2) ' (o3)

where the three-spheres S~,.~
carry the round metric of

volume 1, while the smooth joining regions shrink expo-
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I 9 P

S(~) )

(94)
can be thought of as describing a high-temperature fixed
point of the renormalization group flow, yielding for
a random, uncorrelated, three-geometry. This high-
temperature fixed point attracts initial data sets (on
three-manifolds which are topologically S, in the par-
ticular example constructed above), which are associated
with three-geometries which are suKciently inhomoge-
neous. In this phase the three-geometry tends to ran-
d.omly pinch-o8' uncorrelated S baby universes.

The previous example can be easily modified as to pro-
vide also unstable solutions to The Ricci-Hamilton flow
(these solutions characterize the critical fixed points).
The strategy for constructing such solutions is to con-
sider the Ricci flow for initial three-manifolds constructed
by gluing through a smooth connected sum two distinct
copies of a round three-sphere

( (i)" (2)" " ( )'g) (i) (2)

nentially fast around the points y(, ), i = 1, 2 (see Fig.
13).

This pinching phenomenon, as described by (93), can
be naturally extended to the connected sum of more than
two copies of three-spheres, and the resulting solution of
the Ricci-Hamilton flow

two-sphere becomes the equatorial sphere in S(&~, and as

a final outcome we get the round three-metric on S(y}.
The perturbation of the metric of the collar -may be such
that we enhance its cylindrical shape, in this case the S(2~
cap shrinks, and o blows up. The final outcome is that
of S(z~ on which the S(2~ cap degenerates in a longer and
longer and thinner and thinner tube, possibly connecting
two three-spheres whose total volume is the one of the
original manifold. Finally, we do not perturb the joining
neck, and let the Ricci-Hamilton flow fix the respective
original round metrics on S(z~ and S(2~. The trace of the
second fundamental form o, of the joining two-sphere
then stays constant during the evolution. What happens
is that the small spherical cap S(&~ is constant in size

but possibly moves around on the larger S(y) as g in-

creases. Such an (S(i)tIS(2), g, p) is a critical fixed point
for the Ricci-Hamilton flow, a fact that has important
consequences for our renormalization group approach to
relativistic cosmology.

D. Critical surfaces and topological crossover

Let go be a metric on Z with positive Ricci curvature,

Z —(S(]) tIS(2) 1 gg@P ) (95) Ric(gp) ) 0 (96)

by endowing the S(y) factor with a round metric of vol-

ume vi ——1 —c, and the S(2) factor (the small cap),
with a round metric of volume vq ——c where c is a con-
stant with 2 ( c ( 1, and by eliminating the connecting
neck. Explicitly, this can be done by marking a point
yi on the three-sphere S(i), and remove a ball B(yi, r)
of suKciently small radius r & 1. The two-sphere S
boundary of S(i) —B(yi, r) has diameter err. Glue on
this S the three-spherical cap obtained by the three-
sphere S(2~ whose equatorial two-sphere is the given S .
The connecting region, topologically S x R, in this
S(i)ttS(2) is smoothed out so as to provide a C tran-
sition metric between the large S(i) —B(yi, r) and the
small three-spherical cap. The Ricci-Hamilton How with
such a manifold as initial datum can be cast again in
the form (84) where now the index n refers (n = 1) to
the large sphere S(si), and to (n = 2) the small spherical

cap S(2~. The Ricci-Hamilton evolution of this partic-
ular connected sum can be still geometrically described
by Eq. (87). We have three distinct possibilities (we
wish to stress that actually a more careful analysis is
needed to discuss this point, but for the sake of sim-
plicity we defer such a treatment to a paper in prepara-
tion). The first possibility follows from the fact that now
the Ricci-Hamilton flow preserves the local geometries
over the spherical caps S(&~ and S(2~ only up to a rescal-
ing. Under the only constraint that the total volume of
S(i) ttS(2) is preserved, by slightly perturbing the metric in

the joining collar S x R, we may have that the S(2~ fac-

tor spreads over S(si), this implies that (R) —(B)( ) ~ 0
as g increases. Correspondingly 0 ~ 0, viz. , the joining

and with volume vol (Z, gp) = 2.
By means of go and the metric g introduced in the

preceding section, we can construct on Z a smooth one-
parameter (0 & t ( 1) family of metrics gq, with gg —p

——

FIG. 13. Different deformations of the initial three-
manifold Z may have quite different fates. If the waist
of Z is increased enough by the deformation (i.e., if it is
rounded), the Ricci-Hamilton Bow will evolve Z toward the
round three-sphere. If the waist is shrunk enough by the ini-
tial deformation, the Ricci-Hamilton How will evolve Z toward
S(', ) U S(,)
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go and g~ q ——g by setting

gq = (1 —t)go + tg,
0&t & 1. (g7)

According to Hamilton's theorem [22], there is a right-
open neighborhood of t = 0 such that all metrics gq in
this neighborhood are in SU(2) basins and are attracted,
under the action of the Ricci-Hamilton flow Eq. (55),
towards the round metrics on S with volumes vq (since
the volume of gq changes with t, we have a family of
fixed points, namely, round three-spheres parameterized
by the corresponding volumes vq which are kept constant
under the Ricci-Hamilton flow; thus vi —0 = 2).

On the other hand, according to the remarks above, we
have an open neighborhood of t = 1 such that all met-
rics gq in this neighborhood go singular under the Ricci-
Hamilton Bow. Indeed, for t = 1, the Ricci-Hamilton
How of g fixes the round S factors while the joining tube,
S x R, is driven towards a curvature singularity. By
continuity, this behavior extends to a left-open neighbor-
hood of t = 1, and a three-sphere in this neighborhood
splits apart into two round spheres.

It follows that there is a neighborhood of the g metric
such that some of the metrics in this neighborhood are
driven towards attractive SU(2) basins, while others are
driven towards a singular (S~i~ttS&21) basin.

According to the discussion of the previous paragraphs,
the set of metrics separating these two distinct behaviors
is provided by the metrics driven towards the metrics of
the form (S~i~ tIS~~~~, g, ~) defining the critical fixed points.
Metrics Qowing towards any of the small spherical cap
metrics (S~silttS~s2~, g, ~) define a critical surface

Note, however, that in this particular case, the criti-
cal point is not necessarily related to a phase transition.
As mentioned before, we are here in presence of signi6-
cant finite-size effects which are concerned with a dimen-
sional crossover and they show up, as usual, as an ef
fectiue reduction of dimensionality [21]. Indeed, geomet-
rically speaking, the critical fixed point (S~ilttS12l, g, z),
and the corresponding critical surface, separates two sta-
ble phases under the renormalization generated by Eq.
(55). One is given by the manifolds eventually evolving
towards the round three-sphere of volume 2. The other is
generated by those manifolds which pinch off and even-
tually evolve towards two round three-spheres, each of
volume 1. The pinching ofI'through thinner and thinner
necking is necessary for such a topological crossover.

Prom a physical point of view, and as we shall see in
Sec. VI, the fixed point described above separates two
possible different closed FI RW regimes. One with closed
spatial sections which, at some particular instant, are
a three-sphere of volume 2, while in the other regime
we have Aeo distinct closed FLRW universes having spa-
tial sections (at a given instant) of volume 1. We may

I

have also many different necks corresponding to a regime
whereby the spatial section Z yields for many closed
FI RW universes.

It is clear that the above explicit construction of a criti-
cal fixed point for Eq. (55) can in principle be generalized
to more general situations. The strategy is to take two
or more trivial fixed points, such as those associated with
the SU(2) and H(3) basins, and connect them through
the degenerate basins [such as SO(3) xR, as in the above
example, or through the H(2) x Ri basin, etc.]. In this
connection notice that the connected sum mechanism
yielding for the (S1iltIS~&l) critical fixed point, can be
generalized to an operation of joining two (or more) man-
ifolds (corresponding to stable attractors) along tubular
neighborhoods of surfaces (rather than points, as in the
case for the standard connected sum).

A particularly interesting connecting geometry would
be H(2) x R (by compactifying the hyperbolic plane in a
closed surface). In this latter case the scale of the hyper-
bolic geometry goes to inanity under the Ricci-Hamilton
flow (pancake degeneracy [25]). Finite size effects are
again at work, but this time the effective reduction of
dimensionality is more interesting than the one in the

(S~ilt|S~2l) case. Indeed two out of three dimensions
are infinite, and there will be a crossover to a critical
behavior with critical exponents characteristic of a two-
dimensional system.

One can consider the analysis presented above as a
physically nontrivial application of Hamilton-Thurston s
geometrization program. In some of its aspects it is
rather conjectural and speculative, but in our opinion, it
is quite intriguing that motivations coming from geome-
try and a physical problem, like the one addressed here,
namely, the construction of cosmological models out of a
local gravitational theory, go hand in hand in such a way.

V. LINEAR. IZED RG FLOW

The relative slopes of (f), (gi) and (f), (g2), with f
given by Eq. (38), as m -+ oo, and for gi in a neighbor-
hood of g2, are of some relevance to our discussion. In
a standard RG analysis such relative slopes are related
to critical exponents. Given the blocking procedure for

(f), (gi) as m + oo, yielding for a gi "renormalized" ac-
cording to the Ricci-Hamilton flow Eq. (55), one can sen-
sibly ask what happens if g~ is slightly perturbed, namely,
if we replace it by

gab + gab + ~~ab

where K s is a symmetric bilinear form ( a choice of the
symbol is quite intentional, since later the above consid-
eration will be applied to the second fundamental farm).
It can be shown that if g~ is scaled, according to the Ricci-
Hamilton flow Eq. (55), then K s gets renormalized ac-
cording to the linearized Ricci-Hamilton flow, namely (q
in the brackets suppressed)

8'g
K s = 2(B)K s+ 2g i, [ '(Bg K g) —-2(B)(g K i, )

—(R ~K g)] —AI, K g+ 2[div*(div(K —-'(TrK)g))] i, , (gg)
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with the initial data K~b(i) = 0) = K~b, where K
S Z is a given symmetric bilinear form, LL is the
Lichnerowicz —de Rham Laplacian on bilinear forms

+LKab = + +sKab + +aeKb + +bsKa 2+asbtK

(1oo)

and the operations LL, div*, div, and Tr are considered
with respect to the How of inetric (g, i)) + g(i)), solution
of Eq. (55). The div (here, minus the usual divergence)
is the divergence operator on S Z, div* is the L2 adjoint
of div, acting &om the space of vector 6elds on Z to S Z
(it can be identified with 2 [Lie derivative) of the metric
tensor along a vector field).

Note that K(g) solution of the linear (weakly)
parabolic initial value problein Eq. (99) always exists
and is unique [22], and represents an infinitesimal defor-
mation of metrics connecting the two neighboring Bows
of metrics, g(i)) and g'(q) [obtained as solutions of prob-
lem of Eq. (55) with initial data g(q = 0) = g and
g'(il = 0) = g(i) = 0) + eK(q = 0) + O(e ), respectively].
For what concerns the structure of this solution, one can
verify that corresponding to the "trivial" initial datum
K(i) = 0) = Lxg(where X:Z -+ TZ is a smooth vector
field on Z), the solution of Eq. (99) is provided by

K b(q) = K b(i)) +L„(„)gb(rl), (1o7)

where the bilinear form K b(i)) and the i)-dependent vec-
tor field v(i)), respectively, are the solutions of the initial
value problems

c) - 2 - 2 (1—K b = (R)K —b+ —g b l

—(Rg K b)
c)g 3 3 (2

solution of the initial value problein Eq. (99) implies that
K b(g) = Lxg b(i)), whenever K~b(g = 0) = Lxg b, as
stated.

Moreover, if K(g) is a solution of Eq. (99), with initial
datum k(g = 0) = K, then the space average of TrK(g)
over (Z, g(i))) is preserved along the How (g, g) -+ g(i)),
namely,

(TrK(i)))„= (TrK)p, 0 & i) ( oo . (106)

This property of the solutions of Eq. (99) is an iminediate
consequence of the volume-preserving character of the
Ricci-Hamilton Bow.

Finally, another relevant property of the initial value
problem Eq. (99) can be stated as follows. If (p, K b) -+
K b(i)) is the How solution of Eq. (99), with initial datum
K b(g = 0) = K b, then it can always be written as [23]

K b(g) = Lxg b(g) . (101) (R)(g—b—K b) —(R bK b) l

—b,I.K b,

This property expresses the DifF(Z) equivariance of the
Ricci-Hamilton How. (Notice that X is q independent. )

The above fact follows by noticing that along the tra-
jectories of the How (i), g) + g(i)), solution of Eq. (55),
we have

and

K b(il = 0) = K b, (1o8)

But the DifF(Z) equivariance of the Ricci tensor, i.e. , the
fact that Ric(&p'g) = p'Ric(g) for any smooth diffeomor-
phism y: Z -+ Z, implies that

LxR b = DRic(g)Lxg~b, (103)

where D Ric(g)K is the formal linearization of Ric(g),
around g, in the direction K:

d
D Ric(g)K—:—[Ric(g + tK)]g pdt

=
~ AL, K —div' [div(K —

z (TrK) g)] . (104)

Upon introducing Eq. (103) in Eq. (102) we get

8
&g

Lxg-b(~) = s(R(~))pLxg-b(&)

2D Ric(g(g))Lxg —b(i)) . (105)

One can check that the right-hand side of the above ex-
pression coincides with the right-hand side of Eq. (99),
when the latter is evaluated for K b(g) = Lxg b(i)).
Hence Lxg b(g) solves the partial difFerential Eq. (99)
and, since for g = 0, K b ——L~g b, the uniqueness of any

0 (8L g. (~) = L
l &

g-b(~) l

c)i) (c)i) )
2= —(R(g))„Lxg b(il) —2LxRab(i)) (102)

0'g
v (i)) = —V"(K, —2K"'g„,g ), v(g = 0) = 0 .

(109)

To summarize, as q -+ oo, K b(q) may either approach
a Lie derivative term, such as L„(„)gb(g), or a nontriv-

ial deformation K b(i)) [23]. The nontrivial deformation
is present only if the corresponding Ricci-Hamilton Bow
for g b(i)) approach an Einstein metric on Z which is
not isolated. In such a case (e.g. , Hat tori), there is
a 6nite dimensional set of such Einstein metrics, and
the nontrivial K b simply are the infinitesimal deforma-
tions connecting one Einstein metric g~ in Z and the
infinitesimally nonequivalent one. Also in this case the
Lie derivative term may be present. What it represents
is a reparametrization of the metric gi [under the action
of the in6nitesimal group of diffeomorphisms generated
by v; see Eq. (107)] ("gauge artifact"). This latter Lie
derivative term is the only surviving term when g is iso-
lated (like, e.g. , in the case of the round three-sphere. As
is known, the round metric g on the three-sphere S is iso-
lated, in the sense that there are not volume-preserving
in6nitesimal deformations of G mapping it to another
inequivalent constant curvature metric g ) (see Fig. 14).

The flow Eq. (108), Eq. (109), tells us how to renor-
malize the second fundamental form in such a way that
the blocking prescription (f), m (f), , works both
for the initial metric g as well as for the perturbed metric
g+ bK b.
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and where

H(f) = f(x)4.(x) .
~s( )&~( )~

(112)

FIG. 14. Two neighboring three-inanifolds (Z, g) and
(Z, g + bIt ), w'ith the same volume, evolving under the
Ricci-Hamilton Bow toward isometric round three-spheres
(S,g, „) and (S,g,

" „). In general, g, „and g,
' „difFer by

an infinitesimal difFeomorphism P generated by a vector field
i e 1 g —gcan + iI(L~gcan sgcanV iv ). By exploiting the

freedom in choosing the shift vector field 6, we can get rid of

A. Scaling and critical exponents

From the characterization of critical fixed points g b for
Eq. (55) (see Sec. IV A) we can get information on the
critical exponent characterizing critical behavior of the
metrics nearby g b. This is the content of this section. In
particular, we shall discuss the critical exponents related
to the high temperature fixed point (Sfi) ttSf2), g). Even if
this point is not a thermodynamically interesting critical
point, it exhibits many of the general features of the more
interesting type of singularities.

In order to characterize these critical exponents we can
use the linearized Ricci-Hamilton Qow associated with
the one-paraineter family of metrics (Sli) ttSf2), g). In the
following we shall, however, proceed more directly and
examine the properties of the two-point correlation func-
tion associated with (S&i) ttSfs2), g) and the probability law
of relevance to our analysis.

Let u; g S~,.~, i = 1, 2, be the two points in

(S~,.&ttS&~~&, g„;t) around which the round metrics of S~~)

have been blown up. I et f denote a non-negative scalar
field on (Ski)ttSfs2)), distributed according to the proba-

bility law formally defined by

Edp [f(yi )f (y2)]

where Eg~ denotes the expectation with respect to dP,
and is well defined over the fixed points g„;t.

In Sec. IVA we have interpreted the Ricci-Hamilton
fiow Eq. (55) as the RG fiow in a finite geometry, char-
acterized by the length scale I, which is large compared
to the microscopic scale (in particular, it is much larger
than the radius of the geodesic ball coverings used to dis-
cretize the theory). The correlation function depends on
such a dimensional parameter. If

92

L(yi, y2)—: v D dz
Sx

(114)

denotes the distance between the points yz and y2 along
the cylindrical neck of (Sfi) t[Sfs2)), and if this distance is

large (as compared with the radius of geodesic ball cov-
erings), then the correlation length ( associated with the
two-point (connected) correlation function can be read
oK &om

—L(yi yz)""""'"'»&dP(f (»)f(»)).... (115)

Since the correlation function remains invariant under
the Ricci-Hamilton deformation of the cylindrical neck,
we get that along Eq. (79), (/L(yi, y2) remains constant
which implies that on (S&i)ttSf2), g) the correlation length

( behaves as

(116)

(We could consider f as related to the matter field,
as in f = np + n'J, , but the following analysis is quite
independent &om a particular meaning of f )N. otice
also that the measure dpg(x) in the above formulas is
the Riemannian measure on (Sfi) tISfs2)) associated with

the metric g(x) defined by Eq. (76).
I et us now concentrate on the behavior of Eq. (110)

when the neck of (Sfi) IISf2)) gets thinner and longer un-

der the action of Eq. (55). It can then be checked that
along the Ricci-Hamilton fiow Eq. (79) associated with
g]„„i,both the L inner product Eq. (111)and the Gibbs
factor exp[ —H(f)] corresponding to Eq. (112), are in-
variant. Thus it follows that the probability measure Eq.
(110) is invariant under Eq. (55), and the correlation
function defined by

exp[ —H(f)] g df(x)

jexp[—H(f)] II.df(*) ' (110)
According to standard usage, we can define the critical

exponent v associated with the correlation length of a
finite size system (with typical size L) by the condition

where the functional integration is over the space of Gelds

f: (Sfi)ttS&2)) —+ R, equipped with the L inner product (117)

(flf') =— f(x) f'(x)df g(x)
& (1)tt (~)~

where p is a parameter driving the system to criticality,
and p is its corresponding critical value. In our case, it is
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natural to set p = g, with p = g = 2. This immediately
yields for the critical exponent v the value

(118)

g„e,g ——DgR1 + Eg~2, (119)

where g~ is the metric on the hyperbolic plane. The
Ricci-Hamilton flow equations take a form similar to the
S2 x Ri case, up to a minus (important) sign, namely,

d 2

dg 3'
d 4 (D)

di1 3 qE) (120)

which upon integration provide

2E=EO+ —g,3

D()E,'
[Eo+ (2/3)n]' ' (121)

where EO2 = E2(g = 0) is the initial scale of the hyper-
bolic geometry, whereas Do ——D(g = 0) is the scale on
R~.

The scale E of the hyperbolic geometry increases lin-
early with g, while the scale factor D on the line IR

shrinks. It can be checked [25] that corresponding to
this scale dynamics, the curvature decays according to
~~Ric~~ = v 2/(Eo+ sg), and we get in the limit g ~ oo a
pancake degeneracy.

The relevant correlation function is now
Eg~(f(yi) f(y2)), „„,with yi and y2 fixed points in the
H2 factor, (i.e. , on the surface S~). Again, owing to the
symmetries of the geometry involved, it immediately fol-
lows that the ratio between the correlation length ( and
the distance 1(yi, y2) must remain constant under the
Ricci-Hamilton flow. This implies that the correlation
length behaves as

A similar computation for the critical exponent associ-
ated with the correlation length can be carried out when
the connected geometry is H x IR . This takes place
when two Riemannian manifolds Mq and M2, which are
supposed to evolve nicely under the Ricci-Hamilton flow,
are connected through a tubular neighborhood of a sur-
face Sp, of genus h, viz. , O' = Mi)sh, M2.

In this case, the metric on the neck can be written as
[25]

the distribution of galaxies on large scales (e.g. , [29)).
It is evident that if (Z, g, K, p, J), the initial data set
for the real universe (see the next section), is close to
criticality, in the sense discussed in the preceding sec-
tion, then the corresponding averaged model exhibits a
tendency to topological crossover in various regions (the
ones where the inhomogeneities are larger). Filamentlike
and sheetlike structures would emerge, and the overall
situation would be the one where such structures appear
together with regions of high homogeneity and isotropy,
in some sort of hierarchy. This situation is akin to that of
a ferromagnetic nearby its critical temperature, whereby
we have islands of spins up and down in some sort of
nested pattern. Even if there is a tendency to homo-
geneity at very large scales, the picture just sketched,
of the "hierarchy of structures, " might be qualitatively
valid in a good part of the universe; indeed recent obser-
vational data seem to suggest the existence of still larger
and larger structures (e.g. , [30]). Notice that this picture
bears some resemblance to the "cascade of fluctuations"
in critical phenomena [31]. Droplet fiuctuations nucle-
ated at the lattice scale in the critical state can grow
to the size of the correlation length where the details of
the lattice structure become lost and the scale invariant
distributions of the large "droplets" are universal.

A possible (though not yet clarified) connection of this
whole picture with the self-organized criticality (SOC)
[32] can be envisaged, whereby the problem of structure
formation in terms of growth phenomena could be tackled
in the framework of avalanche activity used in SOC (cf.
[33]). It would be particularly interesting to estimate
the scales in the Universe, where it is necessarily critical
and trapped into self-organized (critical) states (a similar
suggestion was recently posed in [34]).

VI. EFFECTIVE COSMOLOGICAL MODELS

The results of the previous sections have interesting
consequences when applied in a cosmological setting.

Let us assume that at the scale over which general
relativity is experimentally verified, a cosmological model
of our universe is provided by evolving a set of consistent
initial data (Z, g, K, p, J), according to the evolutive part
of Einstein's equations.

The data (Z, g, K, p, J) describing the interaction be-
tween the actual distribution of sources and the inho-
mogeneous geometry of the physical space, (Z, g, K), are
required to satisfy the Hamiltonian and the divergence
constraints, respectively:

Eo+ sg, (122)
8m.Gp = B(g) —K K g+ k

V'K;p, —V'hk = 16~GJh,

(123)

(124)
to which corresponds again a critical exponent v = 1 [in
this case one cannot apply Eq. (117) since the system is
actually going to an infinite size].

A striking feature of these topological crossover phe-
nomena, associated with the renormalization of the cos-
mological matter distribution, is that their pattern re-
sembles the linear sheetlike (or sponge-like) structure in

where k—:K (see also Sec. IV, where they were writ-
ten in terms of the three-metric g b and its associated
conjugated momentum m &).

According to the blocking and renormalization proce-
dure, discussed at length in this paper, we can implement
a coarse-graining transformation on this actual data set
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by suitably renormalizing the metric and the second fun-
damental form, while retaining the functional form and
the validity of the constraints.

The metric is renormalized according to the Ricci-
Hamilton flow Eq. (55): IIab = Kab + Llcxgab (125)

In order to renormalize the second fundamental form,
let us rewrite it in terms of the deformation tensor H b

defined by

Bg b(g) 2= —(B(g))g b(g) —2B b(q)

gab(g 0) gab

where o. is the shift vector field. providing the three-
velocity of chosen instantaneous observers on Z, with re-
spect to which we are implementing the renormalization
procedure. We renormalize K b by rescaling this defor-
mation tensor H b according to Eq. (99), viz. ,

2 2 (1 b 1

ojg 3 3 (2 2
H-b = (B)H--b+ -g-b

I

—(Bg H-b) —-(B)(g H-b) —(B H-b)
l

AI, H~b—+ 2 div* div
~

H ——(TrH)g
~)~

(126)

with the initial data H b(rI = 0) = (K b + L g b)~ —p.
Notice that we renormalize the deformation tensor H b,
rather than K b directly, because in this way we can get
rid of the possible Diff-induced shear which may develop
in lim„~ K b(q). Indeed, according to Eq. (107), as
q ~ oo the solution of this initial value problem, K b(r)),
approaches a nontrivial deformation lim„~ K b(g) plus
a Lie derivative term, lim„~ L„~„lg b(g). The for-
mer is present only if the Ricci-deformed metric g b

——

lim„g b(q) is not isolated.
Since at this stage we are mainly interested in

FLRW space-times, let us assume that g b is isolated,
while in order to take care of the DiK-induced shear,
lim„~ Iv (g) g b(g), we can choose the shift vector field
o.' in such a way that lim„~ L„~zing b(g) is compensated
by I g b. Since L g b is a trivial datum for Eq. (99), it
is thus suKcient to choose

(127)

Notice that o.' is the three-velocity vector of the chosen
instantaneous observers on Z, thus Eq. (127) provides a
map identifying corresponding points between the initial
actua/ manifold (Z, g, K, p, J) and its renormalized coun-
terpart lim„(Z, g, K, p, J)(g).

In this section, and mainly for actual computational
purposes, we assume that the original inhomogeneous
initial data set is such that the Ricci-Hamilton flow is
global. As already mentioned, we are interested in con-
necting an inhomogeneous cosmological space-time to its
corresponding FLRW model. This is the case, in partic-
ular, if we assume that the original manifold (Z, g) has
a positive Ricci tensor (this case is obviously quite sim-
ilar to the analysis in [3]; there are, however, important
difFerences that we are going to emphasize). Or more gen-
erally, this is the case if we assume that the original man-
ifold (Z, g) is in the SU(2) basin of attraction or nearby
the critical point (;S~,l, with i = 1, 2, . . . , yielding for
a manifold (Z, g), nucleating under the Ricci-Hamilton
flow Eq. (81) (extended to many connected sums), to
disjoint three-spheres S~,.&.

Given this setting, we see that due to the properties
of the Ricci-Hamilton flow we have lim„~ K b(q)
3kg b. The given K b is deformed by gradual elimina-
tion of its shear K b

—skg b and the original (position-
dependent) rate of volume expansion k is being replaced
with its corresponding average value.

Since the constraints, Eq. (123) and Eq. (124), are
required to hold at each step of the renormalization pro-
cedure, we get

87rG(q)p(g) = B(g(q)) —K (g)K b(g) + k (g), (128)

V (p)'K;b(rl) —V(p)bk = 167rG(q) Jb(rj), (129)

where we have explicitly introduced a possible g depen-
dence into the gravitational coupling G.

Let us now explore the consequences of Eqs. (128) and
(129). From the stated hypothesis on the Ricci-Hamilton
How it follows immediately that, K b(g) ~ s kg b as rj -+
oo, thus Eq. (129) implies that

lirn Jb(g) = 0 .
g~ao

(130)

(k)p = k

since in the limit, the volume expansion is simply a con-
stant, and where ( .)p denotes the full average of the
enclosed quantity with respect to the initial metric.

Equation (131) provides the Hubble constant on the
FLRW time slice associated with the smoothed data cor-
responding (Z, g, K, p, J).

More explicitly, let us write the FLRW metric in the
standard form (units c = 1)

ds = dt + S (t)do—

In order to analyze Eq. (128), we will make use
of a property of the Ricci-Hamilton flow, namely, that
the How K(g), solution of Eq. (99), is such that
0/Bg(k(g))„= 0, i.e. , the space average of the trace of
the second fundamental form remains constant during
the deformation. This allows us to write
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where do is the metric of a three-space of constant cur-
vature and it is time independent. As we are interested
in the three-sphere case, the metric der can be written
as

8~G 1 abH,' = — (p)p ——(R)p+ —(K bK b)p3 3 3
—-((k')o —(k)o') .

der = dy + sin g(d0 + sin Odg ) . (133)

Since the volume vol(Z, g) of the original inhomogeneous
manifold is preserved by the Ricci-Hamilton Bow, we can
relate the factor S (t), providing the inverse (sectional)
curvature of the FLRW slice t = tp, to vol(Z, g),

This is a rather tautological rewriting of Eq. (140),
justified by the fact that in this form Ho clearly shows
a contribution from the spatial average of the shear. In
particular, if originally (i.e. , for rI = 0) k is spatially
constant, Eq. (141) reduces to

(vol(Z, g) )
2vr' )

8~G 1 b
Hp = (p)p ——(R)p+ —(H H b)p3 3 3

ac bd+ (L g —bL g.dg g )p3 (142)
Notice in particular that the scalar curvature, towards
which R(g(g)) evolves under the Ricci-Hamilton flow, is
given by

where we have explicitly used the decomposition K b
——

H~b —L g b [see Eq. (125)], and

~cxgab = +a~b + +b~a 3gab+co' (143)
(135)

Having said this, Eq. (128) becomes, in the limit, after
extracting a trace-kee part of K b,

is the conformal Lie derivative of the metric g b along the
vector field o..

The above expressions for Ho correspond, through Eq.
(136), to the matter density distribution

8mGp = B+ —k
3 (136) 8vrGP = 8~G(P)p+R —(R)p+ (K K b)p

+-', ((k')p —(k)p) . (144)
since no residual shear survives, and where we have in-
troduced the renormalized gravitational coupling

G—:lim G(q) . (137)

On the other hand, Eq. (128) gives

—k (g) = 8~Gp(g) —R(g(rj)) + K K b(rj), (138)

where the shear K b = K b
—3kg b has been explicitly

introduced.
We can rewrite the last equation upon taking the av-

erage with respect to the initial metric, as

—(k )p = 8vrG(P)p —(R)p + (K K~b)p ~ (139)

By exploiting Eqs. (131) and (139) we can get the
Hubble constant of the FLRW model we want to use to
describe the time evolution of the renormalized initial
data set lim„~ (Z, g, K, p, J) (g).

A. The renormalized Hubble constant

gS dhy 9 (140)

we get

Taking into account Eq. (131), and noting that the
Hubble constant on the FLRW slice corresponding, via
the Ricci-Hamilton flow, to (Z, g, K) is

We have to consider this expression forGp as the renor-
majtized effective sources entering into the Friedmann
equation, if we want to describe the real locally inho-
mogeneous Universe through a corresponding idealized
FLRW model. As expected, the renormalized matter
density shows contributions of geometric origin, either
coming from the shear anisotropies or &om the local Buc-
tuations in curvature and volume expansion.

At this stage, a few comments are in order concerning,
in particular, the effective Hubble constant Hp Eq. (141).
First, we wish to emphasize that this is the theoretical
expression for the Hubble constant if one wishes to model
the real locally anisotropic and inhomogeneous Universe
with a corresponding FLRW one. Expression Eq. (141)
clearly shows that apart &om the expected contributions
to the expansion rate coming &om matter and curvature,
there are two further contributions:

(i) A negative contribution coming from the local fluc-
tuations in the expansion rate. Apparently, this is not a
very significant term, since we may choose, as a conve-
nient initial data set describing the real locally inhomoge-
neous Universe, a data set supported on a three-manifold
Z of constant extrinsic time (i.e. , k spatially constant on
Z). Actually, the optimal choice of the data set with re-
spect to which smooth-out the lumpiness in matter and
geometry is a deep and interesting question on which we
comment later on, in Sec. VIC.

(ii) A positive contribution coming from the shear
term s (H H b) p, and Rom the observer-dependent
term s(L g bL g gg 'g )p which depends on the three-
velocity o. of the observers with respect to the renormal-
ization is carried out.

The latter terms are the most important nonstandard
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contributions to Ho, and have their origin both in the
presence of the gravitational radiation

3
—(H~'HJ ab)0 (145)

where H~ is the divergence-&ee part of the deformation
tensor H b, and in the anisotropies generated. by the mo-
tion of matter

-(Hii Hii b)0,1 ab (146)

where H~~ is the longitudinal part of the deformation ten-
sor, obtained as a solution to the equation

V'(K~~);b —sV'bk = 16~GJb+ V'(Lag, b) . (147)

Recall that the shift vector Geld o, is connected to the
current d.ensity J by the requirement that it is chosen
in such a way as to eliminate the longitudinal shear in
lim„~ K b (g) . Also, notice that

(H'Hab)0 = (H~'Hiab)O+ (H~~ H~~ab)0 . (148)

()H.b] &

(149)

where e= max(eq, e2, es) denotes the upper limit of cur-
rently observed anisotropy in the CMB radiation tem-
perature variation, and. where eq, e2, e3, respectively, de-
note the dipole, quadrupole, and octopole temperature
anisotropies. On choosing e 10, as indicated by the
recent CMB radiation anisotropy measurements, one gets
that the shear deformation is at most about 10 of the
expansion [35].

Thus, as long as we assume that the original locally in-
homogeneous manifold (Z, g, K) does not differ too much
&om a standard FLRW t = const slice, the contribution
f0 Ho from (H H b) 0 is certainly quite small, and we
can reliably write

8~G 1
3 3

-(~)o —-(&)o
1- ac bd+—(L gbL gdg g )0.3

The last term involving the shift vector o. is a velocity
eKect term which is by no means small, at least a pri-
ori. Thus the renormalized Hubble constant needed, to

In practice, the deformation energy (H H b)s yields
a contribution to the Hubble constant Ho which can be
roughly estimated. by exploiting the anisotropy measure-
ments in the cosmic microwave background (CMB) ra-
diation, as long as the frame used in averaging (i.e., the
lapse a and the shift a') is, on the average, comoving with
the cosmological fluid. We also require that the original
locally inhomogeneous manifold (Z, g, K) does not differ
too much for a stand. ard FLRW t =const slice. In such a
case one can apply the analysis of [35] to conclude that,
at the present epoch, the ratio between the deformation
shear H b and expansion is of the order

describe by a model FLRW a locally inhomogeneous and
anisotropic universe, is not provided by a naive average
even if the actual universe, to be smoothed out in FLRW
modeling, is not too far &om homogeneity and isotropy.
Clearly, we are expecting that in such a case the actual
contribution of the observer-velocity term is rather small,
but this is a question which is dificult to handle. Tech-
nically speaking, we would need estimates on the size of
the DifF-induced shear generated upon smoothing by the
Ricci-Hamilton flow. This is an issue under current in-
vestigation. We wish also to stress that in this velocity
term there is hidden a nontrivial scale dependence. In-
deed, assuming that we wish to model the actual universe

by a FLRW one only up to a certain scale, then the shift
vector n needed to cure the Diff-induced shear (which is

tantamount to saying the proper selection of a &arne with
respect to which we are carrying out the partial smooth-

ing) depends on such a scale, and the larger the scale the
larger the contribution.

There is another intriguing possible explanation for
a larger than expected Hubble constant. Indeed, if we

take seriously the possibility that the real Universe may
be close to the critical phase, as argued in the previ-
ous sections, then the contribution from the shear is not
just a conceptual value. For example the original data
set (Z, g, K) may be near the critical surface associated
with the tI;S~,l

critical point. In this case we may gen-

erate, upon smoothing, a whole family of disconnected
T =const FLRW slices, each one with its own Hubble
constant Ho(i). Explicitly, let us assume that the ini-

tial data set (E,g, K) is attracted upon averaging to-
wards a critical (S~~lttS~~&It ttS~ l), this being the case

if the original metric g exhibits regions of large inhomo-
geneities. Assuming, for simplicity, that the rate of vol-

ume expansion is spatially constant, we get that each S~,
~

factor, i = 1, . . . , n, inherits a Hubble constant provided
by

(151)

These Hubble constants can be quite dominated by the
large anisotropies (K K b) 0 of the original manifold. In-
deed, the previous estimate on the smallness of the shear
term is, strictly speaking, valid only in the observable do-
main deGned by our past light cone &om last scattering
to the present day. Thus, if the S~,~

factors resulting &om

the critical behavior of (Z, g, K) are not smaller than the
spatial sections intercepted by the interior of this light
cone, we would. not notice the contribution &om the local
shear (since we would have been looking at a rather ho-
mogeneous and isotropic island), the large contribution
would come &om the regions of large inhomogeneities
and anisotropies which, under the Ricci-Hamilton renor-
malization, undergo the topological crossover. Thus, a
value of the Hubble constant may quite well depend on
a possible large shear outside our observable domain.

The behavior just described also shows that the RG
procedure developed preserves the size of the regions
where spatial homogeneity and isotropy is observed, even
if large inhomogeneity may be globally present. This
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tells us what are the averaging scales on which a FLRW
model is a good approximation. More precisely, in order
to determine the averaging scale associated with a FLRW
model we want to use, to describe (Z, g, K), we need to
understand more in detail the (conjectured) Hamilton-
Thurston decomposition of (Z, g, K). The specific exam-
ple discussed i.n Sec. IV C may serve as an indication.

B. The scale dependence of the matter distribution

In the above analysis, we also introduced a renormal-
ized gravitational coupling. In a sense this is superQuous
since the three-dimensional metric g of Z is acting as the
running coupling constant, and we can always reabsorb
G into a definition of g. Nevertheless, the use of the
renormalized coupling G may be helpful if one wishes to
use the standard average of matter (p) 0 in the Friedmann
equation, rather than the efFective matter distribution p.
The explicit expression for G can be easily obtained by
setting P = (p)o in Eq. (144):

R —(R)p + (K sK i, )0 —s ((k2)0 —k2)
8~G = S~G+

(S)0

(152)

Notice however, that it is G(g)p(g) which is inferred
from measurements for different scales, and thus the use
of G is not particularly remarkable.

In this connection, it is more important to discuss
the dependence of G(g)p(g)as the local scale is varied,
namely as g increases (recall that g is the logarithmic
change of the cutofF length associated with the geodesic
ball coverings). For simplicity, we do this only for the

I

case in which no shear is present (K b = 0), and the
rate of volume expansion is spatially constant (k =const).
Under such hypothesis, we get for the scale dependence
of the average (Gp)

0 0
„[s (G(n) p('~))] = „(R(e(~)))

= 2(R'"R i, ) + —((R)2 —(R2))

(153)

where B;y ——B;I, —3g;A, B is the trace-&ee part of the
Ricci tensor. From this expression we see that, not only
shear anisotropies but, also metric anisotropies favor an
increasing in G(g)p(g) with the scale. To give an ex-
plicit example, let us consider as an initial metric to
be smoothed out a locally homogeneous and anisotropic
SU(2) metric g. Following the notation and the analysis
in the paper of Isenberg and Jackson [25], we can write
such a metric and its Ricci-Hamilton evolution, in terms
of a left-invariant one-form basis (e ), a = 1, 2, 3, on
SU(2) as

g = A(q)(e')'+ B(q)(e')'+ c(q)(e')', (154)

where A, B,C are scale (g)-dependent variables. With
respect to this parametrization, the scalar curvature is
given by

R(n) = -', ([A' —(B —C)'] + [B' —(A —C)']
+[C —(A —B) ]). (155)

While the squared trace-&ee part of the Ricci tensor is
given by

~~Ric~~ = s([A —(B —C) ] + [B —(A —C) ] + [C —(A —B) ] )
—-'([A' —(B —C)'][B' —(A —C)']+ [A' —(B —C)'][C" —(A —B)'])
+-'[B' —(A —C)'][C' —(A —B)'] . (156)

The Ricci-Hamilton Bow for this metric g exponentially
converges to the fixed point A = B = | = 1, with the
normalization ABC = 1, and with A(g) & B(g) & C(q)
for all i7 [25]. From the above expression for R(rl) it
follows that R(g) monotonically increases &om its initial
value R(q = 0) and exponentially approaches

(157)

This increase is generated by the exponential damping of
the anisotropic part of the Ricci tensor Eq. (156) which is
smoothed by the Ricci-Hamilton Bow and, roughly speak-
ing, is redistributed uniformly in the form of scalar cur-
vature.

Notice that if the anisotropy is large, the actual in-
crease from R(g = 0) to lim„~ R(q) = R may be
quite signi6cant. For instance, if for g = 0, we have
A(g=O) =1, B(g=O) =2, C(g=O) =1/2, weget
R(g = 0) = 7/S, while R = 3/2. The renormalized scalar

I

curvature will have increased by nearly as much as 70%
of its original value.

Thus, if we smooth-out the initial data set (Z
Ss, g, K, p, J), with g the above SU(2) metric, K i,

3g~gk, with k =const, J = 0, and with the matter den-

sity p such that the Hamiltonian constraint holds, we get
that G(g) p(g) monotonically increases as g —+ oo, expo-
nentially approaching a fixed value.

Under the above simplifying assumptions concerning
the shear and the rate of volume expansion, we get

S7tGp = S~G(p)o+ R —(R)o (15s)

and, as remarked above, the correction term R —(R)o
may be quite large, of the same order of magnitude as
the naive average SvrG(p) o. More generally, we can easily
get an expression for the variation of G(g)(p(g)) as g is
increased &om a given scale, say &om gp to a larger scale

g = gp+ bg.
From Eq. (153) we immediately get
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8~G(g)(p(g)) = S~G(»)(p(»)) + 2(B'"B,i, )(„,)bi) + -'((B) —(B ))(„,)farl + O(Bred ) .
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With our simplifying assumptions, that there is no shear and that the rate of volume expansion is spatially constant,
we can exploit the Hamiltonian constraint and rewrite Eq. (159) as

G(~)(p(n)) = G(»)(p(»)) + 4„(B'"B*~)(,.)~n

))2 ~&
(P'(»)) —(P(»))'

~

g + O(g
(p(»))' (160)

Thus, in leading order, a large density contrast
(p (») ) —(p(»)) /(p(») ), at a given observational scale
», tends to reduce the value of G(rI)(p(i))) as the scale
of observation is increased. This reduction effect should
dominate on local scales where large inhomogeneities are
present. On suKciently large scales go, cosmological data
suggest that the density contrast tends to decrease, and
in such a case, as the scale of observation is further in-
creased, Eq. (160) shows that G(g)(p(g)) now tends to
become larger, with deviations IIrom the original value
driven by anisotropies in the curvature.

Thus, the behavior of the product G(g)(p(g)) under a
variation of the observational scale is related to a com-
petition between anisotropy and density contrast, and it
may be of significance in the correct interpretation of re-
cent cosmological data. In particular, a suKciently large
spatial anisotropy (even maintaining local homogeneity)
may increase G(g)(p(i))) in a significant way as i) is in-
creased.

C. The choice af the initial &kata set

The general picture arising from the above analysis is
that we pick up an appropriate initial data set which,
when evolved, gives rise to the real space-time. The
description of this data set and of the resulting space-
time is too detailed for being of relevance to cosmol-
ogy. Intuitively, one would like to eliminate somehow
all the unwanted (coupled) fluctuations of matter and
space-time geometry on small scales, and thus extract
the effective dynamics capturing the global dynamics of
the original space-time. The possibility of actually im-
plementing such an approach is strongly limited by the
fact that we do not know a priori the structure of the
space-time we are dealing with. But we may alterna-
tively decide to handle the unwanted fIuctuations at the
level of data sets, since the time evolution of the initial
data set for the Einstein equations is actually determined
by the very constraints which that data set has to satisfy.
As we have seen above, this can be done quite effectively
in the framework of the renormalization group which is
naturally well suited to this purpose. However, and here
we come to the point we wish to make clear, diferent ini-
tial data sets giving rise to the same inhomogeneous and
anisotropic space-time, may yield smoothed data set giv-
ing rise to diferent FLBW space-times (see Fig. 15). In
other words, the renormalization procedure and the dy-
namics do not commute. The dynamics gives rise to the
crossover between different FLRW space-times or more

generally, between different renormalized models of the
same original irregular space-time.

This situation is in fact not so paradoxical as it may
seem. From a thermodynamical point of view, we have
seen that one of the members of the initial data set,
namely the three-metric g, plays the role of a tempera-
ture. Thus, by varying the metric, one can move through
the possible pure phases of the thermodynamical system
considered. In this sense, a real, locally inhomogeneous
universe is to be considered as akin to a generic complex
thermodynamical system. The possible locally homoge-
neous cosmological models, arising &om it by suitable
choices of initial data set to smooth out, correspond to
its distinct pure phases. The resulting dynamics yields,
in an analogy with common statistical system, a dynam-
ical crossover between different pure phases. This makes
accessible in cosmology too, the whole subject of critical
phenomena with a plethora of interesting consequences.
Critical phenomena are always manifested macroscopi-
cally, as phase transitions are collective phenomena in
their nature. This aspect may turn out to be of impor-
tance for the study of structure formation and clustering
in the universe.

These remarks relate familiar statistical mechanics be-
havior to the most delicate aspect of coarse-graining in
cosmology, namely, its covariance properties [36). It is
clear that if we adopt the standard position of demanding
full (space-time) covariance of the coarse-graining proce-
dure adopted, then a renormalization group approach as
ours is on a rather shaky ground. However, from a phys-
ical point of view, coarse graining in cosmology naturally
makes a spatial three-metric (rather than the space-time
metric), act as a running coupling constant. This in-
dicates that the averaging issue is deeply connected to
the optimal choice of the slicing (the time coordinate),
with respect to which the coarse-graining must be imple-
mented. For instance, in our approach, different choices
of the slicing may drive the system to quite distinct Axed
points under the renormalization procedure. Thus our
viewpoint is that as long as we address the averaging
issue in cosmology we cannot use full space-time covari-
ance at a naive face value, and progress on this problem
is strictly related to a proper selection of a physical kame
of reference with respect to which the averaging is carried
out.

Thus, the issue that now needs consideration concerns
the existence of natural initial data sets, in the real lumpy
universe, with respect to which the above renormaliza-
tion group smoothing can be implemented. As remarked
previously, the formalism is particularly well suited to a
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constant, and finally also f;~ (t, x") is nearly independent
of time, because the shear is nearly zero. These remarks
suggest that the slices of constant time characterized in
this way are, at least in our observative domain, nearly
spaces of constant curvature, so that they are the most
suitable for implementing the above smoothing proce-
dul e.

In this connection note that for an initial data set as-
sociated with such a surface of constant matter density,
some of the formulas of the previous sections are simpli-
fied. We refer in particular to the expression Eq. (160)
providing the scale dependence of G(rI) (p(g)), which now
reduces to

(162)

FIG. 15. The time evolution of an inhomogeneous and
anisotropic initial data set and its Ricci-Hamilton renormal-
ized counterpart. Note that (M, g ) depends in a sensible
ioay on the particular initial data set (Z, g, K, p, J) which is
renormalized according to the Ricci-Hamilton Qow. Different
initial data sets, corresponding to the same inhomogeneous
and anisotropic space-time (M, g ), may generate Chstinct
model space-times (M, g( ~). This seemingly paradoxical sit-
uation has a natural explanation in terms of the RG approach.

data set supported on slices of constant extrinsic time
(viz. , spatially constant rate of volume expansion, k).
This is so simply because the Ricci-Hamilton flow, char-
acterizing the scale dependence in the fluctuations of ge-
ometry, is most conveniently normalized to preserve vol-
ume. However, depending on the particular geometry
we wish to smooth, diferent normalizations can be en-
visaged too [25], and the relevance of constant extrinsic
time initial data set can be simply traced back to its
importance in the standard analysis of the initial value
problem in relativistic cosmology.

A suitable slice of a kame comoving with matter is
another natural choice that almost immediately comes
about. However, in general, we cannot choose surfaces
orthogonal to the cosmic fluid flow lines, since if rota-
tion is present, they do not exist. A more proper choice
would be to select the surface of constant matter density
as the surfaces of constant time (see [37] and references
quoted therein). It has been argued recently that this
choice is rather optimal. In such a slicing [37], and in the
observable domain, the space-time metric takes the form

(161)

where n = 1, 2, 3, 4, i, j = 1, 2, 3. Prom an obervative
point of view, the function A (x ) is nearly constant
since the acceleration of the corresponding timelike con-
gruence is small; Sz(t, x") is nearly independent of time
since the expansion of the congruence is almost spatially

Thus, for an initial data set associated with a sur-
face of constant matter density, the product G(q) p(rI)
increases with the averaging scale as we average out the
local anisotropies in the geometry. And, as remarked in
the preceding section, Gp —Gp can be quite large, of the
same order of magnitude of Gp, if f (2:",t) is sufficiently
spatially anisotropic.

Finally, one may wish to choose initial data set corre-
sponding to a frame minimizing the anisotropies in the
CMB radiation. This is characterized by that unique
four-velocity which eliminates the CMB dipole. This cor-
responds to a family of observers moving with the back-
ground radiation. This choice has an advantage that
it can be accurately determined by local observations,
but it is manifestly not very suitable to use in the Ricci-
Hamilton formalism, as developed here.

VII. CONCLUDING REMARKS

According to the contents of this paper the key idea on
which our whole analysis rests is that of RG, namely, the
involved physics is that of the running (scale dependence,
be it energy or momentum scales) of the couplings and
the relevant quantities, accordingly. In each case it is
the presence of "fluctuations" (of any kind) that requires
a scale-dependent redefinition ("dressing") of the physi-
cal parameters which can, in turn, modify them, as well
as the very structure of the theory, in a nontrivial way.
Applications of the RG to particle physics have usually
been in the ultraviolet limit (e.g. , in @ED, @CD, GUT)
whereas in condensed matter physics they have been in
the infrared limit, in the study of critical phenomena and
phase transitions.

We have taken this infrared direction is cosmology.
The application of the concept of running of the physical
quantities, motivated by RG, appears to be a new im-
portant feature in a cosmological setting, providing (at
least) partial explanation of some controversies of stan-
dard cosmology, which we are going to discuss below. Let
us erst point out that generally running, also, of cosmo-
logical quantities is as such motivated by the asymptot-
ically &ee higher derivative quantum gravity, according
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to which the gravitational constant is asymptotically Bee
[38]. Taking into account this fact, of running G, one can
explore its consequences in the standard FLRW cosmol-
ogy (cf. [39,40]).

A word of caution is in order since we do not have
an ultimate theory of quantum gravity (QG), such ap-
proaches to cosmology are not on a rigorous basis fm. om
a theoretical point of view and should rather be taken
as phenomenological. In principle, once we have a valid
QG theory will one be able to directly derive a RG equa-
tions for various cosmological quantities. Although we
have taken here a more standard view in which a split
exists between the background (associated with infrared
efFects) and renormalization of fluctuations, there may
well be scales where such a split is not sensible at all.
However, a RG capable of interpolating between the qual-
itatively difFerent degrees of &eedom in a parameter space
of gravity, remains to be developed which may after all
be possible as well after QG theory is within our reach.

One of the major issues in modern cosmology is con-
cerned with the value of the Hubble constant and the ap-
parent conHict between the observed age of the Universe
and the predicted one, in the standard FLRW model,
based on the recent measurements of the Hubble con-
stant. Namely, the recent measurements of the Hubble
constant using the Virgo cluster (distance 15 Mpc)
strongly support that the Hubble constant Hp has some-
what larger value h = 0.87+0.07 [41]. At the same time,
other distance indicators yield a systematically smaller
value of Hp, e.g. , around 0.55 + 0.08 using NGC 5253 at
a distance of 4 Mpc [42], while an analysis of the grav-
itational lensing of quasistellar object (QSO) 0.957+561
indicates h = 0.50 + 0.17 [43]. When one now calculates
the age of the Universe, using the larger value of Hp, in
the FLRW model one runs into a serious problem, as the
predicted age turns out to be too small to accommodate
the measured ages ( 14—18 Gyr) of the globular clusters
in our galaxy [44,45].

Moreover, typical inferred values of the density param-
eter Oo ——po/po" [po is the present value of the to-
tal energy density of the Universe and p&" its present
critical energy density, defined as po" ——3Ho/(8mG)
where G is Newton's gravitational constant] increase cor-
respondingly with the increasing size of various struc-
tures (e.g. , [46]). These measurements can at most ac-
count for a fI..action of Op which, according to the inHa-
tionary paradigm, should be equal to 1. This in turn is
one of the reasons for postulating the existence of non-
baryonic dark matter (DM) which is also required to ex-
plain the structure formalism.

Various people have since then looked at possible the-
oretical alternatives to these DM scenarios, such as, e.g. ,
introducing a cosmological constant in the Einstein equa-
tions or ad hoc modifications of the usual theory of grav-
ity. The important point in this respect may as well be
the one addressed in this paper. It is usually taken for
granted that, on large scales, the Universe is described by

h is ho measured in units of 100 km/sec Mpc.

the FLRW solution. There is no alternative really since
we do not know any solution of Einstein's equations capa-
ble of describing a clumpy universe. Nevertheless, even in
the absence of explicit fine-grained models, we would like
to know how in principle, and when, one could extract a
background model &om an inhomogeneous one, such that
(i) they both obey, "approximately, " the Einstein equa-
tions despite the averaging or smoothing involved, and
(ii) observational determinations of cosmological param-
eters (Ho, Ao, . . .) correspond in a sensible way to that
mathematical averaging procedure. Thus an issue of- im-
portance for cosmology [47], is the question on what scale
is the FLRW model supposed to describe the universe.
Likewise, what averaging scale are we referring to when
we give the value of Op, whose definition necessarily refers
to an idealized, i.e. , smoothed background model?

There has been recently an increased eKort in this di-
rection with some interesting results, as, e.g. , that the
coarse-graining eR'ects could be non-negligible in the con-
text of affecting the age of the universe. For example, [48]
considered a model, of locally open (underdense) universe
embedded in the spatially fl.at universe, in which the ex-
pansion rate in our local universe is larger than the global
average. A similar model was considered in [49], where a
local void in the global FLRW model was studied and the
inhomogeneity described by the Lemitre- Tolman-Bondi
solution. The results indicate that if we happened to live
in such a void, but insisted on interpreting the observa-
tions by the FLRW model, the Hubble constant measure-
ments could give results depending on the separation of
the source and the observer, providing a possible expla-
nation for the wide range of their reported values and
capable of resolving the age-of-Universe problem.

On the other hand [39] studied the QG effects at cos-
mological scales (the phenomenon in question is exactly
that of quantum coherence, known to happen on macro-
scopic scales of the order of crn), assuming asymptotic
freedom of the gravitational constant and incorporating
running G, according to the appropriate RG equations,
into the FLRW model. Such G takes the value of New-
ton's constant G~ at short distances but then slowly rises
as distance increases. However, as mentioned in [39],
the RG equations used there might not be applicable in
the infrared regime studied, but these concerns were put
aside, having in mind the absence of any other available
P function for QG in the in&ared regime.

One can also approach the averaging problem, modify-
ing the FLRW metric (or equivalently cosmological prin-
ciple) and the Einstein equations, by an introduction of
a generalized scale factor which depends both on t and
the scale r [50]. This introduces the scale dependence of
(Gp) and running of other cosmological quantities such
as Hp, Op, and the age of the universe tp, as functions of
distance scales.

Let us note that this picture of running of cosmological
quantities comes about naturally in our approach which
is physically motivated by RG, namely, due to increas-
ing of the gravitational constant with scale (and possibly
increasing amount of DM), as discussed in the preced-
ing section, Op has electively increased too. Moreover,
since the scale factor is governed by the scale dependent
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(Gp), it now seems to depend on the scale r as well, i.e. ,
it increases at any Axed time with the increasing dis-
tance. Consequently, the value of Ho is not the same
everywhere in the observable Universe and depends on a
scale where it is measured. Moreover, since Ho 1/to
the Universe becomes older when its age is estimated on
a smaller scale. This is not to be taken as implying that
the age depends on where one calculates (every observer
using the same scale r at some time tq will obtain the
same age). The key point to emphasize is that, having
in mind the RG arguments and interpretation, a direct
comparison of cosmological quantities makes sense only
when they are measured (or calculated) with respect to
the same scale, since the same quantity can take difFerent
values at difFerent scales.

Notice that independently, quantum cosmology also
advocates, although in a difFerent context of bubble uni-
verses, a possibility that we may live in a Universe in

which the value of Hubble constant and the measured
density are difFerent in difFerent places and in our local
neighborhood Oo may well be less than I [51]. This makes
our proposal even more promising.
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