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Early stages of relativistic fireball expansion
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The expansion of a relativistic fireball is investigated analytically in the frame of relativistic
hydrodynamics with an ultrarelativistic equation of state c = 3P. Equations of spherical flow with
Lorentz factors p )) 1 are reduced to a simple form, and we present their general solution. We
also get a particular solution, describing a thin spherical shell moving with ultrarelativistic speed-
the leading part of a relativistic fireball. A self-similar solution for the central part of the fireball
is matched with the outer shell solution, thus giving the general picture of expansion, which is
in good agreement with numerical results. The obtained solutions are related to early stages of
fireball expansion, appearing in p-ray bursts of cosmological origin and within multiple production
of particles.

PACS number(s): 47.75.+f, 03.30.+p, 13.65.+i, 95.30.Lz

I. INTRODUCTION

The rapid release of a large amount of energy in a small
volume leads to the formation of a relativistic fireball,
where the temperature exceeds the rest-mass energy of
particles [1,2]. Such a release is expected in the cosmo-
logical model of p-ray bursts (GRB's), where an energy

10 ergs is produced in a small volume comparable
to the volume of a neutron star with a radius 10 cm
[3,4]. The energy concentration in such a fireball is so
high ( 10ii g/cm ) that in initial stages of expansion
it is always opaque and can be treated in the kame of
relativistic hydrodynamics [5,6] as an adiabatic expan-
sion into the vacuum. In the simplest case, the outBow
is spherically symmetric.

There are self-consistent analytical solutions for rel-
ativistic expansion into the vacuum, but only for plane
geometry. Namely, an approximate solution for the plane
ultrarelativistic case was derived in [7) and applied to the
initial out8ow after multiple particle production. An ex-
act solution for the plane-parallel relativistic expansion
into the vacuum was obtained in [8]. Reference [9] treated
analytically the spherical problem of black hole evapo-
ration, where the matter expands initially "slowly" and
forms a sort of atmosphere, decelerating the following
motion. Thus no consistent analytical solution for spher-
ical expansion into the vacuum has been constructed so
far. In this work, we present an attempt of that kind.

A qualitative analytical and detailed numerical inves-
tigation of the fireball expansion as applied to the GRB
events has been done in numerous works [10—12,1,2]. The
results of numerical modeling show that after a short re-
arrangement phase, a spherically symmetric relativistic
fireball acquires a rather universal structure. Most mass
and energy are concentrated in a thin shell which moves
ultrarelativistically: nearly at the speed of light c. The
central density and temperature decrease with time much

faster than those in the leading shell.
Collecting expanding matter into a shell is a purely rel-

ativistic eKect and occurs because there exists a maximal
speed of motion c. This e8'ect could be quantitatively
explained as follows. As long as the released energy is
much smaller than the rest mass of the object, Ep ((Mp
(we use units with c = 1), expansion is nonrelativistic
and typically close to the self-similar regime [13]. At any
moment of time, density and pressure have domed radial
profiles (maximuin at the center), while velocity linearly
grows &om the center to the edge and is higher as the
value of Ep gets larger. If we now formally apply this
nonrelativistic solution to the case Ep ))Mp we shall ob-
tain that most layers (except for the very central ones)
have velocities v ~ c even in the earliest stages of expan-
sion. This means that in reality all these layers will move
together with v c, i.e., expand in the form of a shell.

Some processes leading to the appearance of the fire-
balls, such as multiple production of hadrons by electron-
positron annihilation [14,15], contain stochastic ele-
ments, producing an uncertainty in the initial structure
of the fireball. In these cases, initial profiles of hydrody-
namic functions can be chosen only very schematically.
The best justification for any choice, however, is that the
following motion appears to be rather insensitive to the
initial profiles. As we mentioned above, numerical cal-

The hadron outQow after e -e+ annihilation would be
spherically symmetric, because both original particles disap-
pear, and information about initial anisotropy in their motion
is lost. Of course, the applicability of the hydrodynamic ap-
proach to such outflow is strongly restricted and is related
to huge initial energies. However, in a number of works (see
[14,15] and references therein), hydrodynamics is employed to
describe the earliest stages of hadron motion in this case.
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—(4vp c) + —[(4v p +1)c]+
v2p2

Bt Br r =0,

—[(4p —1)s]+ —(4vp s) +B 8vp e
Bt Br r

=0. (1.2)

Here, v is the hydrodynamic velocity, p=(1—v2) ~~2 is
the Lorentz factor, and we use units with c = 1. Multi-
plying (1.1) by v and subtracting (1.2) we arrive at an
entropy (s = const x s ~ ) conservation equation

vga /' + —yves ~ = 0. 13

We can write separately the equation of the baryon
charge conservation:

B B 2—(pNb) + —(vpNb) + —pv Nb = 0,
Bt Br r (1.4)

where Nb is the baryon charge density (excess of baryons
over antibaryons) in the comoving f'rame.

II. EQUATIONS OF ULTRARELATIVISTIC
SPHERICAL FLORET

In this section, we derive hydrodynamic equations for
ultrarelativistic motion: v 1, p )& 1. In the next

culations with difFerent initial conditions have brought
out that, as t)) Ro (where Ro is the initial radius), the
fireball looks rather universal: an ultrarelativistic shell
and rarefaction at the center. We can expect, therefore,
that this structure is mainly determined not by the initial
conditions but by general properties of expansion; these
properties could be mathematically associated with the
basic structure of relativistic fluid equations.

In this work, we construct an analytic solution for adi-
abatic relativistic spherical expansion into the vacuum.
This solution consists of two parts. First, we derive
equations (linear first-order partial differential equations
with constant coefficients) of relativistic spherical ffow
with Lorentz factors p)& 1. A general solution of these
equations is presented in analytical form. We formulate
boundary conditions which allow us to get a particular so-
lution, describing an ultrarelativistically moving shell-
the main part of the relativistic fireball. Second, we con-
struct a self-similar solution of relativistic Quid equations
with arbitrary p and apply it to the expansion of the
matter between the center and the shell. Matching of
these two solutions gives the general picture of expan-
sion, which agrees with the results of numerical calcula-
tions [1,2]. Note that the outflow cannot be described
by a self-similar treatment alone, since the total energy
within each similarity solution diverges (see Sec. IV and
[15]), which actually means that the value of the initial
radius is important for the fireball structure.

In what follows, we consider spherical adiabatic Qow
with an ultrarelativistic equation of state s = 3P (s is
the energy density in the comoving kame, and P is the
pressure). Equations of conservation of momentum and
energy ffuxes read [16]

section, we apply these equations to the main part of the
expanding Qow —the leading shell.

For any ultrarelativistically moving layer, its distance
( = t —r from the light surface (r = t) approaches a
constant [7]: d(/dt = 1—v = 1/(2p2) « 1. This makes
( a suitable variable related to a Lagrangian coordinate.
Introduce the variables (( = t r, —r) instead of (t, r) in
Eqs. (1.1), (1.2). After subtracting these equations &om
each other and leaving the second one and the difference
of them, we obtain

B B 2 8vp2e
4p (1—v) —1 s + —(4vp s) + =0,

O( Br r
B—4p (1—v) ~ + — 4vp (1—v) —1 e) (2.1)

O( Br
8+ —v(1 —v) ps = 0.

For the case of plane geometry, there exists an exact ana-
lytical solution [8], describing expansion into the vacuum
with arbitrary p. In the spherical case, the last terms in
(2.1) break this opportunity. So we use the approxima-
tion p))1 similar to [7] with v 1, (1—v) 1/(2p ),
which gives

0.

(2.3)

(in the plane case, p oc ~r). To describe the particular
structure of the flow, we introduce the new functions

g = p /p, sy = ET (2.4)

and a new variable y = 1/r (instead of r ). Substitution
of (2.4) into Eqs. (2.2) reduces the main terms of the
type of (2.3) and yields

Osg O(sg g)
Ou

O f&yl Os'y

O( &g) Ou

Transferring in (2.5) to the variable r instead of sq,

(2.5)

—4w~i = ~io~ is an arbitrary constant, (2.6)

Be B 2 8—+ —(4p b-) + —p s = 0,
O( Or r

2.2
O (b) Os 4s—

/
—,/+ —+

O( (p') Or r
Similar approximate equations for the plane-parallel case,
treated in [7], do not contain the last terms of (2.2) (with-
out derivatives), which are of the main order in the spher-
ical case. We use here another procedure for finding an
analytical solution.

For spherical motion with p ~ oo, , the momentum and
energy equations (1.1), (1.2) are reduced to a divergent
form, leading to the relation p s = const/r2. On the
other hand, at late stages of expansion with small pres-
sure, any element of matter expands uniformly in the
comoving kame, so that its thickness grows as h, ocr,
while in the laboratory kame, the thickness h~ b of the
layer remains constant. Recalling that h, = ph~ b, we
get the basic relations of ultrarelativistic spherical flow
(see also [7,1,2]):
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we obtain,

&T 197 Og

B( By By

gg 2 f97 19g—+ 12g —4g 0 .
(2.7)

and exactly the same equation for yq. Both equations
are solved using the standard procedure of variable sep-
aration. Substituting their solutions into (2.11), we get
relations between the constants of integration and obtain
a general solution in the form

Assuming that the Jacobian A = B(r, g)/B((, y) is not
equal to zero in the case of interest, we make the Legendre
transformation of Eqs. (2.7), i.e. , replace the functions
and variables. As a result, we get equations for ((r, g)
and y(r, g):

"(xi(~)g~'~'+ x~(~) g~'*)&~,

(2.15)

+ (302+2~) x~(~) u '")&~

y] —— Gy 3 ]+20. yj o. g~'

By B( B(—+4g —+
Og Og O'T

By 2 0( B(+12g2 —+4g = 0.
07 Og 197

Using the variable p instead of g,

and introducing the function

y y
yy 2g 2gpe & 27'

g = gp e ~, gp is an arbitrary constant,

(2.8)

(2.9)

(2.1o)

t —r = y~ O. — +g2 O. — da. ,

2
=

4 31+2& Xln

+ (3P, + 2a) yg(a) (
—

) ) dn

(2.16)

Here, pi (n) and p2(n) are the roots of the square equa-
tion 3(P'+2P)+( —n'+4o) = 0, while gi(n), y2(n) are
arbitrary functions determined by the initial and bound-
ary conditions. In the physical variables (t, r, s, pj, the
general solution can be written as

2 + + + 2yj —— 0
B( B( Byi

07 Bp

3 +2 + = 0.B( B( Byi
gp 87- 07

(2.11)

This is a hyperbolic set of equations with the eigenvalues
~1/~3 and the characteristics

instead of y, we come to a set of linear partial differential
equations with constant coefFicients:

B' f(xi, x2)
BXy OX2

1—f(xi x2) = 0 (2.17)

and the same equation for the function f (xi, x2), where

For getting a particular solution, we use the set (2.13)
with characteristic variables x~, x2 . After differentiating
(2.13), we obtain separate equations of second order for
((xi, x2) and for yi(xi, x2) . Each of these equations
can be tranformed to the classical telegraphic equation

xi ——r — = const,
3

x2 ——r + = const .P
3

(2.12)

Using the pair of characteristical variables (xi, x2) in-
stead of (p, r), we rewrite the set (2.11) in the most
compact form:

g —(1+~3/2) ~1 —(1—~3/2) x2 PrQ(Xj ) X2) )

g —(1+~3/2) a1 —(1—~3/2) x2

The Riemann-Green function of Eq. (2.17) is [17]

(2.18)

&(» *~ xi x.) = Io( (*i—xi)(» —x')) (2»)

(
I

1 —~ I ( — ~yi = -yi,
B ( 2 ) 1~1+

I (+ yi = —yi .
g3) y3

(2.13)

where Ip is the Bessel function of an imaginary argu-
ment. The relations along the characteristics x2 ——const
and xq ——const can be obtained by changing partial
derivatives in (2.13) to full derivatives and returning to
the variables (rp, y) from (2.10) and (2.12). These rela-
tions can be also reduced to

Equations (2.13) [or (2.11)] with the variables defined in
(2.4), (2.6), (2.9), (2.10), and (2.12) describe relativistic
adiabatic spherical flow with the relativistic factor p)) 1 .

A general solution of (2.11) can be obtained as follows.
Increasing the derivative order we get a separate equation
of the second order for (:

dy = —4gp 1— 3 2 e

dy= —4gp 1+ 32 e ~d

(x2 ——const), (2.20)

(xi ——const) . (2.21)

III. ULTRARELATIVISTIC SHELL

, +2
I

—I, —4
[

=o (2.14)
f'B ( Bg) (B ( B(i

&p Bpj (Br' B
The outer part of relativistic fireball (the shell) con-

tains most of the matter and moves ultrarelativistically.
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We apply the equations of the previous section to de-
scribe the structure of the shell and must formulate the
initial and the boundary conditions.

Assume that both the leading and the trailing edges of
the shell can be treated. as &ee boundaries, i.e., the edges
with the vacuum. For the leading edge, the assumption is
valid as long as the ambient density and pressure can be
neglected. As for the inner boundary, we actually assume
that the central part of the flow (inner with respect to the
shell) contains comparatively small energy and entropy,
and this flow cannot essentially effect the motion of the
shell. This assumption agrees with the following results
of our treatment and with numerical results [1,2] as well.

Free boundaries correspond to the characteristics of
fluid. equations. We solve here a boundary problem in the
variables xi, xz, avoiding initial conditions in the (t, r)
plane, which means that we choose boundary functions
on two time-dependent spherical surfaces. Note that we
thus consider an evolved expansion at t )) Bp with the
structure of the fireball, shaped by the expansion process
itself. So really the boundaries should be mathematically
produced by the basic structure of the outflow equations,
i.e. , to coincide with the characteristics.

We specify boundary conditions along x1 ——const =0
and xz ——const = 0 and solve Eq. (2.18). Here, the
constants are taken equal to zero; as a whole, we can
choose them arbitrarily by redefining the &ee coeKcients
sip and go in (2.6), (2.9). For f(xi, xz), the problem
can be formulated as

At the outer boundary we have

rp = ~3r )) 1 x& ——r+ = 2r )& 1 (3.4)~3

and. , at the inner boundary,

p= —v3r)) 1, x1 ——w — =2m )) 1.
i/3

(3.5)

From relations (2.6), (2.9) we get the connections on the
outer boundary,

—2X2= G'1pe

&+p/ ~3 2T
)

at x1 ——0
(3.6)

and, on the inner boundary:

e '=e+~/~=1
)

~—v/v&
)

(3.7)
g=g e 2K/~1 = ~1oe at x2 ——0.

I et us suggest that the matter at the outer edge ap-
proaches the speed of light c, and so we choose, for this
boundary,

( = (~'l = (., + (.e
—"*', x1 ——0, (3.8)

where ( i, (, and k are constant parameters defined
below. Solving (2.21), we have, for the outer boundary,

g2 f
19x1 i9x2

1

4
0 (1)

91 = 91 = &aQ~e y = k . (3.9)
~a+ 2

3 —k
f .. . = fi(xz)

f .. . = fz(xi),

(3.1)

where the functions fi and fz present the boundary
conditions: fi(0) = fz(0) . This is a characteristic
Cauchy problem [17,18], which can be solved by a stan-
dard tecnique of Riemann-Green function (2.19), giving

1——ln
4 &10

1 sr'——ln
10

(3.3)

at x1M0 or x2M0

f(xi, xz) = fi(0)Io (+xi xz )
*' d fi(x~) Io( xi (x~ —xz) ) dxz

0 2

Ip( (xi —x', ) xz) dx', . (3.2)
*' d f~(xi)

1

The same solution is valid for the function f with bound-
ary functions fi(xz) and fz(xi) . Let us specify the
boundary functions fi, fz, fi, and fz .

The leading edge of the shell is associated with the
boundary xi ——0, i.e. , r = y/~3, while the inner edge
is represented by the boundary xz ——0, i.e., r = —p/~3.
Formation of the cavity inside the shell and vacuum out-
side implies a condition of decreasing energy density e to
zero on both boundaries. We get then, from (2.4), (2.6),

n = — = 11+-
I

r
t g r) (3.10)

in any self-similar relativistic problem, since there exists
a dimensional parameter of the speed of light. The inner
boundary can be characterized by the fixed value of gfit.

(3.11)

This implies dy = —(bs&/(z) d( to be substituted into
Eq. (2.20) and thus yields

( ((z) ( ~3 xg/z bfit

2gp (2 —v 3)

- 1/2
. (312)

In order to have decreasing y (increasing r) on the outer

edge, y g yi e~~ "& ', we must choose k ) v 3,
what implies ( (0, y (0 (yi must be positive). This
means, according to (3.8), that the difFerence (t —r) for
this edge increases with time, tending to the constant
value ( i, when v rapidly approaches c.

As for the trailing edge, we assume that expansion of
the innermost layers of the shell approaches a self-similar
character. In the next section, we construct this self-
similar solution in detail. Here it is enough to note that
the (r, t) dependence is reduced to the dependence on
one variable
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((2) ( ~3 x~ /2 (3.14)

Here, (bi is an arbitrary constant, negligible when com-
pared to the first term (as zi )& 1). As we argue below,
boundary relation (3.14) with (bi $0 could be more sen-
sible physically.

As a result, using (2.19), (3.8), (3.9), (3.13), (3.14) we

get the following relations for the boundary functions:

f ( ) (( + ( —k%2) —(i—~3/2) x2

—(1+@—~3/2) x2

f ( ) ( —xy + ( —(1+~3/2)xy
(3.i5)

fg(zi) = (2 —~3) (be

The conditions of function matching fi(0) = f2(0) and

fi(0) = f2(0) determine the constants

(2 —v 3) gb/0 (3.i6)

2gp

:—(o

( 2 —i/3 k —v3 l
j 1+

2+~3 k )
(3.17)

Here, one of the constants, ( i ) 0 or (bi ( 0, can
be chosen arbitrarily. At the same time, their differ-
ence (p is uniquely defined and determines the char-
acter length within our solution; see also Sec. VI and.

VII. Below we treat two versions: ~i ——0,

and p —ai & bi = O

The first variant could be sensible for the following rea-
sons. As we take boundary condition (3.8) with z2 » 1
[see (3.4)], the distance (( ) between the light surface
(r = t, i.e. , ( = 0) and the leading edge of the shell re-
mains nearly constant and equal to ( i . Our solution
does not describe the variation of this length throughout
expansion (from the iiutial value —1). Really, any shift
between the light surface and the leading front could be
physically established, in the main, at the earliest stages
of expansion t & Bp, when our treatment does not hold.
So within our asymptotical solution for t &) Rp, we
could specify the light surface coinciding with the leading

Formally, there is also a trivial solution ( = const, but
it corresponds to y = 1/r = const and is not the case of
interest when we consider expansion. Definition (2.10),
together with (3.11) and (3.12), gives

~3 Xi

yi ——yi = = (2 —v 3)(be~ '/ . (3.13)
2go

Having in mind that the self-similar regime and, hence,
relation (3.11) should be approached asymptotically at
sufficiently great times t » Rp (where Rp is the initial
radius of the fireball), which corresponds to (( ) )& 1 as
zi » 1 [see (3.5)], we can treat (3.12) as the main-order
term of the solution and take ((2) in the form

boundary and take ( i ——0. In this case, (o is associated
with the shell thickness h, h, ~~ in the laboratory system.
The value of h, h ~~ remains nearly constant during ex-
pansion (see Secs. VI and VII) and can be represented
therefore within our treatment.

If we accept the second variant with (bi ——0, the inner
boundary conditions approach the self-similar character
as directly as possible. But in this case, we must actually
expect that (p determines simultaneously the thickness
of the shell, which is constant and can be described by our
solution, and the shift (( ), which is formed at t = Rp
and cannot be described by our solution. A particular
choice of ( i and (bi could be done by fitting the ex-
act initial-stage solution (t Rp) with our solution for
evolved motion. We do not need, however, this operation,
beacuse our results are insensitive to this choice: All La-
grangian distributions coincide, while spatial profiles are
only shifted with respect to each other.

The solution (3.2), (3.15) gives a complete description
of the expanding shell and is characterized by four pa-
rameters: sip, (p, bid, and k.

Spatial profiles of hydrodynamic functions at any mo-
ment of time t can be found. from the equation

1+ — — t = 0
g

(3.i8)

which just expresses the definitions ( = t —r and y =
1/r . As soon as the values ( and y are specified as
functions of zi and z2 by means of (3.2) and (2.18),
Eq. (3.18) gives the relation between zi and z2. We
can, for example, take a range of values xi and obtain
the corresponding values of z2 by solving (3.18). The
sets of four variables zi, z2, (, y completely determine
the solution for the ultrarelativistic shell. Using (2.12),
we can change variables in the solution from (zi, z2) to
(7, p), so that (2.18), (2.10) give

f(z, V) = (e T
f(~, V) = e' (3»)2~'

Finally, using definitions (2.6), (2.9),

—2T= 2

&io

1
~V'

r ~go
(3.20)

we find solutions in the form

~ = ~iogo ~4 (3.21)

IV. SELF-SIMILAR SOLUTION
FOR RELATIVISTIC SPHERICAL FLOW

In this section, we construct a self-similar solution of
relativistic fluid equations with arbitrary p . Later we
shall use this solution to describe the central part of the
relativistic fireball. We take the self-similar variable and
self-similar functions in the form
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v = V(I7), s = Z(g), Nb = A'b(Ill).
3 m/4 (4.8)

(4.1)

dV
V dg

1 —V2 8V —3m' —(8 —3m)ilV
4V 3 (V —rI)2 —(1 —il V)2 (4 2)

rI d (p2E)
dg

(4.3)

(3m 4) V~ —
(

—
2

—8) gV+ ( 2
—4) qV~ —m

3 (V —rl)2 —(1 —il V)2

d (PAb)
PA'b dil

(2 — ) V+ g ddV

V —g
(4.4)

The Lorentz factor is expressed by p = (1—v2)
(1—V2) i/2 . The particular case of this solution, withV:—rI, m = 4, is described in [15]; in this case, Eq.
(4.2) becomes an identity and two other equations are
reduced to the quadratures. Such a self-similar problem,
with equations analogous to (4.2)—(4.4) (with somewhat
different notations), is presented also in [19]. However,
the author of [19] does not consider expansions at g-+1
(see below) and does not indicate and comment on the
crucial fact that the total energy and entropy diverge in
this limit. Note that the last fact necessarily calls for
another, not a similarity, treatment for the outer part of
the outBow.

The denominators on the right-hand sides of (4.2)—
(4.3) become equal to zero when

Here, Zp [ergcm™ 3], Abp [cm" s], m, and n are ar-
bitrary constants. The variable g varies &om 0 at the
center to g „&1 in the outermost layers. In terms of
(4.1), Quid equations (1.1), (1.2), (1.4) are reduced to

Correspondingly, the energy density and baryon concen-
tration at the center decrease with time as

s(r=0) = Zpt Nb(r =0) = Abp t / . (4.9)

A self-similar solution for V(rl) and t (I7) is completely
determined by only one parameter —the index m (when
passing to physical values, we should specify also tp).
V(I7) for the different m is displayed in Fig. 1. Charac-
teristics (4.5) are shown by dashed lines.

In the outer part of the self-similar solution g 1, Eqs.
(4.2)—(4.4), have a node with V 1, and all solutions
come to this point; see Fig. 1. Introducing

b=l —I7&0, ~v ——1 —V&0, (4.10)

we get an approximate form of Eqs. (4.2), (4.3) near this
point (b, bv « 1):

d V d bv 4 b bv —(3m —4) bv2

drI db 2 (b2 —4bbv + b2)

1 d (p 8) (2m —4) b —(7m —12) bv
2 (b2 —4bbv + bv2)

(4.11)

with p 1/i/2bv . There are two corresponding asymp-
totes. The erst is

bv —- Via (b « 1), (4.12)

1.0—

where Vi is the positive root of the square equation
2Vi + 3Vi(m —4) —2 = 0 and ni is determined by the
relation ni ——2 [4—m+ (2m —4)Vi] / [(3m —4)Vi —4],
while Si is arbitrary and can be found, for any m, by

V —g
1 —gV (4 5) 0.8—

i.e. , at the characteristical surface, which moves by a sim-
ilarity law (il = const) with the sound speed relative to
the matter.

We look for solutions with zero velocity at the center.
The corresponding asymptote at g~0 is

0.6—

0 4

3—rt
V —il, E ErI Ab A rI 4-

4 ) (4.6)

where the parameters 8, and A, are defined as follows.
Within the expansion (4.6) these parameters are free.
Note, however, that the self-similar equations (4.2)—(4.4)
are invariant with respect to the scaling of the functions
S(g) and Ab(g) by constant factors. It means that dif-
ferent values of 8 and A only redefine arbitrary coef-
ficients Ep and A'bp in (4.1); so we accept

(4.7)

Assuming that the number of baryons at r =0 is a finite
nonzero value, we take

0.2—

Oo0 I I I I I I I I I i I I I I I I I I I [ I I I I I I I I I ) I I I I I I I I I i I I I I I I I I I

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 1. Self-similar velocity V(I7) for solutions with dif-
ferent m [see (4.1)] (solid lines); from top to the bottom:
m = 8 ) m„i, m = m«i = 4+4/~3 (bold line), m = 5,
m = 3, and m = m„q = 4 —4/~3. Dashed lines show the
characteristics (4.5). Critical solutions m = m, i,2 approach
the outermost point (q = 1, V = 1) along the characteristics:
with the inclinations V/I1 = 2+v 3.
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numerical integration of the self-similar equations; inte-
gration starts from (4.6), (4.7).

We should distinguish two critical solutions with

m=m„, , =4+
3

(4.is)

1
bv —V2 b2,

b 2V2
(4.i4)

at b « 1, where V2 and E'2 are free and also can be
found numerically.

For the critical solutions, we have bv (2g~s)8 and

1/ 2(2+~3) b as bm0. An expansiozi of the type
(4.12) for E(g) should be obtained &om (4.2), (4.3) with
account of the next-order terms, since the numerator and
denominator in the second equation of (4.11) vanish in
this case. As a result, we have bv (2~i/3)b —(4~
5~3/2)b2 and

2 5~2vS
3 2~ i/3

(4.15)

for 8 « 1, m = m„. For the upper sign, we have
thus o.q„3.821; numerical integration, beginning
from (4.6), provides: Zi„0.034. For the lower sign,
o'2„~ 1.512.

Thus self-similar How is determined by two quantities:
the index m and. the dimensional constant E'p which gives
only scaling; see (4.1).

All outer asymptotes show that the total energy within
0 & g & 1 diverges for any m, and so a self-similar so-
lution cannot ultimately describe the Greball expansion,
but could be joined to another solution for the outermost
part of the Row.

which reach the outermost point (rj = 1, V = 1) along
the characteristic curves (4.5): with the inclinations
Vi ——2 p ~3. As we show below, a critical solution
with m = m„i ——4 + 4/~3 will be of special inter-
est for our problem; in Fig. 1, this case is shown by a
bold line. Critical solutions separate diBerent types of
self-similar solutions, starting &om (4.6), (4.7). As long
as m„2 & m & m„q, integral curves come to the point
(q = 1, V = 1) in accordance with (4.12) and describe
completely subsonic cases. On the contrary, solutions
with m )m„q and m & m, 2 cross the characteristics
(4.5), which makes these Aows supersonic in the outer-
most part. If m )m„q, integration typically approaches
the second-type asymptote near the leading point:

expansion, and not vice versa.
We fit the outer solution for the shell with the inner

self-similar solution along the ultrarelativistic character-
istic x2 ——7. +p/~3 = 0 and at the similarity point
77 —'@fi see (3.11). The matching conditions are [see
(2.4), (2.6), (2.9), and (4.1)]

p = r~g() e~ = p(g), s = e = f(g), (5.1)

r = —p/i/3, rl = rjfia = 1/(I+bfit) (5.2)

These conditions completely determine the self-similar
solution

4m=4+ s 10 Y (gfit )

gp
2/~s t (/fi )

(5.3)

where t(rI=rifiq) and p(rj=gfit) are found by integration
of the self-similar equations.

Recalling (4.13), we see that our self-similar solu-
tion appears to be the critical one: m = m„i (bold
line in Fig. 1); i.e. , it corresponds to the unit Mach
limit and approaches the characteristic curve at
This is connected with the choice of the characteristic
r = —p/v 3 as the inner boundary for the relativistic
shell. We may expect that a critical self-sim. ilar solution
with m = m„2 ——4 —4/~3 would be fitted with the
shell solution if the characteristic r = p/~3 was chosen
as the inner boundary of the shell, but such a solution
is not self-supported, because the energy density in the
shell would drop faster than at the center, leading to a
dissolving of the shell [see (5.6)].

As we consider gf q 1 for the narrow ultrarelativistic
shell, we can employ the expansion (4.15) for bfit (( 1
in (5.1) and thus express analytically the constant Eo.

Eo 4 —2~3 bio go
1cp

(5.4)

Let us consider the matching point in more detail. Us-
ing (5.1) with an arbitrary rI, one can find the curve
r(p) within the self-similar solution. For the outermost
part of the self-similar solution, expansion (4.15) reduces
this curve to 7 oc —o,„y, whose inclination does not
coincide with r = —p/~3 at the inner characteristic of
the ultrarelativistic shell. Thus we have a weak disconti-
nuity at the matching point. Note, however, that if our
self-similar solution could overcome sound velocity and
approach the second-type asymptote (4.14), there would
be

V. CENTRAL EXPANSION

In analogy with the nonrelativistic case, we assume
that expansion between the center and the leading shell
is self-similar. The particular form of the similarity so-
lution [i.e. , m, and Eo in (4.1)] should be specified by
matching the already given solution with the ultrarela-
tivistic shell —in accordance with our initial assumption
that it is the shell motion which determines the central

—4T g g4 —m m —4 (m —4)y 4y/~3

(5.5)

for m = m„i ——4+4/~3, which just gives the relation
7 = —y/~3. Thus our self-similar solution also repro-
duces this regime; the interval of transition to this law is
degenerated into a point.

In accordance with (4.9), the energy density and
baryon concentration at the center drop with time ac-
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cording to the laws

s(r =0)=, m, (r =0) = (5.6)

which is faster than inside the shell (s oct, Nb oc t ).
This is because the center is related to the minimum
of the energy distribution, and expansion of the central
caverne additionally decreases e and Nb as the shell
moves outwards. The total energy within self-similar flow

(0&q&rjfii) diminishes with time as ts

The product (sipgo) specifies the scale of energy and
is determined by total energy of explosion Ep. At the
same time, 8'yp alone does not influence the form of all
physical distributions since original ffuid equations (1.1)—
(1.3) are linear with respect to s (or ss~4). The total
energy is expressed as

t

Ep = 4~ p sr dr 4vrgosio e + d(.
p p

(6.3)

VI. BASIC PARAMETERS OF THE SOLUTION
AND NUMERICAL RESULTS

hshell = 2(o
( 2-~3 k-~3&
1 + . (6.1)

go 2 —v3 ( 2+~3

As k ) ~3, the second term in parentheses is smaller
than the first term, and so h, h I~ nearly does not depend
on k and can be given by

Our solution for the relativistic fireball is determined
by the quantites (p, sip, bfit, , and k. Let us consider how
these values are related to the input parameters of the
problem: the released energy Ep and the initial radius
Rp ~

The quantity (p [see (3.17)] determines the character
length of the problem and is associated with the shell
thickness h, g,~~ in the laboratory kame. As follows &om
our calculations, this thickness remains nearly constant
during expansion: The maximum of energy density is
reached at ( (p, while 80% of the fireball entropy is
concentrated in the outer layer 0 & ( & 2$p. Thus we
de6ne

Within all solutions, the integral over ( is almost univer-
sally proportional to h, h ~i with the factor 1.2—1.4. The
comoving entropy s per unit volume is s = soe s /rs
(s + 0 = const), so that the entropy S(r) inside a layer
with radius r can be written as

r r
S(r) = 4vr psr'dr = 4vrsp ~go e~ dr; (6.4)

p p

below we use S as a Lagrangian coordinate. The total
entropy of the fireball is Sp —S(r =t), and the last inte-
gral, in the limit r = 0—t, is also proportional to h, h ~~

with nearly the same factor 0.21—0.23. For a convenient
presentation of numerical results in the figures, we take
h, i„ii = 1; i.e. , treat r, t, ( in units of the shell thickness.

The particular value of 8fiq (&1 (at fixed h, i„ii) plays
no principle role in physical distributions, but it is con-
nected with the scale of Lorentz factors. Really, for any
moment of time, we can specify the average bulk Lorentz
factor of the fireball as the value p($)—:po related to
the maximiurn of the laboratory frame entropy si i, ((),
since most of the expanding material is concentrated
here. The corresponding quantities pp = p~, „and
rp = r~, „are nearly constant at late time for each
solution; see (7.5), (7.7). So the average Lorentz factor
can be given by

h shell—
gp gp

(6.2)
po —= p~.... .„=~goe"t. (6.5)

Numerical calculations [1] have shown that the thickness
of the ultrarelativistic shell is approximately equal to the
initial radius Rp of the fireball. It seems clear that within
our treatment these lengths h, h, i~ and Rp are also orig-
inally connected with each other and with the shift
Really, the outflow cannot be ultimately described by a
self-similar solution since there exists the initial radius
of the problem. Respectively, the self-similar part of our
solution breaks in the outer layer of the corresponding
thickness and should be matched with the shell solution.
Within the matching procedure, we actually need the
shifting length (p in order to fft the light surfaces (r = t)
of the shell solution and of the self-similar solution, be-
cause the last does not know about both lengths. So we
also can assume that h, h j~ is roughly equal to the initial
radius: h, h ]] Rp.

Note that the result h, h ~~
——const is not an artifact of

our construction. On the contrary, the shell solution is
applied to the outer region ( & hfit t oc t, widening with
time.

The parameter gp can be expressed &om (6.1) lead-
ing to pp 3bfii e~'t/h, h, ii. Thus hfii determines the
coefficient within linear growth of pp with time [and
within linear widening of the shell's comoving thickness
h, h, h ~~pp oc t, if we roughly de6ne the comoving
frame as moving with the Lorentz factor (6.5)].

The character scale of p is evidently associated with
the original ratio Ep/Mp of the released energy to the
fireball rest mass. Within the ultrarelativistic equation
of state accepted so far, we actually consider the limit
Ep/Mp ~ oo, and this ratio falls out from our treat-
ment, leaving p scale free. The value of bgt could be
chosen, therefore, for the reasons of optimal fitting of
our solution with the solutions for the following stage of
free expansion, where the average p saturates at Ep/Mp
[1]

Power index k is connected with the particular initial
conditions —primarily, with the structure of the initial
rarefaction wave. If we assume that this structure does
not difFer significantly from the plane-parallel one (corre-
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hst ——10 k =1+ ya /2; (6.6)

fitting with the self-similar solution 'ion is carried at
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-10

1p -11
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which gives

X]X2f(*i ») = f~(») + f2(») —f~(o) ('+
K2 1

+— fi(x2) dx2 + — f2(x', ) dx', 1.0—

(7.2)

and the same relation for f with fi(22) and f2(xi).
s ~3.15'Introducing here the specific boundary functions ~

one can take the definite integrals and present a solu-
tion in algebraic form. Our calculations confirm that
the profiles obtained by using (7.3) and those with exact
expressions for Io absolutely coincide in the graphics.
Moreover if we take Io ——1 throughout solution, so that)

I I I I 1 I I I I ( I I I I I I I f I0.0
1.5 2.00.0 0.5 1.0

FIG. 5. Dependences z2(zi) [these parameters are defined
in (2.12)] within the shell solution for the same moments of
time as in Figs. 2 and 3 (solid lines). The dashed curve shows
approximate solution (7.6).

3x10 '

2xl 0

f = fi(*2)+ f2(») —fi(o),
f = fi(») + f~(~i) —fi(o)

(7.3)

I I I I I I I I I I ( I II I I I ( I I I I i I I ) I I I

3 2 1

10

this produces the difFerence in spatial profiles not more
than a few percent in comparision with exact Io (see
Fig. 4, where approximate curves are given by the dashed
lines corresponding distributions over Lagrangian mass
coordinates (Figs. 2,3) are undistinguished.

Second, Eq. (3.18), giving the relations between all
physical values for ultrarelativistic shell at any moment
t, is worth reducing to

:~lab

—10

—5x1 0

(7.4)

when we account for the fact that ( « t at late times
for most part of the shell, i.e. , that the shell is narrow.
Really, our profiles obtained by solving (3.18) and (7.4)
are undistinguished at t/Ro ) 10/bfit . Equation (7.4)
places the functions ( and y in difFerent terms and only

umerators which is convenient for calculations and
especially for analytical estimates. In particular,
gives dy = d(/ t (t = const), to be employed when we
determine the points of maximal temperature, entropy,
and energy density inside the shell:

2.0 1.5 1.0 0.5 0.0

d7.

d( Te, ~
=max

3d7 —d(p

2d( =max

2d7 —d(p

d( &lab=max

(7.5)

FIG. 4. (a) Spatial profile of the comoving-frame entropy
density at the moment t = 10 (solid line). Dashed curve
presents the case Io ——1 [see (7.3)] and coincides with the ap-
proxima e ax'inate analytical solution (7.6) (b) Spatial profile s( b

Theat t = 10 within ultrarelativistic shell (solid line). e
dashed curve presents the case Io = 1 [see (7.3)] and coin-
cides with the approximate analytical solution (7.6).

at t = const; the maximum of T~ b is speci e y the
relation d7 =dy. Maximums of all the comoving —frame
values are defined by one relation, since these values are

4/3connected by exact power laws c oc 8 / (x: T4.
Thus for any fixed moment of time, spatial profiles

within ultrarelativistic shell can be described by Eq.
(7.4) where all terms are expressed via algebraic relations
(2.18), (3.15), (7.2) [or even (7.3)).
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And 6nally we derive a very simple approximate
asymptotical form of our solution at t &) h, h, ~~ Bp.
In this limit, we have r t for most layers of the shell;
i.e. , Eq. (3.18) [or (7.4)] is reduced to y = 1/t + 0
(note that we take r and t in units of h, h, ii). This im-

plies f = 0. Taking for simplicity Ip ——1 and expressing
f from (7.3), (3.15), we see that the functions xl and
x2 are asymptotically connected as

e
—(1+A:—~3/2) xg 1 —e (7.6)

In Fig. 5, curve (7.6) is given by a dashed line, and one
can see that exact curves are really very close to this
limiting behavior at late times. Spatial profiles obtained
with (7.6) coincide with the dashed curves in Fig. 4 [as we

take Ip ——1 in f =0 for getting (7.6)], while correspond-
ing distributions over Lagrangian coordinates (Figs. 2, 3)
coincide with exact ones.

Using (7.6) and taking 1/t = 0 in (7.5) we can find
analytically the maximum points of the hydrodynamic
functions. In practice, the point of interest is the max-
imum of 8~ b. It is related to the main part of the ex-
panding gas, and so the corresponding value p = pp
determines actually the average bulk Lorentz factor of
the fireball [see (6.5)], whereas 7 = Tp determines the
character temperature. After transformations, we obtain

7p

where

(ln c / (c —1) —inc1+0 —v3/2 )
ln c /(c —1)
2 (1+ k —v 3/2) 2

+
(7.7)

~3 —1 1
c = 1 + ~3+1 1+ k —~3/2

(7.s)

For our numerical example k = 1 + ~3/2, this gives
(pp = 0.816, op = 0.597 (calculations with exact Ip give
0.77 and 0.594).

VIII. FAMILY OF FIREBALL SOLUTIONS

We can easily modify the above treatment to get a
whole family of fireball solutions, where diferent solu-
tions are related to diferent regimes of initial energy de-
position. We redefine the inner boundary conditions for
the ultrarelativistic shell in a more general form than
(3.14) and take

((2) ( ( P~—(8 1)

introducing a new free parameter P. Our previous solu-
tion (Sec. III) with (( ) oc t corresponds to P = —~3/2,
and this is the minimal possible value of P, because the
inner boundary of the shell should not approach the cen-
ter; so ((2) should not grow faster than linearly with
time. Positive P would mean that we originally as-
sume constant laboratory-kame thickness of the shell
h,&,u (bl. Equations (2.20), (8.1) lead to

y(' = y. (b (s.2)

instead of (3.13). Thus the two last relations of (3.15)
would be replaced by

e
—(~+~3/2)~1 + ~ e

—(0+&+~3/2)~1
g~g e

( ) ( —(P+1+~3/2) x g

(s.3)

For the leading boundary, we again use Eqs. (3.8), (3.9)
and, correspondingly, the first two relations of (3.15); y
is given in (3.9), and we take ( l ——0 for the reasons
discussed in Sec. III. Matching of boundary functions at
xq ——x2 ——0 specifies the parameters

gb (b

Qa

(bl
1+yb/y

(8 4)

—(1+A:—~3/2) m2 y
—(P+1+~3/2) a1 (s.5)

The maximum of 8~ b can be approximately calculated
by using (7.7) with more general c instead of (7.8):

~3 —1 1 + P + v 3/2c = 1 +
v 3 + 1 1 + k —~3/2

(8.6)

We again assume that the central part of the Greball

The boundary problem (3.1) is determined therefore
by the length (bl, which is evidently of order of h, b, ii

(for P) 0, (bl h, h, li) and two power indices k ) ~3
and P ) —~3/2. Both indices could be associated
with the initial energy distribution: A: mostly with the
rarefaction wave, whereas P could be related prilnarily
to the central structure and describe diferent physical
situations. In practice, the values P = 3—5 give the best
agreexnent with numerical results of [1]. In this work,
initial distribution of energy is taken steplike, and La-
grangian distributions within evolved expansion are also
Hat. Large p ) 5 seem to correspond to the case where
the initial energy is maximal at the center, and these
solutions could reproduce the results of [2]. On the can-
trary, our previous solution with minimal P = —~3/2 is
likely to represent the limiting situation, where primarily
the outermost envelope of the initial object is accelerated,
forming a fireball; this variant could be especially rele-
vant to GRB models.

In Fig. 6, we display the distribution of the laboratory-
frame entopy over the Lagrangian coordinate inside the
shell [analogue of Fig. 2(b)] for P = 5, k = 1+ v 3/2.

The dimensional solution is specified also by the pa-
rameters blp and gp from (2.6) and (2.9). The product
(El p gp) gives the scale of energy related to the explosion
energy Ep, just similarly to our previous solution. The
constant gp (with r, t taken in units of h, h, il) is asso-
ciated with the scale of the outflow Lorentz factor; see
Eq. (6.5), which also holds here, and the following discus-
sion. Thus gp could be detemined by matching with the
following &ee-expansion solutions.

The approximate asymptotical form of new solutions
at t )) h h ll Bp similar to (7.6), reads
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FIG. 6. Laboratory frame entropy density 8& b over the
Lagrangian coordinate within the shell-solution of Sec. VIII
with P = 5, k = 1 + ~3/2.

expands in a self-similar manner. Below we consider only
the case p ) 0 with (i & const = (bi. The self-similar
coordinate ggt, where we join a similarity solution to the
shell solution, now quickly tends to 1 with time:

r
g6t t

(bi
t (8 7)

so that est ——1 —@st ——(bi/t is automatically small at
late t. The matching procedure demands that the energy
density and Lorentz factor in this point vary with time,
following the shell solution [see (2.4)]:

(8.8)

Introducing possible self-similar asymptotes at 1 —g =
h = &st « 1, we see that any supersonic expansion (4.14)
satisfies these conditions, and direct fitting implies

'~,- ""~' = s s,' v" ~
&0 ~0 ~$1 0 2 (2 2)

4
m = 4+ mcx'

3
(8.10)

IX. CONCLUSIONS

We have derived an analytical solution describing
spherical expansion of a highly relativistic fireball into

where the shell-solution parameters are placed on the
left-hand side, while parameters of the self-similar so-
lution on in the right. If we assume that the last ones
should not explicitly depend on the shifting length (bi,
we again obtain

the vacuum. This solution presents an intermediate
asymptote within the whole process of the fireball out-
flow. On the one hand, we consider evolved expansion
with t )) Bo (where Ro is the initial radius), which
allows us to separate the shell solution and self-similar
solution. On the other hand, our treatment is related
to the early stages of expansion when the fireball is hot
and dense: We use an ultrarelativistic equation of state,
assume that the How is adiabatic (optically thick), and
neglect the ambient material and corresponding shocks.

Our solution can be presented mathematically in a very
simple approximate form [see (7.6), (8.5)] and thus al-
lows us to make any physical estimates for this stage of
expansion as well as to treat the resulting analytical dis-
tributions as the initial conditions for the following mo-
tion. It seems also very possible that a similar treatment
with an approximate account of the particle rest masses
could provide a self-consistent fitting with the next-stage
solutions, because the final free expansion can be again
described analytically.

We have constructed this solution primarily in the con-
text of the GRB models, but it may be also applied
to the hydrodynamic stage of particle outflow, resulting
from electron-positron annihilation into hadrons. Within
the last process, original particles disappear and the sys-
tem loses information about initial nonsymmetry, which
makes the following expansion of the secondary particles
spherically symmetric and initial distributions for the
secondary flow uncertain; our boundary-problem treat-
ment (avoiding initial conditions) could be especially ap-
plicable to this case.

We may also assume that our solution could be ex-
tended to the cases of nonspherical expansion (typical
for colliders, for cosmic ray interaction with the atmo-
spherical particles, etc.) —to the stages when the out-
flow acquires conical character. For example, as shown
in [7], relativistic outHow starting from plane geome-
try, evolves to conical expansion, with the angle distri-
butions established in the transition phase. If tangential
heat fluxes become smaller than radial ones, angle distri-
butions are more or less fixed (and not spherical), while
radial profiles could be roughly described by spherical-
type solutions with different total energies in different
directions. However, this question calls for special con-
sideration.
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