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In this paper we show how the prediction of CMBR angular power spectra C~ in non-Gaussian
theories is afFected by a cosmic covariance problem; that is, (Ci, C&) correlations impart features on
any observed C~ spectrum which are absent from the average C spectrum. Therefore the average
spectrum is rendered a bad observational prediction, and two new prediction strategies, better
adjusted to these theories, are proposed. In one we search for hidden random indices conditional to
which the theory is released from the correlations. Contact with experiment can then be made in
the form of the conditional power spectra plus the random index distribution. In another approach
we apply to the problem a principal component analysis. We discuss the e8'ect of correlations on
the predictivity of non-Gaussian theories. We 6nish by showing how correlations may be crucial
in delineating the borderline between predictions made by non-Gaussian and Gaussian theories. In
fact, in some particular theories, correlations may act as powerful non-Gaussianity indicators.

PACS number(s): 98.80.Bp, 98.70.Vc

I. INTRODUCTION

The cosmic microwave background radiation (CMBR)
temperature fluctuations are often assumed to constitute
a two-dimensional (2D) Gaussian random field. If this
were the case, it is known that the angular power spec-
trum C would fully specify the fluctuation statistics (see
[1] for a review). While Gaussianity is probably a good
working hypothesis in the context of inflationary scenar-
ios, it is also accepted that in one way or another the
fluctuations predicted in topological defect scenarios are
non-Gaussian ([2—4]). The issue of non-Gaussianity has
so far been approached in the form of Gaussianity tests.
Topological tests [5], peak statistics [1], the three-point
correlation function [6], and skewness and kurtosis tests
[7,8] have been proposed. If these tests showed the fluc-
tuations to be non-Gaussian, then one would have to do
more than to measure the C'. A whole set of invariants,
components of the n-point correlation function (n & 2),
would then be required in order to fully specify the fluc-
tuations [9]. Something less obvious is that non-Gaussian
statistics would also afFect the connection between the-
oretical and experimental C, a relationship behind any
data-analysis strategy. In this paper we show how this
may be the case, taking as an example a texture low-l
CMBR model [4] known to display strong non-Gaussian
behavior.

Throughout this paper we will use the notation C~ for
the angular power spectrum of realizations and C for its
ensemble average. Whereas C~ is a random variable, C is
a number. Since either C~ or C' is essentially a set of com-
ponents of the two-point correlation function, they can-
not by themselves reflect non-Gaussianity. However, the
C~ variances involve the fourth moments of the a distri-
bution, dependent on the statistics. Moreover, the C~ are
necessarily dependent random variables in non-Gaussian

theories [9]. As a result, not only will the cosmic vari-
ance in the Ct be affected by non-Gaussianity (usually
in the form of a non-Gaussian variance excess), but also
the cosmic variance problem becomes a cosmic covariance
problem. Cosmic covariance can make the C~ vs C com-
parison troublesome. An example will be given in Sec.
II A showing how C~ correlations may impart features on
any observed C~ spectra which average out to zero in the
C . Whenever this happens the average C spectrum is a
bad prediction for the observed CMBR sky. Conversely,
the observed C~ also becomes a bad estimator for the C,
a fact already hinted at by the abnormally large cosmic
variance in the C~ found in some texture models known
to be very non-Gaussian [4].

In this paper we approach the cosmic covariance prob-
lem with strategies to do away with the C~ correla-
tions. In Sec. IIA we show how the cosmic variance
excess, seemingly connected with correlations, can often
be swept under one single variable (the random index,
say, yi). We therefore conditionalize the Ct spectrum
to this variable, and find that in all the conditionalized
subensembles the cosmic variance is highly reduced and
the correlations disappear. An analogy with a random
tilt Gaussian theory proves to describe realistically what
is going on. Hence, instead of using C as a prediction for
the C~, we advocate the use of the conditionalized spec-
tra C (~yi) together with the random index distribution
E(yi). In Sec. IIB, on the other hand, we apply to the
problem a principal component analysis [10]. We define
a new set of (C ), rotated from the original ones, which
diagonalize the covariance matrix. In terms of these, re-
alizations C~ and averages C' relate in the usual way. We
believe that both methods constitute new, more sensible
strategies for connecting theory and experiment in non-
Gaussian models. In Sec. III we digress on the implica-
tions of what we have said on non-Gaussian cosmic vari-
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ance to the concept of predictivity. Finally, in Sec. IV,
we point out the key role played by C~ correlations when
con&onting non-Gaussian theories among themselves and
with Gaussian theories. We stress the importance of al-
ways considering the (C&j as a whole, and of comparing
predictions made by difFerent theories in terms of joint
C~ probabilities rather than marginal distributions. We
devise an approximation scheme with which to compute
the cosmic confusion and preference contours in (C~j
space in the presence of correlations. We give examples of
strong non-Gaussianity indicators, in the form of pockets
in (C~) space, where non-Gaussian theories have a high
probability over their competing Gaussian counterparts.
%'e close the paper with an outlook of possible applica-
tions of what we have said in a more general setting. In
particular we suggest that cosmic covariance might dra-
matically undermine traditional methods for predicting
the defect Doppler peak structure.

II PREDICTINC C't OBSERVATIONS
IN NON-CAUSSIAN THEORIES

Topological defect observational predictions are often
cast in a language borrowed &om inBation. CMBR defect
simulations typically output a number of skies to which
a spherical harmonics decomposition is applied so as to
obtain

cess variance (relative to Gaussian theories) was also pro-
vided by an analytical model for textures [4]. In Fig. 1
we have plotted the C spectrum for a texture model ac-
cording to [4]. Superposed are the +o'/2 cosmic variance
error bars for a Gaussian theory with the same power
spectrum and for the texture theory. Notice how large
the excess of cosmic variance is for low I. What is the
origin of this excess variance? Does it imply that the
theory is less predictive? Or have we simply applied to
the theory an inadequate analysis procedure?

A. Random index strategy

Consider a hypothetical theory in which the ensem-
ble of all universes can be split into subensembles which
are Gaussian theories. However, let the average C' spec-
trum in each subensemble be a random variable &om the
point of view of the overall ensemble. A concrete realiza-
tion of this idea is a tilted spectrum Gaussian theory in
which the spectral index n' is a random variable. Then
(C, (n'))„, = C'(n') and 0.', (Ct(n')) = C"(n') „',,

where the subscript n' means that the averages are taken
within a subensemble of constant n' If f (n*.) is the spec-
tral index distribution, one has, for the whole ensemble,

C' = dn' n' Ci n' „* = dn'C' n' = C' n'

Averaging over independent skies one then obtains the
angular power spectrum C = (C~). Some simulations
(e.g. , [2]) have qualitatively shown an unusually high cos-
mic variance cr (C~). A quantitative formula for the ex-

but now the cosmic variance is

a'(c) = jdn'f(n')[(c, '(n*))„; —c"]
Cl2 + + 2(CI ( i))2l+1 2I, +1
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FIG. 1. The C' spectrum
for texture Gaussian spots with

p = 0.1 and n = 1. The in-
ner (outer) error bars are Gaus-
sian (full) cosmic variance error
bars. We have superposed on it
the fitting n' = 1.2 tilted Gaus-
sian theory and associated error
bars.
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in rough analogy with the texture cosmic variance for-
mula. In such a scenario the C~ spectrum is an unlikely
observation. What everyone sees is one of the possi-
ble C'(n') spectra, with Gaussian Huctuations around it.
Trying to compare the observations with the unphysical
C' is responsible for the cosmic variance excess. It should
be obvious that &om the point of view of the whole en-
semble the C~ cannot be independent, as their individual
values give away to some extent the subensemble they
were drawn &om. One can check that indeed, although
(C)(n*)C) (n'))„, = C'(n')C' (n'), one has

ccv(Crcr ) =, f dn'f(n*)(C'(n*)C' (n') —C C ] . (3)

The suggestion is that C~ excess variance, C~ correlations,
and the existence of a random spectral index are related
incidences. A random tilt theory is of course less pre-
dictive than a 6xed tilt theory. Nevertheless, the extra
variance is essentially 0 (n'), not the sum of all the excess
variances in the C~, as one might have naively thought.
To make the point clear, consider the extreme example
of a theory with a deterministic tilt, that is, a theory in
which each observer sees a spectrum of the form

n'I + c
l(l + 1)

Now let n' be a random variable. A simpleminded cal-
culation of the cosmic variance leads to

0'(n')
(l+ 1)2'

which is clearly meaningless, as no randomness is seen by
any observer. The uncertainty in the predictions of such
a theory is just o (n').

We will now show that texture theories behave some-

where in between the two examples given above, once
one realizes that the sky position of the last texture, yq,
acts as a random index. The idea is to conditionalize the
C~ to yq and see what the statistics are in the condition-
alized subensembles. Following the notation and results
of [4] it is easy to prove that the average C~ spectrum
conditional to yq is

C'(I») = Ci(») + Ci(»)

4 I

~"(ui) + AN(v)~"(u)
I (6))

This is the sum of the last texture brightness plus an-
other term describing the average conditional contribu-
tion &om all the other textures. The yq distribution func-
tion is

Pi(yi) = N(yi)e

with M(») = f~"' dy N(y). It can be checked that indeed

@is
C' = (C'(I»)) = d» P(ui)C'(I»)

0

2 +le

dy N(y) W' (y),
4m ()

in agreement with [4]. We have plotted Pi(yi) in Fig. 2
for a n = 1 texture model. We have also plotted the
68%%uo confidence level interval. Formula (6) suggests that
regardless of yq, each observer sees a near white noise
regime (C~ =const) for / up to I, :

& (& +i) = O(yi). The
spectrum then crosses over to scale-invariance (or slightly
tilted). The crossover t, is a random variable, and so the
white noise feature is absent &om the averaged C', al-
beit present in any C (Iyi). The C (I») spectra have

0.4-

0.3-

0.2--

FIG. 2. The function P(yq)
for n = 1. The bars represent
the 6870 confidence level inter-
val (1.7, 3.4). The peak is at
2.66.
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FIG. 4. Log-log plot of the
Ct(~y~) spectrum for yq at the
peak (middle spectrum) and
borders of 68'Po confidence level
interval (top and bottom). The
residual cosmic variance is plot-
ted as error bars, and the points
superposed on them correspond
to the cosmic variance of a
Gaussian theory with a C'(~yz)
spectrum.

10

cov(Ci, C~i) = ( ') & '( ') &1+
4~ q (a')' p

yl

x dyN(y)W' (y)W'' (y),
0

(10)

with l g I'. Insight into the correlations can be gained
&om Pearson's correlation coefficient

cov(C), Ci& )'"' ' "=-(C)-(C)
which always takes values in the range [

—1, 1], or the
relative covariance matrix

cov(C( Ci )rcov(C~, C~ Cl Cl'

which factors out the absolute size of the Cl. The cos-
mic covariance matrix for textures depends on n and p„
which should first be estimated &om tilt and normaliza-
tion measurements at intermediate l. In Fig. 5 we have
plotted the off-diagonal inferior elements of the correla-

itive. The procedure bears some formal similarities with
Gorski's construction [11], but the context and motiva-
tion are very different. Here we orthonormalize the Cl
basis with respect to the cosmic covariance matrix of the
underlying theory (seen as an inner product). In fact our
procedure can be applied to any starting basis, including
Gorski's basis.

We will exemplify this procedure with textures. The
covariance matrix for the Cl in all the texture models
considered in [4] can be found as a by-product of the
calculation in Sec. IV of [4]:

tion. matrix cor(C~, C~ ) for our favored texture model.
Note how the correlations decay away &om the diagonal,
and also the abnormally high correlations between the
low / multipoles. It is curious to note that correlations
between neighboring multipoles do not go to zero for high
l as fast as one might expect. All correlations become
meaningless for large values of n or p, . Following [4] it
can be proved that the covariance matrix conditional to
yz is simply

cov('A) Cl' ~yl) —
~

1 +(a2) f ~2(a2) )
4a ( a

yle
x dy N(y) W' (y) W' '

(y) .
y1

We have checked numerically that for all values of yq in
the 68% confidence interval, the value of the Pearson's
coefficient between adjoining low l falls below 0.2 (as op-
posed to 0.8 for the unconditional C~).

If n and p, are large enough, Cl = Cl, but as soon as
the correlations become significant, the following princi-
pal component structure emerges. Arranging the C~ in
decreasing order of cosmic variance, the erst Cl is a linear
combination of the first few Cl, all multiplied by positive
coefficients. This Cl summarizes the low / normalization,
and carries an abnormally large cosmic variance. The
next few Cl are approximately of the form ' ' '; that

is, they are derivative spectra ( BC~/Bl) As we go up.
in l we recover the Cl —Cl regime. The larger the p„
the earlier we reach Cl Cl. In Fig. 6, as an example,
we have plotted the Cl coordinates in Cl space for a par-
ticular texture model (n = 1, p, = 0.1 Gaussian spots),
and one can see the principal component structure men-



~ ~

I ~ I ~ I I ~ ~ ~ ~ 0 ~ ~ I ~ I 4 ~ a

~ 4 I ~ ~ ~ I ~ I r r ~ ~ ~ 0 ~ I ~ I ~

~ r ~ ~ r ~ ~ I e I I ~ ~ ~ ~ Q Q 4 ~ ~ ~ ~ ~ ~ ~

~ II ~ I I ~ ~ ~ ~ 4 ~ ~ r 0 ~ II
I ~ ~ ~

I I ~

~ ~
4 ~ k r ~ I

~ 0 I ~ r I ~ r ~ I

4 ~ 4

I ~ ~

I ~

0 k f I ~

~ 4 I a 0

4r I ~ ~

~ I r r

~ 0 r

a ~ 0 ~

~ I

~ I

~ ' ~

~ 4 ~ ~ ~ ~ ~

r ~ I r I
~ ~ ~

~ I ~ ~

~ ~ ' ~

a I h
~

A ~ 4 I s

~ I ~

I ~ ~ I

~ ~

a ~

~ I I

I . I

I ~ ~

~ ~ I ~ ~

~ I I ' I 0

~ ~ ~ ' ~

~ ~ I



52 NON-GAUSSIAN CMSR ANGULAR POWER SPECTRA 4367

40

35

30

20

15

10

I

I
I
I
I
I
I
I
I
I
\

I

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

I
I

C&

p=0. 1 textures
n=1.2 tilted spectrum-----

--{)()
((

H)

fg

R

~ ~

FIG. 7. The C~ spectrum
for texture Gaussian spots with

p = 0.1 and n = 1. The in-
ner (outer) error bars are Gaus-
sian (full) cosmic variance error
bars. We have also shown the
fitting n' = 1.2 tilted theory C&

spectrum.
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C~ are correlated variables and so this de6nition loses
its meaning. Loosely speaking it is obvious that corre-
lations reduce the spectrum variance &om the sum of
the C~ marginal variances, but it is not easy to quan-
tify this feeling. We may rotate the CI into an uncorre-
lated &arne (C ), as in Sec. IIB, but then the principal
components are not extensive (for instance they may be
negative). Therefore taking the relative variances is no
longer a sensible way to factor out the absolute size of the

spectrum. In fact not even in Gaussian theories does one
have o2(CI) oc C 2. A possible way out of this problem
is to compare the variance in the C~ with what this vari-
ance would be if the original C~ were Gaussian random
variables:

o (CI)
oG(CI)

Original basis
Uncorrelated basis +

10

FIG. 8. V~ for texture Gaus-
sian spots (p = 0.1, n = 1) in
the original C~ frame and in the
uncorrelated frame C~.

o o o
o oo ooo o oooo . .- oooo

+
+ + + ++++ + + +++++++++++
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From these quantities one can then de6ne the spectrum
variance relative to a Gaussian spectrum variance as

with D = / „—I;„+1. In this expression correla-
tions have been duly taken into account and the spec-
trum size has been factored out. The predictivity rel-
ative to the Gaussian predictivity may then be defined
as 'P, = 1/V„. We have computed these quantities for
the texture p, = 0.1 model and found P„= 1.55. Also
in Fig. 8 we have plotted V~ for this model in the origi-
nal C~ kame and in the uncorrelated frame C~. We see
that we would have grossly overestimated the variance
of the spectrum by neglecting the correlations. With the
exception of the first (normalization) variable C(, the V(
are much smaller in the new kame. It turns out that
texture models are less predictive than Gaussian theo-
ries but not as much as overlooking correlations might
have suggested. In general, the lower the p„ the less pre-
dictive textures are. However, we have here considered
only C~ spectra. One must bear in mind that especially
for low p, texture models the best predictions might be in
the form of multipole shape factors or inter-l correlators
[9]. Gaussian theories, on the contrary, are maximally
nonpredictive in this aspect.

IV. NON-GAUSSIAN SIGNALS IN (Cg) SPACE

In Sec. II we tackled the problem of predicting C~
spectra subject to cosmic covariance. Here we consider
how to confront theories with possibly diferent C~ covari-
ance matrices. Clearly correlations cannot be neglected
as they may constitute the main difference between one
theory and another. It is generally impossible to find
a single variable capturing most of the gap between the
two theories. Therefore we devise comparison methods
which make use of the joint distribution functions of the
whole (C() spectrum. Once more we explain our ideas
by applying them to concrete examples. We confront the
low l texture models we have used above with tilted spec-
tra Gaussian theories which fit them at I C (25, 30). As
shown in [4] this fit still leaves a sigiuficant suppression
of power at low / in texture models. We now quantify
the strength of this signal.

It will be useful here to use the concept of cosmic con-
fusion between two theories Ti and T2 in a set Q of mea-
surable quantities. This is a measure of the overlap of
the distribution functions Ei(Q) and F2(Q), and is es-
sentially the percentage of the two populations which can
be put in a one-to-one correspondence:

cg(Tx, a) = fTdQ min(r)(Q), E2(Q)) .

Cg(Ti, T2) varies between 0 (measuring Q will act as a
crucible between the two theories) and 1 (Ti and T2 are
the same theory as far as Q is concerned). As a guide
to the meaning of C we can express it in terms of n-o's.
This is defined as the separation in units of 0 between the

peaks of two 1D Gaussians with variance o. which gives
an overlap C. More concretely C = erfc[n/(2v 2)]. For
a 10, 2o, 30, and 40 di6erentiation one has 0.61, 0.31,
0.13, and 0.04 confusion, respectively. Given a set Q of
variables the confusion between two theories is invariant
under nonsingular transformations on Q. It can also be
proved that if we ignore one of the variables in the set
and marginalize the distributions Eq and E2 with respect
to it we can only increase the cosmic confusion. Hence
by considering the cosmic confusion between texture the-
ories and their fitting tilted Gaussian theories in C~ for
all 2 & I & 30 (a subset of all the variables) we obtain an
upper bound on the confusion between the theories. By
adding high l sections of the C spectrum or m-structure
spectra [9] into our predictions we can only decrease the
confusion. Also a single low I, variable may exist which
captures most of the large angle gap between the theories,
but the confusion in this variable will never be smaller
than the confusion in the C~ for all 2 & l & 30.

Let us now look at fC(} spectra as points in a D
dimensional vector space (where D = l „—l;„+1).
By varying the &ee parameters of texture and Gaussian
models their average spectra (C ) span two 2D surfaces
in this space. One can set up a map between these two
surfaces so as to maximize the cosmic confusion [a proce-
dure approximated by the fit performed at l C (25, 30)].
Is the confusion left by this identification high enough to
render low / spectra useless? Plots such as Fig. 1 are mis-
leading as they ignore C~ correlations and suggest that
cosmic variance error bars are hypercubes in the (C~)
space. In fact C~ error bars are always hyperovaloids,
(D —1)-dimensional surfaces of equal probability inside
which a given percentage of the population lives. The
principal axes of the ovaloid are parallel to the cartesian
axes only when the C~ are uncorrelated, but even then
the ovaloid axes dimensions are not the marginal vari-
ances as plotted in Fig. l. We are therefore dealing with
a D-dimensional problem which can never be factorized
into D one-dimensional problems. Because of the com-
plexity of the problem we decide here to truncate the
analysis at the level of the second moments of the C~
distribution. In this approximation the C~ distribution
is approximated by a multivariate Gaussian distribution
with the theory's covariance matrix. The ovaloidal er-
ror bars become ellipsoidal and one must extend the C~
range to C~ E (—oo, oo). This is a rough approximation,
not true even for Gaussian theories, for which the joint C~
distribution is a product of y2~+q 1D distributions. How-
ever, this approximation does put texture and Gaussian
theories at the same level of approximation while allow-
ing for texture non-Gaussian features to be included, in
the form of off-diagonal elements in the covariance ma-
trix. In Table I we show the cosmic confusion between
various texture models and their 6tting tilted Gaussian
models in various sets of C~ for 2 & l & 11, computed
in this approximation. In all cases the confusion in C~
for 11 & 3 & 30 is nearly 1. Although the largest single
C~ differentiation between the two theories occurs for C2,
one has to take the 6rst ten C~ into account to achieve a
20. signal.

Once a measurement is made the situation changes.
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sensible prediction for what the observed C~ should be.
We have shown with examples how non-Gaussian statis-
tics may render the C a naive and misleading prediction
for the observed sky. If you do not have any reason to
postulate Gaussianity, then we recommend the follow-
ing recipe. Start by computing the C and then always
compute the C~ variance. Compare it with the Gaus-
sian variance. If a large excess variance exists, then the
standard recipe does not work. You are dealing with a
cosmic covariance problem, and in this paper we gave
some alternative recipes for making predictions and con-
&onting theories. A topical example is defect Doppler
peaks [12]. Suppose that an excess variance is found for
the relevant C~. Then, even if the average C' shows a
single bump, this might have little to do with what any
observer sees. It could happen that each observer sees a
rich multipeak structure, similar to the inHation peaks,
but the peaks' position and height could be random vari-
ables (in fact, random indices). That being the case, the
average C' would be the statistically weighted envelope of
all the possible peak curves, and the C~ would be blind to

the multipeak structure seen by any observer. Computer
simulations performed conditional to a value of the ran-
dom indices would show a system of peaks. A calculation
averaging over the whole ensemble would not. Whatever
one's methods, in such a scenario the sensible prediction
would be the C spectrum inside each subensemble of
Axed random indices, the residual cosmic variance, and
the random indices distribution. The author feels that
this type of behavior (transposed to the context of sam-
ple variance) might be the entire point in the controversy
surrounding the apparently contradictory results given
by small angle detections [13].
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