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InQation produces nearly scale-invariant scalar and tensor perturbation spectra which lead to
anisotropy in the cosmic microwave background (CMB). The amplitudes and shapes of these spectra
can be parametrized by Qs, r = Qz, /Qs, ns, and nz where Qs and Qr are the scalar and tensor
contributions to the square of. the CMB quadrupole and ns and nz are the power-law spectral
indices. Even if we restrict ourselves to information from angles greater than one-third of a degree,
three of these observables can be measured with some precision. The combination 105 "sQs can
be known to better than +0.3%. The scalar index ns can be determined to better than +0.02. The
ratio r can be known to about +O.l for ns l and slightly better for smaller ns. The precision
with which nz can be measured depends weakly on ns and strongly on r. For ns 1, nz can be
determined with a precision of about +0.056(1.5 + r)/r Afu.ll-sky experiment with a 20 arc min
beam using technology available today, similar to those being planned by several groups, can achieve
the above precision. Good angular resolution is more important than high signal-to-noise ratio; for
a given detector sensitivity and observing time a smaller beam provides more information than a
larger beam. The uncertainties in ns and r are roughly proportional to the beam size. We brieQy
discuss the eKects of uncertainty in the Hubble constant, baryon density, cosmological constant, and
ionization history.

PACS number(s): 98.80.Cq, 98.70.Vc, 98.80.Es

I. INTRODUCTION

The detection of anisotropy of the cosmic microwave
background (CMB) by the Cosmic Background Explorer
(COBE) DifFerential Microwave Radiometer (DMR) [1]
marks the beginning of a new era in observational cosmol-
ogy. At least eight other experiments have subsequently
made detections at angular scales ranging from 0.5 to
a few degrees [2]. The many possible sources of system-
atic error combined with the fact that most of the results
are not much better than 3o detections mean that care
must be used in drawing conclusions from them [3]. How-
ever, it is encouraging that they are roughly consistent
with each other and that several experiments have re-
produced their results with repeated observations of the
same area of the sky. The results are consistent with a
nearly scale-invariant spectrum, possibly with a feature
at angular scales corresponding to the sound horizon at
last scattering (the "Doppler peak") [4,5].

The current experiments, if not ruling out any the-
ories with high confidence, are at the least providing
strong constraints. For example, combined with large-
scale structure data, the COBE DMR 2-yr data present a
significant challenge to the primeval isocurvature baryon
model [6,7] and imply large bias factors for defect models

[8]
In addition to testing theories, the microwave back-

ground also provides us with the opportunity to deter-
mine the parameters of a given theory. For example,
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in the cold dark matter (CDM) model the anisotropy de-
pends on the amplitudes and slopes of the scalar and ten-
sor spectra, the Hubble constant Ho ——100h km/sec Mpc,
the baryon density Obh, the cosmological constant in
units of the critical density O~, and the redshift of reion-
ization zR. Bond et al. [9] have shown that, unfor-
tunately, diferent choices of these parameters can lead
to angular-power spectra which are indistinguishable by
the current generation of experiments. This degeneracy
makes it diKcult to use CMB anisotropy experiments
to determine cosmological parameters and hence the au-
thors of [9] refer to the effect as "cosmic confusion. "
The degeneracy has a positive eÃect as well. It limits
the space of possible power spectra, rendering the model
testable despite its dependence on imprecisely known pa-
rameters [10,11].

The long-term goals of the CMB observational commu-
nity are much more aggressive than those of the current
generation of experiments [12]. As a partial step toward
those goals several groups in the United States and Eu-
rope are currently planning a "next generation" satellite
experiment. Using detector technology available today,
such an experiment could sample the entire sky with a
half-degree beam and in one year achieve a signal-to-noise
ratio per beam-size pixel greater than one. Preliminary
work by Spergel [13] indicates that such an experiment
is suKcient for a significant lifting of the degeneracy of
the angular-power spectrum pointed out by Bond et al. ,
at least in some regions of parameter space.

Here we are interested in what a "next generation"
satellite could tell us about inflation in particular. In
addition to resolving several cosmological puzzles, inQa-
tion is at the heart of the CDM scenario. In this picture,
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tensor, vector, and scalar fluctuations in the metric are
produced during an early epoch of rapid expansion driven
by the vacuum energy of a scalar field [14]. The scalar
perturbations grow via gravitational instability into the
variety of structures we observe in the Universe today, as
well as producing CMB anisotropy from about 10 arc min
scales up to the quadrupole. Vector perturbations decay
with expansion and are of no phenomenological impor-
tance. The tensor perturbations today correspond to a
stochastic background of gravity waves and also produce
anisotropy in the microwave background at large angular
scales (& 1 ).

Although there is no standard model of inflation, we
can expect the spectra to have certain generic features.
For inflation to occur, the dominant contribution to the
energy density must be the vacuum energy of the scalar
field. The kinetic energy is small in comparison, and
hence the value of the scalar Beld changes slowly. Since
the scalar Geld changes slowly while the Universe is
rapidly expanding, the perturbation spectra are nearly
scale invariant. Thus the power spectra are well ap-
proximated by power laws with spectral indices close to
the Harrison-Zel'dovich values. To be more precise, the
primordial power spectra over the length scales of as-
trophysical interest at some time deep in the radiation-
dominated era are well approximated by the following
power laws in comoving wave number k:

Ps(k) = Ask"',
PT(k) = ATk"

with nT = ng —1 —0. As an example, the spectra from
AP chaotic inflation [15] are best flt by ns = 0.94 and
nT = —0.04. The fit is good to about 1% in power from
the quadrupole to the 10 arc min scale [16].

Since the two perturbation spectra are Gt well by power
laws, they can be characterized by four independent ob-
servables. We take them to be Q&, r = QT/Qs, ns,
and nT, where Q2& and Q& are the expectation values
of the scalar and tensor contributions to the square of
the quadrupole. The quantities Q~& and Q2T should not
be confused with the actual quadrupole moments on the
sky which we can take to be the real parts of the spherical
harmonic coefficients a22, a2i, a2p/~2 and the imaginary
parts of a2 i and a2 2. The inoments are related to Q2&

and QT in the same way that events from a random pro-
cess are related to their parent distribution. If the per-
turbations are Gaussian (which is almost certainly the
case for inflation), each of the five quadrupole moments
on the sky is a single realization drawn from a Gaussian
distribution with zero mean and variance s (Q+ + QT).

We wish to see how well these four inflationary observ-
ables can be determined from a satellite experiment. The
extent to which the other parameters (Hp, Aqh, . . .) can
be determined as well remains an open question. Con-
ceivably, their confusing effects may be detrimental to
the precision with which the inflationary observables can
be determined. We must remember, though, that we
have other sources of information on the cosmological pa-
rameters. Observations of light element abundances con-
strain Ogh to be within the approximate range 0.009—

0.022 [17], a range which might well decrease to +10%
in the next few years by the deuterium abundance mea-
surements made in quasar absorption line systems [18].
The Hubble Space Telescope key project of calibrating
Cepheids [19] and several physics-based methods [20]
promise to make a definitive measurement of the Hub-
ble constant in the near future to +5%. Polarization of
the CMB can provide constraints on ionization history
[21]. Gravitational lens statistics constrain the value of
a cosmological constant [22]. Thus in the following, we
take specific values for the cosmological parameters and
assume that they are perfectly known. I ater we discuss
how well they must be known in order that the uncer-
tainty be negligible.

It is worth pointing out that while the cosmological pa-
rameters may be determined by means other than CMB
anisotropy, no observations are better suited to determin-
ing the primordial spectra. Redshift surveys will continue
to be plagued by theoretical uncertainties in the relation-
ship of mass to light (the so-called bias), hampering de-
termination of ns. Millisecond pulsars and space-based
gravity wave detectors are probably not capable of de-
tecting the very weak stochastic background of gravity
waves expected from inflation, at least not in the near
future [23,24].

To simulate experiments, we need to assume particular
values not only of cosmological parameters, but of Q&,
ng, nT, and r as well. Below we focus on one case and
then discuss how our results might change if the actual
values are different. For the cosmological parameters we
choose 6 = 0.5, Og ——0, Ogh = 0.0125 and the standard
ionization history. For our theory of inflation we take
the simplest model there is, chaotic inflation with a P4
potential. In addition to ng ——0.94 and nT ———0.04,
chaotic inflation predicts r = 0.28. This is an example of
a general rule for inflationary models called the consis-
tency relationi r = —7nT. To choose Qs we note that for
ng ——1 and r = 0, the COBE DMR constrains the expec-
tation value of the quadrupole to be Qs = 19.9+ 1.5 pK
[26]. Although the constraint would be slightly different
for ns ——0.94 and r = 0.28, our only concern here is for
rough agreement; we simply take Qs = 20 pK. Chaotic
inflation is an attractive choice for this study not only
for its simplicity but also because r is twice as large as it
has to be to ensure its detectability [27].

In Sec. II, we describe our calculation methods. We
discuss the calculation of the tensor and scalar angular-
power spectra, and our modeling of experiments. In
Sec. III, we show the results of attempts to recover Qs, r,
and n~ Rom simulated experiments with varying beam
sizes and signal-to-noise ratios. In Sec. IV, we see how
well the consistency relation can be tested by attempt-
ing to recover all four of the observables. In Sec. V, we
consider how our results would change if we had assumed
different input values of the inflationary observables and

This relationship, which is accurate to lowest order in
(ns —1) and nT, holds generally for slow-roll models; in
some models (ns —1) nr and the stronger relation,
r = 7(ns —1),—also holds; see Ref. [25].
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cosmological parameters. Particular attention is paid to
the efFect of a cosmological constant on the consistency
relation. In Sec. VI, we briefly examine the efFects of
uncertainty in cosmological parameters. Here we are in-
terested in learning how well we have to know Hp Ogk
OA, and reionization redshift z~, so that our ignorance
has a negligible efFect on the determination of the infla-
tionary observables.

Tl tT 1 7

TBIlSOf'

II. CALCULATION METHODS

The spherical harmonics provide a convenient basis for
the expansion of CMB-temperature fluctuations: 0 i-

hT(0, $) = ) ai Yi (0, 4') . (2)
100 300

E,rn

Isotropy in the mean guarantees that (az a&*, , )
C~b~~ b, where angular brackets indicate an average
over an ensemble of observers. It is the variance of
the multipoles that encodes information about the met-
ric perturbations and Ci =

(a& ) is called the angular-
power spectrum. (The expectation for the square of the
quadrupole anisotropy is Q—:5Cz/4m. ) Provided that
the underlying perturbations are Gaussian, all predic-
tions can be derived from the angular-power spectrum.

For example, the expected value of the variance of tem-
perature fluctuations from a given experiment is given by

where the window function W~ depends on the beam size
and chopping strategy. For example, an experiment that
measures the temperature difFerence between directions
separated by angle 0 with beam size o.t, has a window

)2 2
function Wi = [1 —P~(cos(0))] 'eb. For a map made

$2 2
with a Gaussian beam, W~ ——e

We calculate the angular-power spectra by numerically
evolving the photon distribution function from deep in
the radiation-dominated era until the present moment ac-
cording to the first-order general relativistic Boltzmann
equation for radiative transfer. Details are given else-
where [28]. The results of one calculation are shown in
Fig. l.

To model the experiment, we assume that it creates
a full-sky pixelized map of the CMB smoothed with a
Gaussian beam with full width at half maximum OFwHM.
The temperature of the ith pixel, bT, , has a contri-
bution from the sky and from the instrument noise:
bT; = bT,' + bT;" " . We further assume that the er-
rors are uncorrelated and have uniform variance o i; i.e. ,

(bTnoisebTnoise) 0 2. b . For the moment we assume2 pix U

that bT,.
' = bT, , an assumption we will soon dis-

card.
There are several difFerent ways of describing the

amount of noise in a map. The most straightforward way
is to specify o.„; . Another way is to specify the signal-to-
noise ratio per pixel, S/1V. The observing time per pixel

FIG. 1. Tensor and scalar angular-power spectra for ng = 1
and nT ——O.

is inversely proportional to the pixel size, so both opi„and
S/K depend on the pixel size. For definiteness, whenever
referring to S/K or cr~;„, we will take the pixel solid an-
gle to be 0~ix —OFWHM + 0FWHM ~ To compare maps
with difFerent beam sizes, it is useful to have a measure
of noise that is independent of Oz,„.For that purpose we
use the weight per solid angle, iii:—(o;„Az,„)

The error in each pixel, o~;, depends on the detector
sensitivity s and the time spent observing each pixel, tp,- .
cr~;„= s/gt~;„. The best detectors available today have
sensitivities on the order of 200 pK +sec. With uniform
full-sky coverage over the course of a year every 20 arc
min x 20 arc min pixel could be observed for 85 sec. Such
a year of observing would result in a map with 0~;
22 pK for O~; = 20 are min x 20 are min, or a weight per
solid angle of ui = (7.5 pK) deg . For comparison,
the 2-yr COBE maps have ui (400 pK) 2 deg 2. The
considerable difFerence between these numbers is due to
the 70-fold improvement of detector sensitivities in the
last 20 years.

The signal used to calculate S/N is the rms of the
temperature fluctuations. The expected signal is given
by Eq. (3). For the model we simulate here the expected
signal with 0FwHM ——20 arc min is 92.5 pK. Therefore
the case of cr~;„= 22 pK has S/N 4.

In our simulations, we never create a map. Instead we
exploit the fact that the estimate of C~ which could be
made from such a map, C& ', would be y&&+& distributed
with mean (C&" ) = Ci and variance

(&Ci)' = ((«-" —«)(Ci'" —«))
2 2~2(Ci+ zo e &) bii

2l + 1 (4)

Equation (4) does not include any error due to finite pix-
elization. At moderate to low S/K, these errors are unim-
portant if the pixel size is a few times smaller than the beam
size.
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aC)
CE

1+ b

2l+ 1 ( l2C) ) (5)

This form is useful because l C~ varies by less than an
order of magnitude &om l = 2 to l 1000 for the models
we consider. The cosmic variance term is proportional
to 1/Ql and dominates at small t. The noise term is
proportional to I ~ at small l and for I & I/cry it increases
exponentially.

In Fig. 2, we show AC~/C~ for four experiments with
two different beam sizes and two different values of m.
One can see from the figure that, at constant ~, the
experiment with the better angular resolution is more
precise at every value of 1. The comparison at constant m

is meaningful since these are experiments with the same
detector sensitivity and observing time.

From Eq. (4) it is easy to show that reducing the beam
size at Axed detector sensitivity and observing time re-
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(see the Appendix). In the limit to = oo (o~;„= 0),
(AC~) does not go to zero. This is because the finite
sampling of events from a random process always leads to
an uncertainty in the variance, called sampling variance,
no matter how precisely each event is measured. The
sampling variance for a Gaussian distribution is equal to
twice the square of the variance divided by the number of
samples. For each / there are 2l+1 "samples" drawn from
a Gaussiandistribution of variance C~, hence the 2/(2l +
1) factor in Eq. (4). In this limit of full-sky coverage,
sampling variance is known as cosmic variance [29].

The signal at large l is reduced by the beam but the
noise is not. If the beam profile is perfectly known, as is
assumed here, one can take account of this diminution of
signal by deconvolving the effect of the beam. The cost
of doing so is the exponential factor in the noise term.

Equation (4) can be rewritten in a more illuminating
manner:

duces AC~ for every L, independent of C~, as is evident
in Fig. 2. At small values of l, AC~ is near the cosmic
variance limit and thus decreasing the beam decreases
b, C& only slightly. But for I & 1/os the reduction in AC~
is dramatic. Thus there is much to be gained by reduc-
ing the size of the beam, even if this means reducing the
signal-to-noise ratio to below unity.

To this point we have assumed that bT,. = bT,.
'

However, synchrotron and bremsstrahlung radiation,
thermal emission from cold dust, and unresolved extra-
galactic sources also contribute to the anisotropy of radi-
ation at submillimeter to centimeter wavelengths at the
angular scales of interest [30]. For this reason, a satel-
lite experiment must make measurements over a range of
wavelengths, so that the CMB component can be de-
tected by its (hopefully) unique spectral dependence.
Given o p for a number of different frequencies, and
guesses at the slopes and amplitudes of different contam-
inating sources, one can estimate 0,.„,the standard
deviation in the determination of bT, [31,32]. Pre-
liminary design studies by the MAP collaboration indi-
cate that the foregrounds will degrade the noise level by
a factor of 2—3 [33]. Therefore, we take into account the
effect of foreground contamination by simply decreasing
ur from (7.5 pK) deg to (15 pK) deg in one case
and, to be conservative, (30 pK) deg in another. s

Including the effects of foreground contamination
makes the comparison of experiments with different beam
sizes less straightforward. This is because the contami-
nation may be more important at one angular scale than
another and thus cause more degradation in a 40 arc
min experiment than in a 20 arc min experiment. How-
ever, the smaller beam experiment will still always pro-
vide more information. As proof, we point out that it is
always possible to synthesize a larger beam, after having
done the experiment with a smaller beam. The inter-
esting question becomes a quantitative one; how much
better is a smaller beam? The answer depends on the
spatial correlations of the contaminating sources, their
frequency dependence and amplitudes, and the frequency
coverage of the experiment. A complete investigation of
this question is outside the scope of this paper. Here we
only consider a very simple case of randomly distributed
uniform point sources and an experiment that only mea-
sures at one frequency. For this case, the ~K fluctuations
in the number of point sources, N, in a given pixel im-
ply o';„oc 1/Qz, „. Thus for this case the comparison
between different experiments should be made at equal
weight per solid angle, just as for the no-foreground case.

We simulate an experiment by drawing C&' from the
distribution in Eq. (4) and then estimate Qg, ng, and r
&om the "data" (the set of moments, (C&" )) by finding
the maximum of the likelihood function Z(Q~, ns, r).

FIG. 2. The precision of four different experiments. The
dashed lines are for experiments with HF~HM —— 40 arc
min and the dot-dashed lines are for experiments with
HF~HM ——20 arc min. For each, the lower curve is for
w = (15 pK) deg and the upper is for w = (30 pK)
deg

The removal of foregrounds will not only increase the noise
level but also introduce correlations in the noise from one
pixel to the next. We ignore this effect [34].

Both the simulation and estimation procedures assume r =
7A 7
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The likelihood function is, up to a constant, independent
of its arguments, defined as the probability density of
measuring the set of moments CI" given Ci(Qs, ns, r):

&(Qs, ns, &) cc P[Ci" 1Ci(Qs, ns, r)]
V( —)/

( V/2)
l
C, + u) ie&—' ~ 2"&~21'(ni/2)

20. 1

'T
I I

[
1 I I 't T 'T 7

t

'

T T I t' 1 I I
t

1' 1 'I

Of h
= 20

w == (15 pK) deg

where

Cest —l cr& + ~—12 2

Vi = (2l+ 1) ~2~2 + ~—i

19.9

19.8

and n~ = 2I, + 1. The product on the right-hand side is
simply that of the y2&+z distributions with mean C~ and
variance given by Eq. (4) (see the Appendix).

To measure the certainty with which the observables
can be determined we examine the distribution of the
maxima &om many simulations. An automated search,
which uses the numerical technique of simulated anneal-
ing [35], finds the maximum for each set of simulated
"data." Evaluation of the likelihood function on a fine
grid of ns, Qs, and r shows that the maximum found by
the automated procedure differs negligibly from the true
maximum. Performing N simulations allows us to deter-
mine the standard deviations of the observables with a
fractional statistical error of (2N) o's. Typically we take
N = 100 which gives about 7%%uo accuracy.

III. RESULTS
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FIG. 3. The locations of the maxima from 100 simulations
are shown projected into the Qs-ns plane. The average val-
ues of ns and Qs, as well as their standard deviations, are
indicated by the error bars.

Figure 3 shows the maxima projected into the Qs-
ng plane &om 100 simulations of an experiment with
HFwHM = 20 arc min and io = (15 pK) 2 deg 2. The av-
erage values of ns and Qs are equal to their input values
to within 0.05% and hence there is no evidence for bias.
The standard deviation in the values of ns and Qs are
0.016 and 0.74 pK, respectively. We can conclude then
that an experiment of this type can determine np with

,g, [,
.88 . 9 .92 . 94

~s
. 96 .98

FIG. 4. The maxima of the likelihood functions for 100
simulations projected into the Qs(ns)-ns plane (see text).

In fact, we find l' by changing it until Qs(ns) is uncorre-
lated with ng.

&ns = 0.01660.001 and Qs with AQs = (0 7440 052)
pK.

The strong correlation between Qs and ns, evident
in Fig. 2, can be easily understood. It is due to the
lever arm between l = 2 and those values of /, l*, for
which C~ is measured most precisely. If C~. were the
only moment measured then (Qs, ns) = (20 pK, 0.94)
would fit the data as well as (20 pK(l'/2)( " )~, ns)
since each set of parameters results in nearly the same
value of Ci. . Keeping Qs oc (l*/2) ~~ as ns varies,
causes the spectrum to "pivot" about l* and thus we call
l* the pivot point of the data.

The combination Qs(ns):—pQs(l*/2) ~ is uncorre-
lated with np. We choose the proportionality constant
to be p = (l*/2) ' ~2 so that the mean value of Qs
equals the mean value of Qs. For the experiment under
consideration, the pivot point is at l = 210. Figure 4
shows the same maxima as in Fig. 3, but in the new
coordinates ns, Qs(ns). There is very little bias in the
estimate of Qs', the average value of Qs is 20.001 pK.
We find that AQs(ns) = (0.0027+ 0.0002) pK.

For fixed Ci, low Qs and high ns mean that the fit has
too little power at small /. To make up this deficit, r is
overestimated. Thus there is also a correlation between
r and ns (and hence Qs), a correlation which is evident
in Fig. 5. We find Lr = 0.11+0.008. There is very little
bias; the average value of r is 0.29.

We have analyzed the results from simulated experi-
ments with a range of beam sizes and S/N ratios. The
results are shown in Fig. 6 and Table I. Each experiment
has been simulated 100 times and thus the error bars are
about the same size as the plotting symbols.

To some extent we can understand the numerical re-
sults with simple analytic arguments. First we will at-
tempt to understand the precision with which the am-
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FIG. 5. The maxima of the likelihood functions for 100
difFerent simulations projected into the r-ns plane.

and we find

2
—1//2

4C&J )

plitude can be determined. If the shape of the angular-
power spectrum were perfectly known (C&' ~') then each

C~ ——o, C&'
' would be an independent measurement of

the amplitude, o.. A straightforward way to estimate
n2 is to take a weighted average of C~/C1' ~' from some
lower limit on l, l&, to an upper limit, l&. Thus we define

C1 (AC1 ) - f'AC( l
l=l& [=I&

.001 I

20 30 40
gf Q (arc minutes)

FIG. 6. The standard deviations of three of the four infIa-
tionary observables expected from experiments with three dif-
ferent beam sizes and two difI'erent weights per solid angle, m.
Squares indicate Ar, triangles Ans, and pentagons AQs/Qs.
The solid lines connect experiments with w = (15 yK)
deg . Along the dashed lines, vo = (30 pK) deg

Kl '1"'

attempts to fit more than just an amplitude have not
significantly degraded the quality of the amplitude mea-
surement.

The eKect of small changes in the scalar index ns will
be to make o. a slowly varying function of t which we will
now call o.~. Since the wave number k that contributes
the most to any C~ is proportional to t, we have the ap-
proximate relation

The numerical results for AQ&/Qs are repro-
duced to within about 10% by An2 /n2
0.5A(az )/(nz ). This agreement suggests that our

I

If we measure o;~ in two diferent bands of l, say o.2 ~~
and o.~~+1 then the resulting uncertainty in ns is

(10)

TABLE I. The precision with which the three independent infIationary observables can be mea-
sured.

~FTHM
arc min

20
20
30
30
40
40

gl/m lc
15 227
30 175
15 205
30 156
15 181
30 131

I,g
85
60
70
55
65
50

&Qs/Qs'
0.0026
0.0037
0.0030
0.0043
0.0034
0.0049

&Qs/Qs
0.0027
0.0041
0.0028
0.004 j'

0.0035
0.0050

ansb
0.017
0.023
0.020
0.026
0.023
0.029

&~s'
0.016
0.029
0.022
0.044
0.034
0.058

Ar
0.10
0.13
0.11
0.16
0.15
0.18

Ar'
0.11
0.18
0 ~ 14
0.23
0.19
0.42

Units are (yK) deg.
Analytic.

'Numerical.
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where /~ is the value of / for which &
' is a minimum.

Choosing /~ to minimize Lng gives the results shown in
Table I.

The analytic approximation to the amplitude results
in Table I is given by AQ&/Qs ——An&~+i ~/nba+i ~.
These values are only a few percent larger than what we
would get if the lower limit on the sum were / = 2. The
diEerence between the numerical and analytic results for
the amplitude is small enough to be completely explained
by the 7%%up statistical error.

For /~ & 65, the analytic results for Anp are system-
atically low. The primary reason for this is probably the
confusing efI'ect of having to fit for r as well. As /~ be-
comes less than about 65, a significant amount of the
information used in determining Lng is also used for de-
termining r. An encouraging result is that the analytic
results for Lng work well for the two highest values of /~,
suggesting that the confusing effect of r on Any vanishes
with sufBciently high angular resolution and weight per
solid angle.

With Qs and ns known the scalar spectrum is com-
pletely determined. Any excess power at / & 65 can
therefore be ascribed to the inHuence of the gravity
waves. Knox and Turner [27] showed that a specific win-
dow function, TV&, centered at /A 55 is ideally suited
for detecting this excess power. They used it to define
an observable proportional to r:

where (8T&2)„ i, = P& 4+ CisW&+ is the anisotropy ex-
pected in experiment A from the scalar spectrum, which
is fully determined by experiments B and C. If the pro-
portionality constant o.A is such that r = o.AZA then

(Ar) = a~(AZ~)

+ [(nz + r)An& ln(lc/1&)] . (12)
t'n~+ rl '

4 )
I et us concentrate first on the case Lns ——0, the one
considered in [27]. The last expression follows from the
approximation of TV&A as a top hat centered at /A with
width l~. Taking o.~ = 3 (since Css/Css r/3, from
Fig. 1) we find b,r = 0.055 (for r (( a~). Knox and
Turner found r;„= 0.14, where r;„ is defined to be
that value of r for which 95%%up of the time r = 0 can be
ruled out with 95%%up confidence or greater. In order to
compare results we must convert Lr to r;„. Since the
tail of a Gaussian containing 5%%up of the area is a distance
1.60 &om the maximum, r;„=3.2 x Lr. Thus we find

;„=0.17, which compares fairly well with the exact
result.

The last expression for the second term in Eq. (12)
follows &om the fact that the uncertainty in the scalar
contribution to ZA is entirely due to Lng and the lever
arm between /A 55 and l~. The "analytic" results
for Lr in Table I were calculated by substituting the

numerical values of Any into Eq. (12). The agreement
is good when the efforts to fit np and r do not rely on
the same multipole moments but as /~ decreases, the
agreement worsens.

IV. CONSISTENCY RELATION
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FIG. 7. The maxima of the likelihood function of 200 sim-
ulations projected into the r" (nT )-nT plane (see text). The
"data" were synthesized for ns = 1, Qs = 20 pK, r = 1, and
nz ———z. Unlike the previous cases nT is not constrained to
obey the consistency equation r = —7nT .

As mentioned above, inHation predicts a relationship
between the tensor amplitude to scalar amplitude ratio
and the shape of the tensor spectrum. This relationship
can be simply expressed in terms of the observables. To
lowest order in the deviation &om scale invariance it is
r = —7nz. If we could measure both r and nz with pre-
cision, this relationship would provide a powerful test of
inflation [25]. Unfortunately, the only effect of the grav-
ity waves that we can hope to detect in the near future is
the increased anisotropy of the microwave background at
large angular scales. This limited range of length scales
over which the tensor spectrum has an observable inHu-
ence makes the measurement of nT very difhcult.

For large r the tensor spectrum stands out more rel-
ative to the scalar spectrum, thereby decreasing LnT.
For this reason, and because we are pessimistic about
the prospects for determining nT well, we study the case
r = 1, nz ———0.14. For the same reason, decreasing
ng also decreases Ln~, but not as dramatically. How-
ever, the combination of large r and np (( 1 is strongly
disfavored because it leaves insufhcient power for struc-
ture formation on galactic scales. Therefore we choose to
study np ——1.

In Fig. 7, the values of r*(nT ) and nT are shown which
maximize the likelihood functions of 200 simulated exper-
iments with 0FwHM = 20 arc min, w = (15 pK) deg
The combination r'(nT) = r(t*/2) "T+ is analogous to'

Q&(ns) in the scalar case. We find the pivot point to be
at /* = 20 and LnT ——0.14.

The uncertainty in n~ can be understood by imagining
amplitude measurements at a pair of angular scales, ex-
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actly as was done for the scalar case. Rewriting Eq. (10)
for nz,

I I I I I I

(An@ ) [in(l~/lD)]

(&~z„&' )~z y'l
x z„) (ZD& ~

(13)

- f,(n, )

where Z~ is deflned analogously to Z~. Equation (13)
is correct only if we neglect the contributions to LZ~
and LZD that are due to uncertainty in ns, since these
contributions to the error in n~ nearly cancel each other.
The value of l~ that minimizes Any is about lg/3. Since
l~ 55, l~ 18. At this minimum,

(i4) p
0 .4 .6 .8

From Fig. 1 we see that Ci+s/Ciss r/1. 5. Therefore
1.5 and Anv ——0.14 for r = 1, in agreement with

the numerical result.
Whether this precision allows for a test of inflation

depends on the alternative hypotheses. For example,
nz = r/7 an—d 0 are not necessarily distinguishable for
r & 1. However, if there were a large deviation from scale
invariance, say nz ——1, then we would clearly be.able to
falsify the consistency relation, at least for r ) 0.4.

Higher-order corrections to the consistency relation are
unlikely to be an important consideration in its testing.
To second order in np —1 and n~, the consistency relation
is [36]

nz = ——[1 + O. lie + 0.15(ns —1)] .
7

Even for r = 2, the correction to the expected value of
nz is only about 0.03.

Measurement of the polarization of the microwave
background provides another means of gaining informa-
tion on the tensor perturbations. For l & 10, polarization
of CBR anisotropy due to tensor perturbations is about
/60' times greater than that due to scalar perturbations
[21]. However, the polarization-to-anisotropy ratio is less
than l%%uo even for r = 1—and polarization is difficult
to measure on large angular scales. For the foreseeable
future it is unlikely that polarization measurements will
provide significant information on the tensor spectrum.

V. DEPENDENCE ON COSMOLOGICAL
PARAMETERS

At fixed signal-to-noise ratio, the sensitivity of the
above experiments to Qs and n& is nearly independent of
the actual values of 6, Og, O~, and ns. However, O~ and
ng do afI'ect the sensitivities to r and nz through their
e8'ect on the shape of the scalar spectrum for l & 60.
For example, decreasing ns at fixed r increases C& /C&
at l ) 2 and hence improves sensitivity to r and n~.
The sensitivity to n~ also depends on r as shown in the
previous section.

If the Universe is flat (Oo + OA = 1) then the cos-
rnological constant is the only cosmological parameter
that significantly afFects the shape and amplitude of the

FIG. 8. Correction factors for the magnitude of the scalar
and tensor quadrupoles, fs(BA) and fz (B~), as well as their
ratio.

7'�(~~)
fs(fi~)

(i6)

The correction factors as well as their ratio are shown
in Fig. 8. They were calculated numerically using the
Boltzmann codes described in [28], extended to allow for
a cosmological constant. The dependence of fz /fs on 6
and Ogh is much weaker.

VI. COSMIC CONFUSION

Bond et aL have asserted that the mapping of cos-
mological parameters into angular-power spectra is suK-

This has been called the late ISW effect by the authors
of [39] to distinguish it from the early ISW effect which oc-
curred near the last-scattering surface as the Universe was in
transition from radiation domination to matter domination.

scalar spectrum for l & 60. As the Universe expands
and becomes cosmological constant dominated, the ex-
pansion rate increases. The increased expansion rate
causes the gravitational potential to decay which induces
anisotropy through the integrated Sachs-Wolfe (ISW)
effect [37—39]. The effect is largest for wavelengths that
most recently entered the horizon and hence is largest at
the quadrupole. For gravitational waves, the anisotropy
in the radiation is all imprinted at the last-scattering
surface [24] and hence a cosmological constant has little
eÃect.

The relationship between r and nz is due to a rela-
tionship between the primordial tensor and scalar spec-
tra [25]. Therefore the dependence of Qs on B~ implies
that the relationship between r and n~ also depends on
Og. Defining O~ correction factors for the scalar and ten-
sor quadrupoles, fs(O~) = [Qs(O~)/Qs(Ap = 0)] and
fz (O~)—:[Qz (O~)/Qz (OA = 0)] allows us to write the
consistency relation for O~ g 0:
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ciently degenerate that the only information we can ex-
tract from the angular-power spectrum is an amplitude
and a slope. To be more precise, they claim that varia-
tions of parameters that leave n fixed do not significantly
alter the shape of the angular-power spectrum where n
is defined by [9]

Thus Osh2 must be known to better than 10%%u0 to be
negligible for the measurement of r and better than 6'%%uo

to be negligible for the determination of ns.
To estimate the confusing effect of parameters other

than Oi, h2, we can use Eq. (17) which implies that

n = ns —0.281n(1+ 0.8r) —0.515[(1—O~)h ]
(A'fis)h, = 0.52/1 —Oxb, h, = 0.23&h, (20)

—0.000 36z~ + 0.26, (i7)

A(Ogh2)
(Ans) ii, h 2 0.25

Ogh2
(i8)

A(Oi, h2)
(Ar ) ri, pp

- 1.3
Obh, '

where ZR is the redshift of reionization (effectively 0 for
the standard ionization history).

This degeneracy probably does exist for any measure-
ments that could be made by the current generation of
experiments. However, here we have demonstrated that
with a high-precision map one may extract not only an
amplitude and a slope but also r and even to some extent
the tensor index, n~.

Is it possible to also recover h, Ogh, O~, and. zR?
Hu and Sugiyama [39] have delineated the difFerent ef-
fects of each of these parameters on the angular-power
spectrum indicating that the answer is to some extent
aFirmative. For example, increasing Ogh not only in-
creases the height of the first Doppler peak relative to
the quadrupole (an eff'ect that may be degenerate with
n~, Qs, and r) but it also widens all of them. And at
least for small values of h, , the shape of the rise to the
first Doppler peak is very sensitive to small changes in 6
due to the early ISW effect.

The attempt to fit the other parameters will necessarily
increase to some degree the uncertainty in the in8ation-
ary parameters recovered here. The magnitude of this
effect is yet to be determined. Reionization is perhaps
the biggest worry. If reionization happened early enough
its effects on the angular-power spectrum will not be fit
by a single parameter. For these reasons the uncertain-
ties calculated here should be understood as ideal lower
limits.

For the excessively pessimistic case that we learn noth-
ing about h, , Oph, O~, and z~ from CMB anisotropy, we
can calculate the effect of these uncertainties on the in-
Hationary observables. First we consider the confusing
effect of uncertainty in Ogh . Decreasing Oph decreases
the erst peak at l 200 and leaves the trough at l 300
relatively unaffected. Thus a change in Obh, can be com-
pensated for by an increase in Qs, to fit the Doppler
peak, and a decrease in n, s to fit the trough simultane-
ously. These shifts in Qs and ns create excess power at
small l which is compensated for by an increase in r.

To study these shifts in the inferred values of the in-
Hationary observables we analyzed one set of simulated
data several times, each time with a different assump-
tion about the value of Og. For Op~8M ——20 arc min,

(15 pK) deg we find the uncertainties in ng
and r due to uncertainties in Ogh to be

0.26h
(Ang)ri = AO~ = 0.47AO~,gl —O~

(21)

and

(Ans), „=0.016(ZR/12. 4) AZR/zR,

where the right-most equalities hold for 6 = 0.8, Op ——

0.8. Therefore to get to Lns ——0.016 we must know 6 to
better than 0.03 for Op = 0 (0.07 for OA = 0.8) and we
must know O~ to better than 0.12 for h = 0.5, O~ ——0
(0.03 for h = 0.8, O~ = 0.8). Clearly, if reionization
occurred sufficiently early (ZR & 12) its effects could be
detrimental to the determination of ns. To get anywhere
near Lng ——0.016 in this case would probably require
precise measurement of the polarization of the CMB as
well.

A discussion of the prospects for precision measure-
ments of the above parameters by means other than CMB
anisotropy is beyond the scope of this paper. Clearly,
given present uncertainties in cosmological parameters
the uncertainty in ns from any of the satellite experi-
ments considered above would be "confusion dominated. "

VII. DISCUSSION

Our results should be compared to those of Hinshaw et
at. [40]. They simulated full-sky maps of the CMB and
then analyzed small patches by finding the maximum of
the likelihood function for Ob with all other parameters
held fixed. They found, for S/N ) 1, that sky coverage
is more important than S/N and angular resolution. An-
gular resolution is their next most important factor; they
found that LOp decreases by a factor of 1.3 as the beam
size decreases &om 1 to 30 arc min. Since they kept all
other parameters fixed, the determination of Og is effec-
tively an amplitude determination and we can compare
to our result for AQS/Q&, for which, similarly, halving
the beam size causes a factor of 1.3 decrease.

This slight decrease should not, however, be used as
an argument against the value of high resolution, the re-
wards of which are greater for the other observables. We
find Lng and Ar are both proportional to Op~8M. Fur-
thermore, it should be emphasized that even if it means
reducing S/N to below unity, reducing the beam size
(at fixed iii) still results in dramatic improvement of our
knowledge of the angular-power spectrum and the ob-
servables studied here.

Other considerations also argue for a small beam size.
The extent to which the degeneracy pointed out by Bond
et al. can be lifted probably depends critically on the
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beam size. Also, if 0+0~ ( 1, the deviation of geodesics
in an open Universe pushes the Doppler peak and all
other features intrinsic to the last-scattering surface to
smaller angles [41]. A lower limit on optimal beam size
will probably come kom constraints on the size of the
telescope.

The total solid angle of sky over which the CMB
anisotropy can be measured by a "next generation" satel-
lite is less than 4a because of astrophysical foregrounds,
mainly in the galactic plane. A more realistic value
for the sky coverage is perhaps 4vrf where f
which is approximately the efFective CMB coverage of
the COBE DMR [1]. The uncertainties calculated above
scale roughly with sky coverage as 1/~f

We have seen that a full-sky map of the CMB at 20 arc
min resolution with S/N = 2 could achieve Any 0.016,

0.11, and AQ&/Q& 0.003. One particularly
exciting prospect is the indirect detection of gravitational
waves by determination of a nonzero r. While there is no
generic infiationary prediction for the value of r, we note
again that the simplest model gives r = 0.28, a number
significantly different from zero. Also, many models obey
the relation r = 7(ns ——1) and a slight tilt (ns —1
0.05) is helpful in fitting the large-scale structure data.
Therefore r 0.35 may be likely. Of course, there are
also simple models that have negligibly small values of r.

The effects of uncertainty in cosmological parameters
(cosmic confusion) temper our enthusiasm for the above
precision. However, uncertainties in 6 and Oph are likely
to decrease dramatically over the next few years. Also,
precision measurement of multipole moments with t &
300 could possibly lift the degeneracy. Preliminary work
by Spergel [13] suggests that this is indeed the case for
a full-sky map with HFwHM = 0.5' and va = (10 pK)
deg . It would be interesting to see how the level of
degeneracy changes as the beam size and weight per solid
angle are varied.
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To relate this result to the case of interest we make the
identifications
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n = 2l+1
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where

&pix

(A4)

o 2o—:(~ai P~ ) = Cie ' & +4~
PlX
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since that is the total variance of a&

To estimate C~ from CP P = g [aP ~
/(2l + 1) we

must subtract off the expected noise contribution and
correct for the finite width of the beam. Therefore

~lllap 4 plX
(A7)

Npix )
Since the weight-per-solid angle is ut = (tT2,„0p,„)

There are two contributions to a& . the signal con-

volved with the beam al e &/, and the noise a&" "'.
These two contributions are uncorrelated. The first, by

l2 2
definition of Cl, has variance Cle &. The second has
covariance

o 2

(aP "'(a,", ",')*) = 47r
'"

hg 8, (A5)
P lX

which follows from applying the rules of error propaga-
tion to the definition of al and the assumption that
the errors in the temperature of each pixel are uncor-
related with variance oplx Thus we make the further
identification
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APPENDIX: CALCULATION OF Ch, Ct/Ct

Cest (Cm~p —1) l cr&

Prom this it follows that

~est + ~—1&l cr&
2 2

V = (2l+1)
+l+m 1el ~

and therefore

P(C"')dC "= P(V) dC"'
l l l

l

(A8)

(AO)

Let X, be a Gaussian random variable with zero mean
and variance o . Then the sum

V=) X, /o (A1)

is a random variable that has a g distribution. That is,
it has probability density [42]

y(n —2)/2~ —V/2
g~est

C) + m 'e"~: 2"~'I'—(n/2)
(A10)

where n = 2l + 1. With the probability density for Cl"
in hand, it is easy to show that (C&" ) = C~ and

((CP" —«) (C~'" —C~ ))

(C~+ to e ') bn . (All)2l+ 1
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