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Primordial spectral indices from generalized Einstein theories
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Primordial spectral indices are calculated to second order in slow-roll parameters for three closely
related models of infl. ation, all of which contain a scalar field nonminimally coupled to the Ricci
curvature scalar. In most cases, n, may be written as a function of the nonminimal curvature
coupling strength g alone, with n, (g) ( 1, although the constraints on f differ greatly between
"new inQation" and "chaotic inflation" initial conditions. Under "new inflation" initial conditions,
there are discrepancies between the values of n, as calculated in the Einstein frame and the Jordan
frame. The sources for these discrepancies are addressed, and shown to have negligible effects on the
numerical predictions for n, . No such discrepancies affect the calculations under "chaotic inflation"
initial conditions.
PACS number(s): 98.80.Cq, 04.50.+h

I. INTRODUCTION

In many models of the very early Universe, the canon-
ical Einstein-Hilbert gravitational action emerges only as
a low-energy effective theory, rather than being assumed
from the start [1]. A large class of these generalized
Einstein theories (GET s) involves scalar fields nonmini-
mally coupled to the Ricci curvature scalar. Such Brans-
Dicke-like couplings [2] arise, for example, in models of
superstring compactification [3] and Kaluza-Klein theo-
ries [4], and are related, via conformal transformation, to
quantum-gravitational counterterms, which are propor-
tional to the square of the Ricci scalar [5, 6].

Recent experimental determinations of the power spec-
trum of density perturbations [7], modeled as Poc'
k ' [8], ofFer a rare glimpse of such Planck-scale physics.
The spectral index for this scalar perturbation, n„ func-
tions as a test for models of the very early Universe,
independently of the familiar test based on the magni-
tude of perturbations. It has been shown, for example,
that one well-known GET model of inflation, extended
in8ation [9], cannot produce the observed nearly scale-
invariant (Harrison-Zel'dovich) spectrum: extended in-
flation predicts n, ( 0.76, instead of n, = 1.00 [10]. The
constraints on n, for extended inflation come &om that
model's incorporation of a first-order phase transition to
exit inflation (see [11]for more on this so-called "ur prob-
lem"). As discussed in [12], this pitfall can be avoided in
GET models of inflation which undergo a second-order
phase transition to exit the inflationary phase. In this
paper, three cousin models of extended inflation are con-
sidered, all of which fare much better in comparisons with
the observed values of n, .

The analysis is carried out to second order in the
potential-slow-roll approximation (PSRA) parameters
identified by Liddle, Parsons, and Barrow [13],who have
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recently amended earlier work by several authors [14,15].
These papers are based on the Hamilton-Jacobi equa-
tions of motion for a theory with a scalar field minimally
coupled to the curvature scalar; before they can be ap-
plied to the nonminimally coupled GETs considered here,
use must be made of a conformal transformation [5, 16],
which, via field redefinitions, puts the GET equations of
motion into the "Einstein &arne" form of an Einstein-
Hilbert gravitational action with a minimally coupled
scalar field.

In this connection, it is important to keep the cau-
tionary note of Fakir and Habib in mind. In [17] they
have demonstrated that ambiguities arise when study-
ing the quantum fluctuations of scalar fields in GET's
in various &ames: the scalar two-point correlation func-
tion evaluated in the "Jordan" or "physical" &arne, in
which the nonminimal $2B coupling is explicit, differs
&om the two-point correlation function evaluated after
the field redefinitions, in the Einstein &arne. Yet, as dis-
cussed below, when the inflationary expansion is quasi —de
Sitter —type, a(t) oc exp(Ht), with II 0, the ambigui-
ties isolated in [17] afFect the magnitude of the correla-
tion function only, and not the k dependence (and hence
not n„see Eq. (58) in [17)). All three of the models
considered below display such quasi —de Sitter expansion
under "chaotic inflation" initial conditions, and thus the
Einstein &arne formalism employed here for n, should
remain unproblematic.

However, under "new infIation" initial conditions, two
of the models evolve as a quasi power law, a(t) oc t". In
these cases, ambiguities similar to those discussed in [17]
do affect the form of n, . As discussed below, in Sec.
III B, the discrepancy between values of n, as calculated
in the Jordan and Einstein &ames arises because the cur-
vature perturbation upon which the PSRA formalism is
based, R, = (H/P) hP [8, 14], is no't invariant with respect
to the conformal transformation. (This discrepancy can
be resolved by choosing a suitable generalization of 'R;
see [18].) Still, it can be shown that even in these cases
of quasi-power-law expansion, the numerical results for
n, in the Jordan &arne, as calculated with the PSRA
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formalism, dier negligibly &om the Einstein &arne re-
sults.

The specific method for calculating n, is developed in
Sec. II. In Sec. III, the formalism is applied to induced-
gravity inBation, for which we can compare the Einstein-
frame results with Jordan-&arne calculations. In Secs.
IV and V, the analysis is presented for two models with
a different nonminimal $2R coupling and two different
potentials. Concluding remarks follow in Sec. VI.

where U is the scalar field potential following the con-
formal transformation, and y is the newly defined scalar
field following the conformal transformation; and calcu-
lating yH~, the value of y when the scales of interest
crossed outside of the horizon during in8ation. In gen-
eral the first of these tasks is straightforward, while the
second can become quite tricky.

The action for the three models studied below can be
written in the general form

II. EINSTEIN-FRAME FORMALISM

The calculation of n, for these GET models of inBation
involves two distinct tasks: calculating the PSRA param-
eters, which consist of various combinations of d U/dp",

I

$4~ g Q i P

where f(P) gives rise to the nonminimal coupling P R.
This action yields the coupled field equations

&P —
2g~ & = f '(0)

2 l 4;~4; —
2g~ 0';id"'

l
+ f(4);~; —&f(0)g, —2&(4)g~

1 1 ( 1

In Eq. (2), a prime indicates d/dP.
These complicated field equations can be simplified

by making a particular conformal transformation (see,
e g. [5]):

g~- = ~'(x)g~-

0 (x) = 2K f(p), (3)

where quantities in the new &arne are marked by a caret.
The quantity v = 8vrM&&, where Mp~ 1.22 x 10 GeV
is the present value of the Planck mass. [We thus require
that f(P) remain positive definite, to ensure that Mpi
does not change sign. ] If we further define a new scalar
field p and scalar potential U by

f(&) + 3[f'(&)1'
2f'( )

U(~) —= [2~'f(&)] '&(&) = ~ '&(&)

then the action in the new frame may be written in the
canonical Einstein-Hilbert form

S = d xQ gB———(p. gIp' —U(p)4 - 1 " 1;A
2K 2

The action in Eq. (5) now yields the familiar equations
of motion,

1 M
g 1

&g v —
2gg v& = K &P; p'p; v — gyve; AP' U('p)gg v—

I

that the background spacetime can be written in the form
of a Bat (k = 0) Robertson-Walker line element:

ds = g„„dx"dx"= dt + a—(t)dx
=0 (x)[—dt + a (t)dx ], (7)

from which we can see that dt = Q(x)dt and a(t)
O(x)a(t). These relationships will become important
when evaluating yHc.

The spectral index (n, ) is determined by [8]

d ln b~2

dink ' (8)

where hH —— lb'p/pl2. An exactly scale-invariant
(Harrison-Zel'dovich) spectrum of perturbations corre-
sponds to n, = 1.00. For inQationary models, one can
relate deviations from this exactly scale-invariant spec-
trum directly to changes in the Hubble parameter II(rp)
and its derivatives during the time that various scales
were crossing outside of the horizon [13—15]. Such a
parametrization corresponds to the "Hubble-slow-roll ap-
proximation" (HSRA) scheme of [13]. Using the infla-
tionary equations of motion, these deviations in terms of
H(&p) can then be rewritten as changes in the inflaton's
potential U(y) and its derivatives. This parametrization
corresponds to the "potential-slow-roll approximation"
(PSRA) scheme of [13]. This is the approach adopted
here.

To second order in PSRA parameters, the spectral in-
dex n, depends only on three parameters, e, g, and g.

V
—U'(V) = o,

where derivatives are now taken with respect to the met-
ric g~„, and a prime indicates d/dp.

When evaluating the field equations, we will assume

To avoid confusion between the third PSRA parameter and
the nonminimal coupling strength, we will use g to denote
the PSRA parameter and ( to denote the coupling strength.
In [13], the third PSRA parameter is labeled g, instead of t,'.
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These three functions of y are defined by [13]:

1 t'U'(y) l '
U(&) )

1 fU"(~))
K2 ( U((p) ) '

1 (U'(%7) U"'(97) i
U2((p) )

where, again, a prime denotes d/dy. To second order,
then, the spectral index is given by [13,14]

Geld equations

k ~2 1 (dpiH'+ = = —U(&) + —
I

G 3 2 (dt)

dt2 dt
+ 3H = —U'(y)

may be approximated as

K
H —U((p),3

(13)

n, = 1 —6e + 2g + —(44 —18c)e + (4c —14)eg
1 2

3

+-il + —(13 —3c)(,2 2 1 2

3 6
(10)

3H —U'(p), (14)

where c—:4(ln2+ p) 5.081 (p 0.577 is Euler's con-
stant). During inflation, each of these PSRA parameters
remains less than unity, and hence the deviations of the
spectrum of perturbations kom the scale-invariant spec-
trum should indeed remain small.

The PSRA parameters in Eq. (10) are to be evaluated
at yHc. Yet for two of the models considered below, p(P)
cannot be written in closed form. Instead, the PSRA
parameters can be written as functions of the Jordan-
&ame scalar field P, by using Eq. (4) and

dU dP dU

dy d(p dP'

and so on for the higher derivatives. From Eq. (4), it
is clear that U and all of its derivatives can always be
written in closed form in terms of P. We can thus derive
e, g, and ( as functions of P alone. This leaves the task
of calculating the value of P, which corresponds to rpHc.

Solving for the value of the Geld at the time of horizon
crossing is difBcult in either frame; but, following [19),
we can use the fact that scales of interest to us crossed
outside of the horizon approximately 60 e folds before
the end of infIation:

where H = a ida/dt. In other words, we have assumed
that the standard Einstein-kame "slow-roll" approxima-
tions may be made. As discussed in [13, 21], inaation-
ary solutions of the full equations of motion, Eq. (13),
approach the "slow-roll" attractor situation, Eq. (14),
at least exponentially quickly (provided that the sign of
dp/dt, and hence of P, does not change —we will assume
this here). Thus, by using the PSRA parameters to study
n„we assume that tHc occurs sufBciently late in the time
evolution of the inflationary phase to allow the dynamics
to converge on Eq. (14). It is this assumption that en-
ables the Jordan-kame scale factor a(t) to be solved in
terms of P(t) during the slow-roll period.

III. INDUCED-C RAVITY INFLATION

A. Einstein-frame results

The Grst model to be considered here is induced-
gravity inflation [19, 22]. In this model, an extended
infIationlike Brans-Dicke coupling is combined with a
Ginzburg-Landau potential:

a(tend) fl(2'end) a(tend) soe
a(tHc) ~(*Hc) a(tHc)

(12)

We can check how sensitively this assumption afFects the
calculation of n, ; this is treated below, in Sec. IIIA. In
each of the models considered below, a(t) can be solved in
closed form as a function of P(t) during the period of slow
roll, and since A(x) is also defined as a function of P(t),
we may find an approximate value for PHc in each case,
where PHc is the value of the Jordan-kame scalar field
at the time when the scales of interest crossed outside of
the horizon in the Einstein frame. (See [20] for a similar
discussion in the context of extended in8ation. ) This last
step allows the PSRA parameters to be evaluated at the
correct time.

Finally, it should be noted that by using the PSRA
parameters instead of the HSRA parameters, we have
necessarily made an additional assumption, referred to
as the "in8ationary attractor" assumption in [13]. That
is, we have assumed that near tH~, the full Einstein-frame

V(y) = —(y' —v') ',
4

(15)

H = V(P) + — — —2H

2

0+ 3H4 + —= —[4&(4') —&&'(&)1 (16)1+6(4
where overdots denote time derivatives and primes de-

where $ () 0) is the nonminimal coupling strength and is
related to the Brans-Dicke parameter u by ( = (4')
The nonminimal coupling turns the Planck mass into a
dynamical quantity; the present value of the Planck mass
is related to the vacuum expectation value of the poten-
tial v by Mpi = +8vr( v. In a flat Friedmann universe,
the Jordan-frame field equations are
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note d/dP; we have assumed that the classical back-
ground field P is sufficiently homogenous, so that all spa-
tial derivatives become negligible. These equations corre-
spond exactly to the Einstein. -kame equations (13). The
Einstein-kame inHationary attractor Held equations (14)
may then be rewritten as

Before we may evaluate n„we must calculate PHc us-
ing Eq. (12), for which we need P,„g, the value of the
Jordan-frame field at the time inQation ends in the Ein-
stein kame. 2 Inflation ends (in the Einstein frame) once
d2a/dP = 0 (instead of being & 0). To first order, this is
determined by e = 1 [13]. If we write P „g = P(() v, then
we may solve for P:

(2i)

3~ HP+—
4 ) (1+6()4

—[4V(&) —&V'(&)] .

Yet the assumption U(&p) )& 2(d&p/dt ) is equivalent to
V(P) )& zP (1+6g), and thus it remains consistent fur-
ther to simplify the Beld equations during slow roll as

where, again, the + is determined by the initial condi-
tions: + for a chaotic inQation scenario and —for a new
inHation scenario. Note that 8(/(1+ 6() ( 4/3, so in
both the chaotic and new inQation scenarios the end of
inHation occurs close to P = v, as expected.

If we next write PHc = m(() v, then Eq. (12) becomes

3HQ —[4V(P) —QV'(P)] . (is)
p p ) (i+»4)/4C

e
gm) 8( (22)

These approximate equations may be integrated to yield
the solutions

4A(

3(1+6() ""
«(t) ~

'+"""
~a ( (t )

x exp [P —gP (t)]
1+6(

8( v'
(1 + 64) (~' — ')'

8( v2 (2v' —P')
(1+«) (&' —v')' '

4i/2(
(1 ~ 6$)

v4 (P2 —4v~)
2 —V2 3 (2o)

In Eq. (19), Po and a~ are values at the beginning of the
inHationary epoch. The + in P(t) is determined by the
initial conditions: for a chaotic inHation scenario Po &) v,
and the —should be used in the solution of P(t); in a new
inHation scenario Po (( v, so the + should be used in the
solution for P(t). Thus we can see that with the chaotic
inHation initial condition, a(t) is dominated by a quasi —de
Sitter expansion for early times [a(t) oc exp(P gA/3(t)],
whereas with the new inHation initial condition a(t) is
dominated by a quasi-power-law expansion at early times
[a(t) oc t( +s~l/ &]

We may now make the conformal transformation of
Eqs. (3) and (4), in order to calculate the PSRA param-
eters. The conformal factor O(x) for induced-gravity in-
Hation is simply proportional to the Jordan-frame field,
O(x) = i//r2( P(t), and the new scalar field potential,
written as a function of the Jordan-kame field, becomes
U(P) = (K (P ) 2 V(P). Finally, the Einstein-kame
scalar field is defined by dip/dP = g(l + 6()/K (gP Us-.
ing these relationships, the PSRA parameters of Eq. (9)
become

In order to solve for m(() under chaotic inHation condi-
tions, it is helpful to rewrite Eq. (22) as

—=exp (m —P )—m (1+6()
P 2(1+ 10()

8(n
2(1+ 10() (23)

To remain consistent, m/P ) 1 for the chaotic inHation
scenario, which requires

m, b &
8 o.

(1+6() '

where the subscript "ch" is to remind us that this in-
equality is to be satis6ed under chaotic in6ation condi-
tions only.

For the new inQation scenario, it is helpful to rewrite
Eq. (22) as

1 + 10$ m 1 , 1
ln —+ —m ——P .1+6( P 2 2

(25)

Inew —~
4(o.

(1 6()
+ (/3 — )

where the subscript "new" is to remind us that this ap-
proximate solution for m applies only under the new in-

Note that this value of P,„z should be very close to the value
of P at the tiine in6ation ends in the Jordan frame, since as
P -+ v, Q(2:) m 1, and the two frames coincide.

As in [12], this equation may now be solved approxj
mately for m under two limiting conditions: (a) 4(n «
(1+6() and (b) 4(n )& (1+6(). However, as discussed
below in Sec. III 8, (' is strongly constrained in the new
inBation scenario of this model, based on sufBcient in8a-
tion requirements: ( & 2.5 x 10 . Thus we need only
consider the case (a). In this limit, m becomes
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8ation conditions. Note that given. the constraint on (,
the (P —1)2 term will always remain over an order of
magnitude smaller than the 4(a/(1 + 6$) term

Using Eqs. (20), (24), and (26), the PSRA pararne-
ters may now be written as functions of the nonminimal
coupling strength ( alone:

8( 1

1+6( (m —1)
8( 2 —m

1+6( (m2 —1)2'

0.93 & n, & 0.97 for ( & 4 x 10 s. Thus, induced-gravity
in8ation predicts a spectral index in close agreement with
the experimental determinations.

The sensitivity of n, to our assumption e e6O may
be checked by calculating On, /Ba. From Eq. (10), it is
clear that this requires calculating Be/Bo. , Og/On, and
Og/Bn. For the case of chaotic in8ation conditions, Eqs.
(24) and (27) yield

Be —128( 1

Bn (1+6()2 (m2 —l)s '
ch

4v 2(
1+6$

m2 —4
(m' —l)s ' (27)

where the appropriate m(() is determined by the initial
conditions.

Approximate erst-order results for n, may be written
using Eq. (10), and taking the limits m )) 1 for chaotic
inBation initial conditions and m (& 1 for new in8ation
initial conditions. In these limits, to 6rst order, the spec-
tral index may be written

16(
s ch 8 o. +1 )

Og 64(2 m2 —3
Bn (1+6()2 (m2 —l)s'

ch

When ( )) 1, m2t, ~ 4o./3 )) 1, so

06
oc(I ~ 10

00!
ch

0 —2 10—4

Do!
ch

When ( « 1, (m, h
—1) ~ 8(u/(1+ 6$), so

(29)

(30)

n, , n w —1 —16(~ (28)
ch

where we have used a 60 )) 1 when evaluating n, ,h
and ( « 1 when evaluating n, „, . It is important to re-
member that these expressions for n, are limiting cases,
corresponding loosely to ( & 1 and $ & 10, respec-
tively; the second-order result for n, ,h, for example, has
a positive slope for increasing $, unlike this approximate
solution.

The full second-order results for n, are plotted in Fig.
1. For the chaotic inBation case, 0.90 & n, & 0.97 for
( & 1.5 x 10 s, which is obviously close to the observed
n, 1.00 spectrum [7]. For the new in8ation case,

ch

oc ( n (8Icn —2) . (31)

Because g only enters in n, at second order in the PSRA
expansion, B(/Bn has not been explicitly included, al-
though it can easily be shown to behave similarly to
Be/Bn and Og/On. Likewise, for the new in8ation case,
Eqs. (26) and (27) yield Be/Oa oc Bg/Oe oc $4n~,
so that both of these deviations remain & 10, given
the independent constraint for new in8ation conditions,
$ & 2.5 x 10 s. If we expand n, in a Taylor series as

1.00

n, (n) = n, (60) +
~

'
~

(a —60) +(Bn, l
EO~) =so

(32)

0.95

0.90

0.85

0.80

0.75
0.002 0.004 0.006 0.008

I

0.01

then Eq. (31) can be used to place limits on the re-
gions of $ space, under chaotic in8ation conditions, for
which the assumption n, (60) remains accurate: requir-
ing n, (n) —n, (60) & 10 2, for a —60 10, limits ( to
( & 10sa s 10 s. Note that under new in8ation con-
ditions, (an) —n, (60) will always remain & 10 . The
assumption that a = 60, put in by hand to facilitate com-
putation of PH~, therefore has negligible effects on the
calculation of n„so long as ( & 10 s under chaotic in-
Qation conditions. Thus, for the remainder of this paper,
all numerical results for n, will be calculated assuming
o. = 60.

FIG. 1. Second-order results for the spectral index n, for
induced-gravity inflation, based on Eqs. (10), (24), (26), and
(27), with n = 60. The solid line is for new in6ation initial
conditions, and the dashed line is for chaotic inQation initial
conditions. Note that for the new inilation scenario, ( )
2.5 x 10 is forbidden due to sufficient in6ation requirements.

B. Comparison with Jordan frame results

In [12], n, was calculated directly in the Jordan frame
for a new in6ation scenario of induced-gravity inHation.
There it was assumed that the scales of interest crossed
outside of the horizon, while the expansion was still pre-
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8

(1 + 2()' (33)

This should be compared with the m (( 1 limit of the
Einstein-frame results in Eq. (28): n, ~ 1 —16(. Ob-
viously, the results differ between the two &ames.

The difference may be traced to ambiguities between
the quantum fluctuations of the scalar Geld in the two
frames [17]. The usual procedure for calculating the den-
sity perturbation spectrum is to study the intrinsic cur-
vature perturbation, given (during inflation) by [8, 14]:

R = —. bP.
H

(34)

The spectrum of the density perturbation is then given
by

dominantly quasi-power-law behavior, a(t) oc t", where
p = (1+6()/4(. The result was

0"+ k'+ —A = 0
(1 )2 2 (40)

Note that this approaches the equation of motion for a
massless scalar field in a de Sitter background [17,23, 26]
as p ~ oo, as it should, given the form a(t) oc t". If we
next define the field y as g = w ~ g and work in terms
of the variable z = kr, then the equation of motion takes
the form of Bessel's equation:

(3p —1)' l+ — +i1——
~

Xi. = 0.
dx x dx ( x 4(p —1) ) (41)

Mode solutions for the original field bP may then be writ-
ten in terms of Hankel functions:

bPi, (~) = Ci~" Ai, H„' (k~) + Bi,H„(k~) (42)

expanding as a(t) oc ti', the scale factor as a function of
~ becomes a(w) oc [(1 —p)r]" ", and the equation of
motion takes the form

where ~b, P] is the two-point correlation function for the
scalar field's quantum Huctuations, defined as [23, 24]

where Cq is a constant, and

3p —1V=VJ=
2(p —1)

' (43)

3X
AP(k, ~)—:k e'"'*(bP(x, ~)bg(0, ~)). (36)

H+0 0
R—: by = 0 bp g —. bP,

dip/dt

or R f R. For induced-gravity infiation, 0 = gr2( P,
so that during infiation, 0/0 = P/P « H [25]; simi-
larly, under the new infiation conditions, with ( 10
then 602/r2 = 6(gP « P, giving R (H/P) 0 bp.
For calculating n„however, it remains to compare the k
dependence of bP with that of br'.

As shown in [12], near tHC, the linearized equation of
motion for the fluctuations bP is that of a nearly massless
scalar Geld in an expanding background spacetime:

by+ 3Hby - —,V'by = 0,a

~h~~~ bP:—8'(bP)/Bt . Written in terms of conformal
time dw—:dt/a and a conformal field defined by @:—abp,
the equation of motion for each mode becomes

IIa
@„"——@g+.k @i, 0,a (39)

where primes (in this section only) denote d/dw, and we
have performed a spatial Fourier transform. For a metric

This is the basis for the PSRA formalism. The trouble
is that although 'R is gauge invariant with respect to
the choice of comoving or synchronous gauge [8], it is not
invariant with respect to the conformal transformation of
Eqs. (3) and (4). Labeling R the curvature perturbation
as evaluated in the Einstein kame, it is straightforward
to show that

bing(~) oc k (44)

The two-point correlation function for these fluctuations
then becomes

2

bP(k, ~) oc kJ
This gives

'P~ oc bH oc ~AP]~ oc ks 2"'. (46)

Using Eqs. (8), (43), and p = (1+6()/4( yields the result

8
A8 J 1+2 (47)

This is the origin of Eq. (33).
The situati'on in the Einstein kame may now be com-

pared: the fluctuations by obey the equation of motion

d2b(p - dbms 1 -2 d2U(p)
(48)

At SHE, however,

The subscript "J" is to remind us that this solution is
for the fluctuations in the Jordan kame. Again we see
asymptotic agreement with the de Sitter case, which has
maes = 3/2

The Bunch-Davies vacuum, as deGned for the case of
de Sitter expansion, corresponds to Ai, = 0 [17,27]; note
that such a choice of vacuum is warranted for the case of
power-law expansion as well, since, in the limit p —+ 0,
this vacuum choice yields mode solutions, which ap-
proach the ordinary Minkowski space solutions for mass-
less scalar particles, oc k ~2 exp(ik 2:—ikt) [26, 28]. Tak-
ing the limit kw ~ 0 (for long-wavelength modes [23]),
the Huctuations bP then behave, for this choice of vac-
uum, as
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jc2
HHc —U('@He )a'(tHc)

(49)
function for the quantum ffuctuations takes the asymp-
totic form [17,24]:

giving ~ay(k~)~'~C, 1~(k~)'. (55)

( i ' & d'U(p)
oc (

(a (tHc)) «P
(50)

and under new inffation conditions ( « 1, so in the Ein-
stein frame the Buctuations bp also behave as a nearly
massless scalar Geld.

The conformal transformation gives 0 oc P oc t, and
thus t oc t2. Fiirthermore, a(t) = 0 a(t), so a Jordan-
&ame scale factor a(t) oc t" corresponds to an Einstein-
&ame scale factor a(t) oc t~i'+ii~2. The conformal trans-
formation does not acct x, so k = k. Proceeding as
above, the equation of motion for the Einstein-kame Huc-
tuations may be cast in the form of Bessel's equation, and
mode solutions written as

bPy, (~) = C2~" Ay, H„(k~) + Bi,H~ l(k~) (51)

with C2 g Ci another constant, and

3p+1V=V~= g vg.
2(p —1)

(52)

Note that this result also yields the de Sitter solution,
vses = 3/2, as p M 00.

If we attempt to deGne the Einstein-frame vacuum as
Ag ——0, then the two-point correlation function for the
Huctuations bp becomes, as kw ~ 0,

2

Ap(k, ~) oc k
E (53)

and thus

16(
s, ~ —1 1+2(

(54)

This reproduces the approximate first-order result for
n, , @, Eq. (28), given ( & 10

It is now easy to see why n, is unaffected by these am-
biguities for the case of quasi —de Sitter expansion: when
a(t) oc exp(Ht), the Jordan-&arne two-point correlation

We saw above that k = k; similarly, the conformal time,
dv—:dt/a, remains invariant under the conformal trans-
formation. Thus, for quasi —de Sitter inQation, the k de-
pendence does not change between the two &ames (al-
though the magnitude of the correlation function does
change between the two &ames [17]), and the results for
n, obtained using the Einstein-frame formalism of section
2 should be accurate for the Jordan frame as well.

Put another way, we may understand the discrepancy
between the two frames as follows: quasi —de Sitter expan-
sion in the Jordan frame yields quasi —de Sitter expansion
in the Einstein frame as well, so that v~ = v@ = 3/2.
Quasi-power-law expansion in the Jordan frame likewise
gives quasi-power-law expansion in the Einstein frame,
but with a difFerent power, so that vg g v@. This difFer-
ence in v (if the vacua in the two &ames are defined to be
Ai, = Ai, = 0) is responsible for the difFerent k dependen-
cies of n, . This discrepancy may be remedied by Gnding a
gauge-invariant measure of the intrinsic curvature pertur-
bation, which also remains invariant with respect to the
conformal transformation. (Note that the combination
presented in [25] does not circumvent the discrepancy
between 8P and bp for models with quasi-power-law ex-
pansion. ) Such a &arne-independent formalism has been
developed in [18],with which the Jordan-&arne value for
n, does indeed match the Einstein-frame PSRA result.

Finally, having calculated the discrepancy between
n, J and n, ~ for the new inBation scenario of induced-
gravity inHation, it is important to consider how large
a numerical difFerence this ambiguity amounts to. This
can be done by finding the allowed region of $ space,
which yields sufficient inflation. In [13], Liddle, Parsons,
and Barrow demonstrated that for inBationary models to
solve the horizon and Qatness problems, the model must
provide at least 70 e folds of expansion of the comoving
Hubble length, (aH) (this is slightly diff'erent &om the
requirement ordinarily assumed in the literature, that the
scale factor a grow by 70 e folds). To first order in the
PSRA parameters, this requires

tc2 ~ "~ 1 f' 1 1
~

1 ——e(P) — rl(P)
~

dP & 70. —
V'e(&) &

(56)

Note that although N is written here in terms of the Jordan-&arne field P, it pertains, like the PSRA parameters
e and g, to the Einstein frame; that is, we require that the comoving Hubble length in the Einstein frame inHate

by at least 70 e folds during inffation. For the new inflation scenario of induced-gravity inffation, with P « v and

P „g = Pv, this may be integrated to yield the closed-form expression

1 — 1+6 1

3i/1+ 6( L, 1+P) 4( ( 3
(57)
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with P($) given in Eq. (21). This expression may
be evaluated numerically, revealing that N & 70 for
( & 2.5 x 10 (or N & 70 for the Brans-Dicke param-
eter m & 100). Considering the quasi-power-law expan-
sion for induced-gravity inQation under the new inQation
conditions, this result makes sense: for small values of
(, a(t) oc ti~4~, and thus ( && 1 yields rapid expansion.
Furthermore, as discussed in [12], there is no lower bound
on (, as there is for extended inffation (stemming from
bubble percolation requirements), because of the second-
order phase transition in induced-gravity inQation. This
means that the Grst-order result in the Jordan kame is
(1 —n, g) & 0.02, while the first-order result in the Ein-
stein frame is (1 —n, a) & 0.04. Thus, in either frame,
induced-gravity inQation with the new inQation condi-
tions predicts n, 1.

In the following two sections, the Einstein frame for-
malism of Sec. II is applied to two other closely related
GET models of inQation. We only present the results
for n, as determined by the Einstein-kame formalism of
Sec. II; again, these should remain invariant between
the Einstein kame and the Jordan kame for the cases
of quasi —de Sitter inQation, and it is expected that the
numerical discrepancies between &ames is small for the
quasi-power-law case.

IV. NONMINIMALLY COUPLED SCALAR WITH
P4 SELF-INTERACTION

V(&) = 4&' (58)

&om which the Jordan-frame Geld equations in a Qat
Friedmann universe become

The action, Eq. (1), can be used to study a non-
minimal coupling similar to, but distinct &om, that of
induced-gravity inQation. In this section we consider a
model given by the action (see, e.g. , [25]):

1+ r2
Q4 Q iP

2K ) 2

where overdots denote time derivatives and primes de-
note d/dP. For these field equations, the Einstein frame
inQationary attractor assumption becomes

H
K

3(1+~2@2)

13II
(1 ~ r2g 2(1 + 6())
x[4~2(QV(P) —(1+ Ic Q2)V'(P)].

K'[P2 —P'(t)] (61)

Note from the forzn of the potential, V(P), that this
model only admits chaotic inQation initia, l conditions,
with P )) 0, and, hence, during inflation the expansion
is predominantly quasi —de Sitter.

A few words are in order concerning the sign of ( in
this model. In induced-gravity in6ation, the sign of ( is
fixed by present conditions: ( & 0 is required to yield
the proper value of the Planck mass. Yet in this model,
the sign of ( is undetermined by present conditions: af-
ter inflation, P 0, and the present value of the Planck
mass is independent of the model parameters. However,
we will only consider values of ( & 0 here; as Futamase
and Maeda concluded in [16], a negative value of ( (ac-
cording to the sign conventions used here) would require

10 in order to yield sufficient inflation. Such
constraints do not apply for the sign choice ( & 0.

Making the conformal transformation of Eqs. (3) and
(4) yields

Q(x) = Ql + r2($2(t),

U(Q) = (1+~ (qP) V(P),

As for induced-gravity inQation, these slow-roll Geld
equations may be integrated to yield a(t):

(1+K'(p'(t)) ~

1+ lc2

~'(P'(1+ 6()
1 + r2(gP (1 + 6()

1
1+ Ic2($2(1+ 6()

d(p [1+~2$(P(1+ 6()]i~2
dP 1+ r2(gP

The Grst of the PSRA parameters thus becomes

8 1
r2 $2[1 + r2($2(l + 6()]

(62)

(63)

x 4K Q&V(P) —(1+ r (P )V'(Q) Setting e = 1, and writing e2(P2„& ——P2 ((), we inay solve
for P((),

(/192P + 22(+ 1 —1}. (64)

Note that for chaotic in8ation conditions, additional as-
sumptions must be made about the value of P before 1V can
be used to place limits on (.

Note that P „=1.07, and P -+ 0 as ( -+ 0.
If we similarly write r. (PH2c ——rn ((), then the three

PSRA parameters may be written
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1a=8(
m [1 + m (1 + 6()] '

g= 4(
3 + m2 (1 + 12() —2m4(1 + 6()

m2 [1+m2(1+ 6()]

q = 4~2(
3 + 2m (—2 + 3() —15m4(l + 6() —6ms(1 + 6()2 + 2ms(1 + 6()2

m'[1+ m'(1+ 6()]'

+ p2
exp

1 + 6$
(

2 2)
8Ct

10( 10

As for induced-gravity in8ation, m(() can now be ap-
proximated by using Eq. (12). In this model, Eq. (12)
may be rewritten

V. NONMINIMALLY COUPLED SCALAR
WITH GINZBURG-LANDAU POTENTIAL

As for the preceding model, the action for this last
model may be written

1+ rc4 1+K 1

where, again, the consistency of the chaotic inflation con-
ditions requires m/P ) 1. Remarkably, the requirements
for this model then take the same form as for induced-
gravity inflation:

m, g &
8 o.

1+6$' (67)

with P(() for this inodel given by Eq. (64). The spec-
tral index may now be calculated using Eq. (10), where,
again, the three PSRA parameters of Eq. (65) are func-
tions of ( alone.

The Grst-order result, n, = 1 —6e + 2g, may be ap-
proximated in the limit m )) 1, yielding

32(
n, 1—

16(a —1
(68)

0.970

Figure 2 shows the full second-order results. The spectral
index satisfies 0.96 & n, & 0.97 for ( ) 4 x 10, again
in very close agreement with the empirical results. The
Gnal model to be considered here is a close cousin to this
model, with the P4 potential replaced by a Ginzburg-
Landau potential.

V(y) = —(y' —v')'.
4 (69)

There is a subtle diBerence between this model and the
last, concerning the present value of the Planck mass: in
this model, P v at the end of inQation, and not 0,
which means that the present value of the Planck mass
is determined by

2
Mp) ——

8m (1+~'(v')

In other words, K2 g 8mMpi, instead, e2 is a free pa-
rameter of the model, with dimensions mass . For this
reason, in this section only, the present value of Newton's
gravitational constant will be written as e~~ —8mMpi
e2. Equation (70) may then be rewritten

K =1+~ (v =1+6',
N

where the parameter h—:K (v has been defined. The
spectral index in this model is thus a function of the two
free parameters, ( and h~. Note also that, as above, we
will only consider values of g ) 0.

The Jordan-frame slow-roll field equations, Eq. (60),
with the new potential and r2 g +2~, can then be inte-
grated for a(t):

0.965'

0.960

a(t) f1+ ~2@'2(t) l &P(t) )" " ~

aa & 1+~'(4'. )
x exp ~~[/ —P (t)]

1+6& 2 (72)

0.955

0.950 I I I I I I I I I I I I I I I I I I I I I I I I

0 0.02 0.04 0.06 0.08 0.1

Although P(t) cannot be solved exactly as a function of
t, the opposite can be done, to study how P evolves with
t. That is, if we write the Jordan-kame Geld equations
(60) as

II —A(P) v(p),
FIG. 2. Second-order results for the spectral index n, for

the model of Sec. IV, based on Eqs. (10), (65), and (67),
with n = 60. This model only admits chaotic in6ation initial
conditions.

3II =B(P),
'
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t een uring slow-roll we may t th'
) inver is expression and

integrate to find t as a function of P:

g3„, V' (&) (&) ~
Q(P)

(74)

Gr

+1 3it2 I Q(t) 1+ Ql + it2«20

+ b 4~
k

4'0 1+ Ql+ r.2((P(t)

1+6( 3r2
+1+b 4~

~'+" «") '+"'«'

where the ~ ~ ~ ~ ~

(75)
+ is for new inBation initial conditions and the

or chaotic infIation initial conditions. It can be veri-

' ~

e numerically that the nonlinea t t'inear erms in this expres-
sion are dominant only for very small values of K ~+va ues o K ~~ ttj,

1, it is a good approximation to
Thus, as for induced-gravity inflation

is a quasi —de Sitter expansion wh'l thi e e expansion un-
der new infIation initial condit'i ions is a quasi-power-law
expansion.

Thhe first PSRA parameter for this model is

For both c
b 2 ~ 2

aotic and new infIation cond t'n i ions un er cased

( ) P ~, we will define r (@&——m (() b Then the
PSRA parameters become

8([1i b']'
$2

4( (1+b')
77/:

m2

(m2 —1)2 [1 + m2b (1 + 6()]
'

(m' —1) [1+ m'b'(1+ 6()]'
4~2( (1+ b')

~m' —1( / [1+m'b'(1+ 6()]

with
(so)

= —1+3m (1+ b ) + m b' ((1+12() + 4b (1+6())
—2m'b'(1+ 6(),

Kb = m2 (3 g b'(7 + 12())
+2m'b'(( —2 + 3() + 3b'(1+ 9())
—3m'b'(1+ 6() (5+ 3b')
—2m'b'(1+ 6()' (3+ 4b') + 2m "b'(1+ 6()'

S(1+b')

N
2

1

v2)' 1 + r.'«'(1 + 6()
(76)

1.0 1 I

f

1

Writing r «end P ((), the equation for P becomes
rather difFicult to solve exactlac y:

O = P'(1+ 6g) + P4 —2P'b2(1+ 6g)
+P'b2(b'(1+ 6() —((1+b')') —2Pb'+ b4

(77)
Instead for th ~ ~ ~

~ ~

e c aotic infIation conditions t l' 'ts, wo imiting

$2
approximations may be made: (a) P )) v ll.e. ) p ))
E. 4 ca

, so that the P calculated in the d'in e prece ing section,

2 ~ 2 2 r 2
q. 4, can serve as the approximate l h, de va ue ere, and

( ) P,„d v (P b ). We will also assume P b for

eK=mt e new inflation initial condit Fi ions. or case a), we will
e ne r, @c——m. ((), and thus the PSRA parazneters

for case (a) may be written

0.9
/

//

/ /

0.8 — I
/

I,

t
/

I

I

0.7—
I

I

II

I
J

06
0

1,00

0.95

0.001 0.002 0.003

(a)
I

0.004

= 8((1+b ) (m2 —b'2) 2 [1 + m2 (1 + 6()]
'

q. = 4((1+b')
(m2 —b2)2[1+ m2(1+ 6()]2 '

g =4va((1+b') —b
~

/ [1 + m2(1 + 6()]

0.90

0.85

0.80

0.75

with m &) b, and

E.= 3m'+ m'(1+ 12() —2m'(1+ 6(),
G = —1+3m. +4m, (1+6(),
K. = 3m' + 2m'( —2+ 3() —15m'(1+ 6()

—6m'(1+ 6()'+ 2m, "(1+6()',
L,.= m'(7+ 12() + 6m'(1+ 9()

-gm'(1+ 6g) —Sms(1+ 6g)'.

0.70
0.001 0.002 0.00"3 0.004

s or e spectral index n, forF . 3. Second-order results f th
t e model of Sec. V, based on Eqs. (10) and (78)—(82, with
n = 60. (a) Chaotic inflation initial candit, 'tn —60. a ' ' '' an iions, wit t efree
parameter b = 10 (solid line) 10 d h de, as e line), 1 (dat-
dashed line), and 10 (dotted line). b N

de
~ ~

ine . ~ ~ ew in6ation initial
can itions, with the free parameter b = 10
( ashed line), and 10 (dot-dashed line).

so id line), 1



52 PRIMORDIAL SPECTRAL INDICES FROM GENERALIZED. . . 4305

All that remains now is to calculate appropriate values
for m(() for each of these cases.

Proceeding as above, m(() becomes, under each of
these conditions,

m, h a& (1+h')
8 n

1+6(

8(n 1+ h2
mch b& 1+

1 + 6( h'

mnew, b —~— 4(n 1+ h2

1+6( h2 (82)

where P for m, h is given by Eq. (64). Because of
sufficient inffation constraints in the new inflation case,
we have only considered ( « 1. The three first-order
limiting cases for the spectral index may thus be written

&s, ch, a

s, ch, b

&s, new, b

32(
16(n —1

16((1+ h')
8(n(1+ h2) + 82 '

1+ b2
1 —8( (83)

The full second-order results for various values of b2 are
shown in Figs. 3(a) and 3(b). As for the other models,
0.90 & n, & 0.97 for many regions of allowed parameter
space, yielding a spectral index in close agreement with
observed values.

VI. CONCLUSIONS

The three closely related GET models of inflation con-
sidered above all predict values of n, close to the ob-
served, nearly scale-invariant spectrum of perturbations.
For the quasi-power-law cases (new inflation initial con-
ditions), the spectral index varies roughly linearly with
the nonininimal coupling constant (, with negative slope.
For large values of (, then, this negative slope dependence
of r4 on ( could drag the predictions for n, below the ex-
perimentally observed values. Yet sufBcient inflation re-
quirements place stringent restrictions on ( « 1; if such
sufhcient inflation requirements can be met, then the re-
sulting spectral index deviates only little &om n, = 1.00.
In the quasi —de Sitter expansion cases (chaotic infla-
tion initial conditions), n, again varies roughly linearly
with (, but with positive slope; n, thus remains close to
n, = 1.00 for most values of (. Note that these small
deviations of n, &om the Harrison-Zel'dovich spectrum
mean that each of the models considered here predicts
very small values for the tensor-mode perturbation index
nT and the ratio of tensor to scalar mode amplitudes B:
both nT and B are proportional to e to first order [13],

and in each of the cases above, 0 & e & [rl[ « 1.
Under new inflation initial conditions, the Einstein

&arne formalism employed here yields difFerent forms of
n, (() from calculations conducted exclusively in the Jor-
dan &arne. The physical basis for these discrepancies is
discussed in Sec. IIIB, and is further treated in [18].
However, again owing to the requirements &om suK-
cient inflation, in the allowed regions of ( space the nu-
merical values for n, diH'er negligibly between the two
&ames. Under chaotic inflation initial conditions, there
are no discrepancies between the forms of n, (() in the
two frames.

Each of these models is able to produce acceptable
spectra, even though their cousin-model extended infla-
tion cannot, because they avoid both of the so-called

problems which plagued extended inflation [10—12].
First, each of the models considered here exits inflation
by slowly rolling towards the vacuum expectation value
of its potential, thereby avoiding the strict requirements
&om bubble nucleation and percolation associated with
a first-order phase transition. This means that there is
no lower bound on ( for these models. Second, by ex-
iting inflation, all three of these models also exit the
GET phase: after inflation, as P settles in to e (or 0,
for the A/4 model), the coefncient of the Ricci scalar
in the action, Eq. (1), becomes the constant 1/(2Ki2v).
Thus, the second-order phase transition responsible for
ending inflation simultaneously delivers the universe into
the canonical Einstein-Hilbert gravitational form. Unlike
extended inflation, then, present-day tests of Brans-Dicke
gravitation versus Einsteinian general relativity place no
restrictions on allowed values of ( during the early Uni-
verse.

The approach used in this paper can be generalized
further, by choosing a more general form for the GET
action, Eq. (1). For example, specifically "stringy" effec-
tive actions, which often have the "wrong" sign for the
kinetic term in Eq. (1) and difFerent effective scalar po-
tentials [3], can be studied, as can models with more than
one scalar field coupled to the Ricci scalar (e.g. , [29]). By
studying these GET models of inflation with the meth-
ods employed here, we may further take advantage of the
window on Planck-scale physics o8'ered by the primordial
spectrum of density perturbations.
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