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Finite supersymmetric threshold corrections to CKM matrix elements
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We evaluate the finite one-loop threshold corrections, proportional to tanP, to the down quark
mass matrix. These result in corrections to down quark masses and to Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements Th. e corrections to CKM matrix elements are the novel feature of this
paper. For grand unified theories with large tanP these corrections may significantly alter the low-
energy predictions of four of the CKM matrix elements and the Jarlskog parameter J, a measure of
CP violation. The angles n, P, and y of the unitarity triangle and the ratio ~V„z/V, z~, however, are
not corrected to this order. We also discuss these corrections in the light of recent models for fermion
masses. Here the corrections may be useful in selecting among the various models. Moreover, if one
model fits the data, it will only do so for a particular range of SUSY parameters.

PACS number(s): 12.15.Ff, 12.15.Hh, 12.60.Jv

I. INTRODUCTION

Minimal supersymmetric (SUSY) grand unified theo-
ries (GUT's) based on the gauge group SO(10) require
tanP (the ratio of the vacuum expectation values of the
two Higgs scalar doublets present in the low-energy the-
ory) to be of order Mt~~iMb~tto~ —50. This follows
&om the unification of the top, bottom, and v Yukawa
couplings at the GUT scale, MGUT, and the necessity to
fit the large top-to-bottom mass ratio at the weak scale
[1]. Recent results using a general SO(10) operator anal-
ysis for fermion masses and mixing angles seem to be in
significant agreement with experiments [2]. It was shown
in [3—5], however, that there are potentially large finite
one-loop corrections (proportional to tanP) to the masses
of the down-type quarks at the supersymmetric thresh-
old. Note that these corrections were not included in the
analysis of Ref. [2]. They may be as large as several tens
of percent dependent on the sparticle spectrum [4]. Thus,
they must be included when analyzing any SUSY theory
with large tanP. In this paper we emphasize that the

nondiagonal elements of the down quark mass matrix also
get potentially large corrections, thus leading to signif-
icant corrections to some Cabibbo-Kobayashi-Maskawa
(CKM) matrix elements and the Jarlskog parameter J.
Our main results are given in Eqs. (9), (16)—(18), and
(22) [or in approximate form in Eqs. (25) and (28)]. Note
that the Cabibbo angle and the CP-violating angles o.,
P, and p are not significantly corrected to this order.

II. ONE-LOOP CORRECTIONS TO THE DOWN
QUARK MASS MATRIX

When one integrates superpartners out of the minimal
supersymmetric standard model (MSSM), there are sig-
nificant O(tanP) one-loop corrections to the mass matrix
of the down-type quarks originating in the diagrams with
gluino —d-type-squark and chargino —u-type-squark loops
yielding [see Figs. 1(a)—1(c), for the notation and. conven-
tions used and see the Appendix for a short derivation ]

mq = (Vd ) (1+eI'd+ eVcKMr„V,'KM)m&
' V&"',

(1)

with e = (1/16m2) tang and
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/ H~

(c)

FIG. 1. Peynman diagrams for the one-loop corrections.

(r)"=Bg(r-)- dk(k M k ~ (r )-, p
(2)

Uncorrected mass and mixing matrices are labeled
with a superscript zero. The (6 x 3)-dimensional ma-
trices I'~1. and I'~R (q = u, d) correspond to the addi-
tional transformations necessary to diagonalize squark
mass matrices in a SUSY basis where quark mass matri-
ces are diagonalized. Expressions for the F's are rather
complex, since they involve the summation over the six-
dimensional squark space. It has to be stressed, though,
that despite the explicit tanP term in the denominator of
(2) and a similar (v„) = (vgtanP) term in (3), there
will not be any actual tanP suppression in the elements
of the I"s. In the interaction basis [see the Feynman di-
agrams, Fig. 1(a)—1(c)] one can easily recognize the RL-
mixings among squarks in the loop and the mass inser-
tions or mixings on the fermionic line in the diagram.

I

Since in each diagram these mixings and mass insertions
introduce a tanP unsuppressed quantity, the result rep-
resents a tanP unsuppressed correction. This correction
is significant, since it corrects a tanP suppressed mass
matrix. To emphasize this fact, the large ratio of Higgs
vacuum expectation values (VEV) was pulled out into
the e's in (1). As a net effect, one can expect (at least
some) terms in the I"s to be of order (0.1—1). These
terms are then enhanced by a factor of tanP [multiplying
a standard small loop factor (16vr ) in our definition of
e] and thus lead to significant mass matrix corrections.

Concentrating on the above-mentioned diagrams, one
has to mention that there are also neutralino diagrams,
which contribute by finite O(tanP) terms to the d quark
mass matrix. However, we have checked that (assuming
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degenerate gauginos at MGUT) these contributions are
less than the leading gluino corrections roughly by a fac-
tor 16, as a result of smaller couplings, gaugino masses,
and group factors. Therefore these diagrams will not be
discussed separately in this paper, although they are in-
cluded in our numerical analysis in Sec. IV, where we
discuss their effects.

In order to gain some intuition for the F's, one can
6nd an explicit form for them in the following approxi-
mation. First, neglect the second chargino diagram [Fig.
1(c)],since it is suppressed by a smaller coupling constant
compared to the diagrams in Figs. 1(a) and 1(b). Then,
in the evaluation of the remaining two diagrams assume
that squark mass matrices are diagonalized in generation
space by the same rotations as the corresponding quark
matrices. This approximation is valid assuming univer-
sal scalar masses and trilinear scalar interactions propor-
tional to Yukawa interactions at the low-energy SUSY
scale.

That means that in this approximation the matrices
I'~1, and I ~~ (q = d, u) are diagonal in generation space
and are not completely trivial only because of the mix-
ing between squarks of the same generation. The inte-
grations in (2) and (3) are then easy to do along with
the summation over o. = 1, . . . , 6, i.e., over the squark
mass eigenstates. The F's are then proportional to the
off-diagonal term of the down (up) squark mass matrix
for each individual generation separately. We find

(Fq),z
= sg&MsIJ, Is(M , m- m„- -)b;z,

(F„),z ——U2&mx„V~2AoIs(m „,m-, m- )(A
'

),

One knows though, that the approximation used to
derive (4) and (5) is not correct. The initial conditions
at MGUT need not be universal and, even if they were,
squark masses and trilinear couplings run between the
GUT (or string) and the low-energy SUSY scales and vi-
olate our assumptions. As a result, the explicit form of
the potentially significant (i.e. , tanP unsuppressed) ele-
Inents in the F's is clouded by the fact that they no longer
remain diagonal in generation space. In order to evalu-
ate these effects we have performed a numerical analysis.
The results are found in Sec. IV. We also show that
our naive approximation, Eqs. (4) and (5), when suit-
ably modified to take into account nonuniversal squark
masses gives results that agree to within 25'Fo with the
two-loop numerical analysis.

In order to figure out the explicit form of the one-loop
threshold corrections to the CKM matrix elements as well
as to quark masses in terms of the F matrix elements one
can de6ne an unknown Hermitian matrix B as

Vq ——(1+zeB)Vq

where, again, V& is the matrix diagonalizing down
quarks in the absence of the SUSY corrections. Since
there are no large [i.e. , O(tang)] corrections to the up
quark mass matrix,

VcKM = V„Vq ——V„(Vz ) (1 —zsB)

CKM( B)

B is determined through the diagonalization condition

(md' ) = diag(mz, , m&, , m&, ) = V& rndrn&Vd, (8)

with the function I3 given by

(5)

ab ln(a/b) + bc ln(b/c) + ac ln(c/a)
(a —b) (b —c)(a —c)

Terms suppressed by tanP have been neglected in these
expressions. In this approximation both F matrices are
diagonal, which makes calculations of the corrections to
the masses and mixing angles in terms of mass eigenstates
simple. In addition to that, note the large hierarchy in
F„,and a much milder hierarchy in Fg based just on the
nonequality of the squark masses. Note, if Fg were com-
pletely proportional to the identity matrix (i.e. , the case
of complete squark degeneracy), the gluino loop would
not contribute to quark mixing corrections at all. 2

where both VP and my on the right-hand side (RHS) are
to be expanded to first order in e according to (6) and
(1)

A. Corrections to dmin quark masses

Also note that the same analysis could be done for the
corrections to the up quark mass matrix, and the above-
mentioned approximation would show that the relevant F ma-
trices [analogous to (4) and (5)j become suppressed by tang
after the up (instead of down) quark mass matrix is pulled
out of the expression analogous to (1). Thus, in this case,
there are no corrections proportional to tanP. There are,
however, corrections to charged lepton masses proportional
to tang. These are smaller than those for down quarks but
are still significant and must be included in any fermion mass
analysis.

Diagonal elements of this matrix equation (8) specify
the corrections to the masses of the d, s, and b (di, d2,
and ds) quarks. Note that the terms containing unknown
B elements drop out of these equations:

bmg, = s Re(Fd);; + s[VCKM Re(F„)VCKM]" .Of 0
m

This is an exact formula where the effects of squark rota-
tions are fully included in the F s. Since the F„matrix
has some generation hierarchy (for more discussion on
this see Sec. IV) because of the Yukawa couplings in the
chargino loop the dominant correction &om the chargino
diagram goes to the 6 quark mass correction:

= e Re(F„)ss + eO(10 ) .
t'6mb l
( mb ) (10)

The suppression in the second term above is caused by
the hierarchies present in (9). The largest next-to-leading
correction indicated above results, for example, &om
the term (VCKM)s2 Re(F„)qs(VCKM)ss, where two orders
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come from V,b and at least one order &om (F„)32.
Note that the corrections to the masses of the 8 and

d quarks can easily be as significant, or even larger than
the correction to the b quark mass. While the gluino
correction (which is the largest correction to each quark
mass) to the b quark mass is larger due to the smaller b

squark mass (in a universal-like scenario where one starts
with all soft squark masses equal at the GUT scale), the
chargino correction may invert the net e8'ect, since it is
always of opposite sign to the gluino correction and its
contribution to the two lighter quarks is small.

the CKM matrix this implies that in each of the previous
equations the dominant correction is the one containing
the (F„)33 term. However, the corrections due to the
other terms are non-negligible resulting in a 25% effect.
Thus, a good approximation to the exact results of Eqs.
(12)—(15) is given by (for more detail, see Sec. IV)

bVb V„[(r„)„—(r„)„—-
(r„)23] —= —.s, (16)

Vb Vb

B. Corrections to CKM matrix elements
bVb bV b

)V V„

The non-diagonal equations, i.e. , those with zeros on
the left-hand side (LHS) of the matrix equation (8), lead
to

—t&&" = &(r~)* + &(VcKMF-V KM)' 1+Ol(m2 )

where ij indices correspond to the 12, 13, or 23 combi-
nations and the transposed elements (for i ) j), are ob-
tained by the Hermiticity of B. The diagonal elements
of B remain undetermined by this procedure but, to the
first order in the e expansion they can be removed by
phase redefinitions of the 6, s, and d fields. We thus set
the diagonal elements of B to zero.

Then &om (7) we can easily derive3

8v, b = [V,g(rg) + V„(rg) ]

+&[(b2j (VcKM) 23 (VcKM) 3j)(ru) jk (VcKM) k3]

(12)

hv„b = e[v„g(rg)13+ V„,( rg) 2]3

+ [f~ —(v ) (v' ) )(r-)' (v ) 1

(18)

~vtd &[vta (rg) 21 + vtb(rg) 31]

b., —(v )„(v' )„)(rt),,(v, )„],
(14)

The results of Eqs. (17) and (18) follow directly from the
unitarity of the CKM matrix and the fact that these are
the only terms that receive significant corrections.

Note that as a consequence the ratio V„b/V, b remains
unchanged. In addition, the numerical analysis shows
that Re(F„)33)) Im(I' )33 thus these dominant correc-
tions to the CKM elements are roughly equal in magni-
tude, but opposite in sign, to the chargino corrections to
the b quark mass, Eq. (10).

The other five CKM elements get the corrections of the
form similar to (12)—(15). However, large F elements are
always in the product with a small CKM matrix element,
and the terms containing large diagonal CKM matrix
elements are in the same way pushed down by small F
elements in these corrections. Hence the actual numerical
values of the corrections to V„g, V„„Vg, V„and Vqb
are not significant, at least not at the present level of
experimental accuracy. As an example, the dominant
correction to, let us say V„, is

bV ev bVt V (r„*)33( 0.001

III. CP-VIOLATING PARAMETERS

bv, .=.[V„(r.)„-v.(r„')..]

+e[(VCKM)31(VCKM)lj(r~) jk

(VCKM) 33(VCKM) 3j (r~) jk] (VCKM) k2

The Jarlskog parameter, which measures CP violation,
can be obtained from the four CKM-matrix elements left
after crossing out any row and any column of this matrix

(15) [ ]

As already mentioned, the numerical analysis shows that
both F„and Fg matrices keep track of the generation
hierarchy from the Yukawa sector with the 33 element
of the order of 0.1—1 and the relevant 12, 13, and 23 ele-
ments of small magnitude. Together with the hierarchy in

J) e p~ejkt = Im[V jvpkV*kVp ] .

Consider the product

J = Im[V„VtbV, bV,*,] .

(20)

(21)

Using the formulas (16) and (18) from the preceding sec-
tion, it is easy to obtain the leading correction

Zero superscripts are dropped from now on, since they make
no difference in the following expressions. b J = —2&Re[A]J . (22)
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This threshold correction to J may significantly alter the
prediction for el' in SUSY GUT models with large tanP.

Note, it is not obvious how this result is obtained for
other equivalent definitions of J. For example, at erst
glance one might guess that bJ 0 for J defined by
J = 1m[V„qV„V„;V&]. However, such a guess does not
take into account that we have the imaginary part of the
product in (20), and imaginary parts are small for every
CKM matrix element, even if its absolute value is close
to one. In this case the small corrections to the large
CKM matrix elements become important, and, in fact, it
is corrections to V, and V„, that lead to the result (22).

Finally, we note that although J changes, the angles
of the unitarity triangle remain uncorrected to this or-
der. This is easily understood &om a geometrical point
of view. For the "standard" choice of its sides, ~V„gV„'b~,

~V,~V;b~, and ~VqqV~b~, each side contains one element
that gets a significant correction, and (as a consequence
of the unitarity of the CKM matrix discussed earlier)
these corrections are identical in magnitude [see (16)—
(18)]. Hence, the sides are contracted (or stretched) by
the same multiplicative factor and the angles stay the
same. The area of the triangle gets corrected, of course,
twice as much as the sides, and that is the reason for the
factor of 2 in (22) (recall that J measures the area of the
triangle) .

IV. NUMERICAL ANALYSIS AND
CONCLUSIONS

In our numerical analysis we took the initial conditions
(values at the GUT scale) for the dimensionless couplings
from the SO(10) models [2], which give predictions for the
low-energy data in good agreement with experiment. The
initial values for the dimensionful soft SUSY-breaking pa-
rameters were taken from Refs. [4,7] in order to guarantee
the radiative electroweak symmetry breaking at the weak
scale. We focused mainly on simple nonuniversal cases.
The numerical results presented below were obtained for
mB ——2.0mo, m~ ——1.5mo, and all other scalar masses
equal m02. Next, we used two-loop renormalization-group
equations [8] to run all the couplings and mass parame-
ters to the low-energy scale. Leading corrections to the
CKM matrix elements have appeared practically inde-
pendent of the exact value of the low-energy SUSY scale
between Mz and 500 GeV (changes were within 1% of
the mass or the CKM element in question). In the actual
numerical analysis the F matrices have been evaluated
according to the following formulas [note that there are
no divergent pieces from the integrals in (2) and (3) and
that the chargino summation is easy to do]:

2 2

(F,),, = -g,'(r„',).. . "M, » M"; (F, ).,3
d~ 9 g

(23)

(F„);~ = A„,. (F„&); (m„- —~M2~ )Is(mz, , m xm„- )(I'„I)

g2( dl ); I (m, m, m„- )(I'„I.) M2p ~

M2 is the W-ino mass parameter, and terms suppressed by tanP were dropped. The summation is only over n =
1, . . . , 6 (there is no summation over i, j on the RHS of these equations). This summation could be done analytically
in terms of the mass eigenvalues; however, the expressions are long and do not provide much insight, so we keep rather
the compact forms above.

Typical values for these matrices at the weak scale follow:

f 0.180+ i
—3 x 10—'+i

9x10 s+i
3x10 s —3x10 s —i 9x10 8x10 ji 2x10
7 x 10 0.180 —i 4 x 10 —4 x 10 4 + i 6 x 10
8 x 10 s 3 x 10 5 + i 1 x 10 b 0.218 —i 3 x 10

( —0.022+ i 5 x 10
—9x10 "—i 3x10
1x10 5+i 3x10

—9x10 ~+i
—0.022 —i

5x10 4 —i

3 x 10 7 —3 x 10 s +i 6 x 10
3 x 10 —1 x 10 + i 5 x 10
1 x 10 s —0.116+i 7 x 10

where, in this case, we used the GUT scale values,
Mi(2 ——400 GeV, mo ——250 GeV, and Ao ———1100
GeV, the weak scale value, p = 270 GeV, and model 4 of
[2] for the Yukawa matrices (with the weak scale values
A|, ——1.01, tanP = 53, and V,b

——0.038 as output). With
these inputs we find Mg = 1029 GeV, Aq ——(A„)Q3—(736 +i6 x 10 r) GeV, up-squark mass eigenvalues (in
GeV) (976,976,951,951,869,695) and down-squark mass
eigenvalues (in GeV) (980,979,949,948,820,757). To gain
some intuition for the size of the corrections, these partic-
ular values lead to bmb/mb ——10.2'%%uo, hm, /m, = 15.7%%uo,

I

hm~/m~ = 15.7%, bVb/Vb = hV b/V„b = hV&, /Vz, ——

bVtg/Vip = 8 0'%%uo, and h J/J = 16.6%. As we discussed
earlier, the approximation of retaining only the (F )ss
term in Eq. (16) does not work extremely well, since it
predicts an 11.6% correction. However, this leading cor-
rection is then lowered by about 1.5% coming &om the
Fg term in (12)—(15) and by an additional 2% from the
subleading F terms. V„g, V„„Vg, V„and Vqb gets a
relative correction less than 1%, e.g. , hV, /V, = 0.01%.
Similarly, the corrections to the angles cx, P, and p of
the unitarity triangle are much below 1%. Neutralino
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corrections have been included in the above numerical
analysis. Their efFects are as follows: the 6 mass is re-
duced by 1.6% and the masses of s and d are reduced
by 1.3%. Integrating out neutralinos has less than a 1%
impact on the CKM elements and CP-violating parame-
ter J. We would like to emphasize that such corrections
are generic for a large subspace of the allowed parameter
space.

A. Approximate formulas for mass
and mixing angle corrections

In Eqs. (4) and (5), we presented the results of a naive
approximation, which assumes that squark mass matrices
are diagonalized in generation space by the same rota-
tions as the corresponding quark matrices. This approx-
imation is valid in the case of universal scalar masses and
trilinear scalar interactions proportional to Yukawa inter-
actions when, in addition, one also neglects the renormal-
ization group (RG) running from m~ to the low-energy
SUSY scale. If one now includes the effect of RG running,
quark and squark mass matrices can no longer be diago-
nalized in generation space by the same unitary transfor-
mations and the A parameters are no longer universal.
We have checked that a simple approximation for the cor-
rections to down quark masses and the CKM matrix ele-
ments (valid to 25%) can be obtained by using the results
of Eqs. (4) and (5) with the values of squark and gluino
masses obtained by RG running as input and by replacing
Ap with Ai (for the third generation) and the chargino
mass with the low-energy value of p. This approximation
has been widely used in previous papers [3,5,4,7,9], where
large bottom mass corrections have been recognized. In
particular, in this improved approximation

bm~ —[Egi + E&g20(10 )]my,

bm. = [e,i+ e.20(10 4))m. , (25)

bmb (&bi + eb2[~«a~' + O(10 )])mg

where

'
pMg Is (M-, md, m„- ) tanP,

3~ il i2

pA„, %Is(p, , m„-, m. - ) tang . (27)

The analogous corrections for CKM matrix elements, also
valid to about 25%, are given by

bV~b b V„b b Vg, bVgg —&b2 &

V.b V b
(28)

where es2 is defined in Eq. (27).
An important feature of the 6 quark mass correction

is that the gluino and chargino contributions are of the
opposite signs, and thus there is a partial cancellation
between them. This effect with its consequences has been
carefully studied in [4,7,9]. In these papers it was shown
that the magnitude of the gluino contribution is always

two to three times larger than the chargino contribution
and can be as large as 50%%uo for universal scalar masses at
Mt . For nonuniversal scalar masses the corrections can
be smaller.

B. Consequences for models of fermion masses

It is interesting to see what effect these corrections
have for recent models of fermion masses and mixing an-
gles. In the inodel of Ref. [10] the value of ~V, b~ is of
order 0.054. This is large compared to the latest exper-
imental values. In this model, tanP can be either small
or large. We would have to be in the large-tanP regime
for these corrections to be significant. In addition, con-
sider models 4, 6, and 9 of Ref. [2]. In these models
tanP is expected to be large. Recall that the model-
independent experimental value of ~V,b~ is 0.040 6 0.003
according to [ll] or 0.040+0.005 based on [12]. For mod-
els 6 and 9, the predicted value of V b 0.048—0.052 is at
the upper end of the experimentally allowed range. For
all these models we would choose @My & 0 so that the
chargino correction to the b quark mass is positive and
hence hV, s/V, b & 0. As a consequence the gluino correc-
tion is negative, which gives bmb & 0. This has the effect
of decreasing the prediction for mq, since a smaller top
Yukawa coupling is now needed to fit the experimental
ratio m&/m . These corrections apparently improve the
predictions of the above models. However, the correc-
tions to the strange and down quark masses, which are
equal and negative, may be a problem, since both ratios
m„/m~ and m, /mg were rather large and now the first
one becomes even larger, while the second one stays the
same. This problem is exacerbated by the fact that the
authors in [9] Bnd no solutions for ~bmb/mi,

~

& 10% with
pMg & 0 consistent with both the experimental rate for
6 ~ sp and the cosmological constraint on the energy
density of the Universe. There are solutions for larger
values of ~bmb/ms~, but this range of parameters may be
seriously constrained by the ratios m„/md and m, /m&.

For model 4 of Ref. [2], however, the situation may be
better. In this model ~V, s~ is acceptably small (V,b

0.038—0.044). However, J is too sinall, and thus the bag
constant B~ needed to fit e~ is too large, i.e., greater
than 1. In this case we need bJ/J ) 0. This would also
increase

~
V,b

~
by half as much, which may be acceptable.

In this case the chargino correction to the 6 quark mass
is negative. Thus, the gluino correction to mb is positive,
and bmb ) 0. As a result, the top quark mass prediction
increases. This restricts the magnitude of the efFect to
values of [bmi, /mi,

~

& 10%. In this case both m, and mg
increase, which improves the agreement with experiment
in the m, /mg —m„/mg plane, Finally, the 5 -+ sp decay
rate and the cosmological constraint can be satisfied [9].

Note that in either scenario the angles n, P, and p of
the unitarity triangle and the ratio V„s/V, i, remain un-
changed. These correlations of quark mass and mixing
angle predictions with the sign of pMg are very intrigu-
ing, especially since this sign may be determined inde-
pendently once SUSY particles are observed. In a par-
ticular model the allowed maximal corrections to masses
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and mixing angles may represent new constraints on the
magnitude and sign of the SUSY parameters.

In summary, finite SUSY corrections to the masses of
the down-type quarks may be significant in the limit of
large tanP. In this paper we have shown that the CKM
matrix elements V~g, V„g, Vq» and Vqg receive similar
corrections, while the correction to the Jarlskog param-
eter is enhanced by a factor of 2. The other elements
of the CKM matrix and the angles of the unitarity tri-
angle receive only small corrections, down by a factor of
tanP or suppressed by the generation hierarchy present
in Yukawa, CKM, or F matrices.
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denote squark indices 1—6, and the implicit summation
over the repeating indices is assumed. The diagram with
the gluino and d-type squarks in the loop contributes to
the quark self-energy matrix (amputated two-point func-
tion) as

d"k
iZ =—(—i~2gs) C2($) ( )P—~(gg)PJt(2')"

XV& I'&I (dd )I'dpV& + PI, . Pl, + p terms .
(A4)

Only the term with the two right-handed projectors cor-
rects the mass matrix. The term indicated as PL. . .PI.
contains similar corrections to mt. To obtain formula
(1) in the text one performs the rotation to Euclidean
space and integrates out angular variables. The integral
measure dk in (2) stands for k2d(k2), and the integration
limits are assumed to be zero and infinity. Note that in
the main text zn& was appended to these equations in a
not very elegant way, but that is for later convenience.

(ii) Chargino diagram. Quark-squark-chargino inter-
action that is relevant for this paper reads

APPENDIX

Conventions of the standard model are fixed by
= H~QI, AvqR, quark mass matrix rotations by

m ' = V m~V t, and the CKM matrix is defined as

VcKM ——V„V& . In the MSSM the relevant term in the
superpotential is then W = qAt QH&.

Looking closely at the SUSY threshold corrections to
the d quark masses, there are the following one-loop dia-
grams contributing significantly in the large-tanP limit.

(i) Gluino diagram. Using Dirac notation, the quark-
squark-gluino interaction, relevant for this paper, reads

f A~'i
gs

~ ] (+(d P~g )dl, bE2).b
d~~ (g PJt—db)) + H.c. (A1)

The squark interaction eigenstates are turned into the
mass eigenstates according to

(d )' = (V"")'.(I' )'-d- (A2)

(2,), = (v„),, (r„,)LOt (A3)

As indicated in these equations, the V matrices rotate
squarks the same way as they do with quarks. The addi-
tional rotations are then performed by the 6 x 3 matri-
ces I'pL, ~. Rules for the Feynman diagrams using this
notation can be found in [13]. Note that the indices
i, j, . . . denote generation indices 1,2,3, the greek letters

~int = (dPIt(v )2AX~)&u&R + ttL, &a((U* )2~XAP~d)
—g2(de(v* ),~X~)ttL + H. .c. (A5)

u squarks are rotated to their mass eigenstates in exactly
the same way as the d squarks above, defining the I
matrices. Contribution to the d quark self-energy &om
this interaction reads

—tZ = (1) ~ (UA2VB2PR(XgX~)PRAo
2vr "

x V~'tr„'„(unt) r„,V„"W,

—U Vg Pg(X' X )Pgg2V„&„(«)~ I,

x V„A~) + PI, . PL, + P terms .

U and V diagonalize the chargino mass matrix. The fact
that one of their indices is 1 (2), traces back to the W-ino
(higgsino) interaction in the quark-squark-chargino ver-
tex of the loop. Summation over A, B = 1, 2 is assumed.
Explicit forms of the U and V matrices and further de-
tails about the notation can be found in Ref. [14]. In
order to derive Eq. (1), one has to use the relations be-
tween the diagonalized and nondiagonalized mass and A

matrices, brieHy mentioned at the beginning of this ap-
pendix. The VEV of the scalar Higgs Hg is added in order
to pull out the mass matrix on the RHS for future con-
venience, and when combined with tanP (which is pulled
out into the e) it yields (v„) in the final expression (3)
given in the text.
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