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The fermion mass matrices are calculated in the framework of the dynamical mass generation by
the broken horizontal gauge interactions. The nonproportional mass spectra between up, and down
sectors and CKM mixings are obtained solely by radiative corrections due to the ordinary gauge
interactions.
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I. INTRODUCTION

The standard model ofI'ers a remarkably successful de-
scription of the gauge interactions of the particles thus
far observed and accounts extremely well for the vast
amount of high-energy particle experimental data. Nev-
ertheless, it does not present any satisfactory understand-
ing of matter parts, involving too many arbitrary param-
eters, particularly, in Higgs and Yukawa sectors. This
means that the standard model itself has no answer for
the origin of quark-lepton masses, Cabibbo-Kobayashi-
Maskawa (CKM) mixings [1], and the number of gener-
ations. These fermion mass problems have been studied
by many people with various ideas. The main purpose
of these works is to elucidate two types of hierarchies of
fermion masses, one of which is among generations and
the other is among sectors (up, down, neutrino, and elec-
tron).

One of the most attractive scenarios is dynamical mass
generation, for example, by extended technicolor [2] or
the top-quark condensate model [3]. These models, how-
ever, do not explain the above hierarchy problems well in
spite of their successes in symmetry breaking. We have
so far been studying this problem with broken horizon-
tal gauge symmetry [4—6], which is some extension of the
top-quark condensate model. Horizontal gauge interac-
tions have been studied to explain fermion mass matrices
in other contexts [7]. In the previous papers, it was shown
that the hypercharge gauge interaction U(l)r. plays an
important role in generating a hierarchy between up and
down sectors naturally. The other hierarchy among gen-
erations is explained by a suitable breaking pattern of
horizontal gauge symmetry, which is, however, given by
hand. One of the purposes of the present paper is to
find out the underlying structure behind our model by
studying the relation between the breaking pattern and
induced fermion mass spectra.

It was pointed out that the hypercharge interaction

does not generate well Havor mixings [8]; to be precise,
the mass matrix of the up sector MU is almost propor-
tional to that of down sector MD, since the efrects of
U(1)r are so small. Here, we investigate whether or not
Cabibbo-Kobayashi-Maskawa (CKM) mixings can occur
in the above broken horizontal gauge model. The main
task in the present paper is actually to show the break-
ing of the proportionality between MU and MD and to
find the breaking pattern that causes CKM mixings by
the U(1)y radiative corrections. The plan of this paper
is as follows. In Sec. II we review the previous papers
in brief and present a model. In Sec. III we study the
eigenvalue problem, which is equivalent to solving the
mass gap equations approximately. In Sec. IV it is shown
that nonlinear terms of the gap equations are essential
for CKM mixings. In Sec. V a down-quark diagonalizing
base is introduced. In Sec. VI we rewrite the down-sector
gap equation as an eigenequation. In Sec. VII we show
that CKM mixings can actually occur in particular cases.
Some conclusions are given in Sec. VIII.

II. GAP EQUATION FOR FERMIONS

In this section, we shall review the mass gap equations
for quarks and leptons induced by the horizontal gauge
interactions, and investigate the general aspects of gap
equations.

We introduce the horizontal gauge interactions

(2.1)

in addition to the standard gauge interactions [SU(3)~ x
SU(2)L, x U(1)y], where T„'s denote generators of hori-
zontal gauge symmetry, say SU(K), over K generations
of fermions g.

It is assumed that the horizontal gauge symmetry
breaks at the energy scale A with keeping the ordinary
gauge symmetries, and the gauge fields II„"'s acquire a
real symmetric squared-mass matrix p„„,. Considering
an SO(N —1) transformation O„„i which diagonalizes
the p„„,with mass eigenvalues M„, the gauge interaction
(2.1) is rewritten in terms of mass eigenmodes as
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where

(2.3)

(2 4)

L' t = —
2A, (0&,T W)(A'"T 0). (2.5)

The H„" denotes the mass eigenfield of the horizontal
gauge boson with mass M„.

Before discussing the gap equation, we briefly comment
on the number of generations N and horizontal symmetry
breaking. As pointed out in the original works of the top-
quark condensate scenario, the top quark must be much
heavier than we expect in experiments in order to supply
sufBcient masses for the weak bosons. This problem can
be avoided by introducing higher generations [9], which
may be the dominant sources of the weak boson masses.
This is the case for our model, which implies that we
must consider N & 4 models. It is assumed, however,
that the higher generations are nearly decoupled from the
ordinary three generations, so that we take the N = 3
model and SU(3) horizontal symmetry, hereafter.

The second question is what type of breaking of hor-
izontal symmetry should be considered. Here, we com-
ment only general features of the breaking pattern. Con-
sider a case that all horizontal gauge bosons have the
same mass. It is easily seen that the fermion mass ma-
trix is proportional to a unit matrix because the fermions
have a global horizontal SU(3) symmetry. This suggests
that we should consider some hierarchical structures of
horizontal symmetry breaking for obtaining the realis-
tic fermion mass matrices. We hope that some group
theoretical structures underlie the hierarchical horizon-
tal symmetry breaking, for example, a so-called sequen-
tial breaking.

Now, let us consider the mass gap equations for
fermions. Since it is difIIcult to solve a Schwinger-Dyson
(SD) equation, which has momentum-dependent solu-
tions, in general, especially for the present broken gauge
interactions, we adopt the following two approximations.
One is the replacement of the intermediate horizontal
gauge interactions by four-Fermi ones. The other is the
introduction of some weights into the mass gap equations,
which represent the effects of the gauge boson mass. Not-
ing that our main purpose is the investigation of the tex-
ture of the fermion mass matrices, these approximations
do not influence our results.

Let us start with a simple case that all horizontal gauge
bosons have the same mass A. The intermediate hori-
zontal gauge interactions are replaced by the four-Fermi
interactions

FIG. 1. A self-energy diagram.

M = ) p„T„1+ ln MT„.
4m2

(2.7)

Here, we take A for the mass of the lightest gauge bosons.
Note that the dominant part of Eq. (2.7), which comes
&om the lightest gauge bosons, is not modified, i.e. ,

p );ghp, t ——1, and for the other gauge bosons, p„( 1.
Equation (2.6) is the case that all p„= l.

Now, we consider quark mass matrices of up and down
sectors. These two mass matrices satisfy the same Eq.
(2.7), since the horizontal interactions are common to
both sectors. We can see from Eq. (2.7) that the
mass differences among the generations depend upon the
breaking pattern of the horizontal symmetry, p„and T„.
Equation (2.7) cannot, however, discriminate between
upsector and downsector, which leads us to the same
mass matrices.

This result, however, can be avoided by taking into ac-
count that the vertical gauge forces influence each sector
in different way. In fact, the vertical gauge interaction
U(1)y can discriminate between up and down sectors,
giving small corrections to the gap equations dominated
by four-Fermi or horizontal gauge interactions. Many
people [10—12] evaluate the effective coupling G,ff.

Gee
G„

G 3
,g,'(A)YI, YR,

Gcr 8' (2.8)

where gq(A) is U(1)~ running coupling constant at A, say,
3gz(10 TeV)/8vr 5 x 10, YL, lRl is the hypercharge
of left- (right-)handed quarks, and

off. Note that T„'s are already represented on the gauge
boson mass diagonal base in this case.

The next step is to consider a more complicated case
that the horizontal gauge bosons have difFerent masses.
Supposing that one of the horizontal gauge bosons has an
infinite mass, its contribution to the gap equation drops
out. This extreme case tells us that the contribution of a
heavy gauge boson to the gap equation is small, and that
of the light one is large. To incorporate this effect into
the gap equation, we modify Eq. (2.6) by introduction of
some weights p„, corresponding to the gauge bosons H„,
which become small for the heavy gauge bosons:

The mass gap equation indicated by the diagram in Fig.1
1S

G=
4a2 (2 9)

M = ) T„1+ ln MT„, (2.6)

where we take a horizontal breaking scale A for a cut-

G„ is a critical coupling constant for the dynamical mass
generation of Eq. (2.7). One of the present authors eval-
uated [5] a similar expression in terms of horizontal gauge
coupling J' by calculating two loop diagrams with @ED
corrections.
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At a glance, this small correction could not induce a
large mass splitting between up and down sectors, espe-
cially between top and bottom. At this point, however, it
is quite important to note that our model is a near critical
system, that is, the horizontal gauge coupling constant
is taken to be very close to the critical one. This type
of 6ne-tuning is in general needed to relate a high en-
ergy scale theory to a low energy physics. In fact, if the
coupling constant is not 6ne-tuned in our case, the gap
equation (2.7) has a solution M = O(A). As long as
we expect the mass scale As~ of the standard model, a
fine-tuning of the order of O(As~/A) is needed.

It has been pointed out that a small perturbation as
mentioned above may be enhanced under the fine-tuned
system [4]. To make this point clear, we consider two
systems with different coupling constants GU and GD,
where GU is a little larger than GD. One example is a
case that GU )G„)GD, which implies that solutions of
the gap equations are M~ g 0 and MD = 0. Another
example is a case that GU) GD) G„and GU —G„)&
GLi —G„. We rewrite the gap equation Eq. (2.7) as

I
G„

M2 M2
P2 P2 (2.10)

III. LINEARIZING APPROXIMATION AND
EIGENVALUE PROBLEM

In this section, we shall investigate the relationship
between breaking patterns of horizontal symmetry and
mass matrices. In the preceding section, we have shown
that solutions of Eq. (2.7) can provide a large difference
between M~ and Mii. Noting that M /A (( 1, Eq.
(2.7) is satisfied mainly by cancellation between linear
terms of M on each hand side. This indicates that the
matrix form of M is mainly determined by linear parts
of Eq. (2.7), though the scale of M is determined by its
nonlinear terms, as seen from Eq. (2.10). Therefore, we
neglect nonlinear terms of the gap equation for a while
in order to study forms of mass matrices.

The linearized gap equation is

where we neglect the matrix form for simplicity. Equa-
tion (2.10) indicates that M~ )) MD in this example.

In this paper, we adopt the latter case, where G~~D~
is a effective coupling for up(down) sectors. Indeed, the
U(1)y interaction is attractive for up sector and repulsive
for down sector. MU )& MD can be realized with a 6ne-
tuning of G. To obtain the difference between mq and
mb by U(1)v, we must take A 20 TeV, which implies
that GU —G„10 and mi 150 TeV [10].

only discrete and finite number of couplings would be al-
lowed, because we consider now only linear parts of gap
equation.

When Eq. (3.1) has several eigenvalues, which should
we selects This is a problem of how to search for the
most stable solutions. The answer is given by choosing
the smallest eigenvalue for a near critical system. Be-
cause the fine-tuned solution is less stable than the oth-
ers, it must be the one and only nontrivial solution. It
means that the eigenvalue of the 6ne-tuned solution is
the smallest. In fact, supposing that there are two pos-
itive eigenvalues Gi and G2 (Gi & G2), solutions of the
full gap equation (2.7) with coupling constant G in the
following five cases are conceivable:

(a) G & Gi & G, . There are no nontrivial solutions.
(b) Gi & G & G2. There is one fine-tuned solution,

corresponding to the Gi eigenmode.
(c) Gi & G & G2. There is one solution, corresponding

to the Gi eigenmode.
(d) Gi & G2 & G. There is one fine-tuned solution cor-

responding to the G2 eigenmode beside another solution
corresponding to Gi.

(e) Gi & G2 & G. There are two solutions.
By noting that the fine-tuned state is less stable than

the others, the Gi mode in case (d) turns out to be more
stable than the fine-tuned G2 mode and chosen. Then,
(b) is the only case that we want.

%e apply the abave rule to simple examples, such
as p„= (0, 1) and T„= zA„, where A„ is the Gell-
Mann matrix. These examples mean that the horizon-
tal gauge bosons H„corresponding to p„= 0 have very
large masses and H„corresponding to p„= 1 have small
masses A. Moreover, some symmetries are assumed to
be survived at A, for example, SU(3), SU(2) xU(1), and
U(1).

(i) SU(3) case. In this case, all p„= 1. Equation (3.1)
has one positive eigenvalue:

G= —,3
4

('M-i 1 (3.2)

l
)

oj
(3 3)

This result is natural since there is a global SU(3) hori-
zontal symmetry. It is, however, undesirable phenomeno-
logically.

(ii) SU(2)xU(l) case. Here, we take pi 23s —1 and

p4, 5,Q, 7 —0 ~ Equation (3.1) has two positive eigenvalues

M = G) p„T„MT„. (3 1) G=3,
tt' 0

(3.4)

Note that this approximation is exact on the critical
points. The essential point is that to solve Eq. (3.1)
is nothing but an eigenvalue problem, in which the cou-
pling constant G and mass matrix M correspond to an
eigenvalue and an eigenvector, respectively. At a glance,

The solution (3.4) is desirable phenomenologically, which
means only one generation is massive. However, it is
ruled out by the principle that the smallest eigenvalue
must be selected. Then, we have the phenomenologically
undesirable solution (3.3) in this case.



YASUHIKO NAGOSHI AND KEN NAKANISHI 52

(iii) U(1) case. We take ps ——1 and the others are zero.
Equation (3.1) has two positive eigenvalues

M 0 (3.5)

G = 12,
(a 6

l
M c d

oj
(3 6)

where a, b, c, and d are arbitrary parameters. The small-
est eigenvalue solution (3.5) is phenomenologically desir-
able. The realization of the solution (3.5) is also under-
standable if we note that As diag(1, 1, —2), which im-

plies that third generation feels the H8 interaction twice
as much as the others do.

IV. ORIGIN OF DIFFERENCE BETWEEN UP
AND DOWN SECTORS

M = GAp[M] (4.1)

Prom now on, we shall study the origin of mixings. In
the preceding section, we have shown that the linearized
gap equation (3.1) well describes the matrix form of M.
Starting &om this linearizing approximation, we take ac-
count of the effects of nonlinear terms in the gap equation
(2.7). For simplicity, we apply the linearizing approxima-
tion to down sector as in the preceding section, because
GD is closer to G„ than GU. In this sense, we deal with
only up sector below.

The nonlinear terms of (2.7) play two important roles
in our model. One is to determine the scale of mass
matrix M, as mentioned above. The other is to generate
mixing, which means that a solution M of Eq. (2.7) is
not proportional to the solution of linearized Eq. (3.1).
In order to understand this intuitively, we introduce an
iteration method for solving the gap equation (2.7).

At first, it is assumed that the linearized gap equa-
tion (3.1) has eigenvalues G; (G~ & G2 & . & G )
and corresponding eigenvectors M, . We rewrite the gap
equations (3.1) and (2.7) as

G (Ap [My] + Ay[My]) +h IMg
(G

)
+(other modes), (4.4)

where b is O(M~z/A2). It is important to point out that
other modes are smaller than Mi with many iterations
because Aq[M] is O(M /A ) and G/G; is smaller than
G/Gq. The scale of other modes is determined by the
balance of effects between Ao and Ai. In general, when
G/G, is larger or Aq generates M; mode more, M; mode
is larger.

Experiments show non-proportionality between MU
and MD, for example, m, /m| .. m, /mg 1:3. Can
we realize such non-proportionality? The answer is that,
if Gi and G2 are su%ciently close, it is possible. As
shown above, when G/Gq and G/Gz are not so different,
the suppression of the M2 mode weakens and this mode
survives at last.

V. DOWN-QUARK DIAGONAI IZING BASE

The gap equations for up and down sectors are

MD = G~ ) .p T Mz)T,

MU = G~) p„T„1+ ~ ln ~ M~T„
(5.1)

p„was given in our previous paper [4] as

When G does not belong to eigenvalues, (4.2) must be
considered. In neglecting the matrix form in (2.7), the
nonlinear term Aq[M] in (4.2) has negative contribution.
If G & G;, M, dumps faster than (4.1) and the solution
is M = 0. If G & G;, the effects of Ai weaken the
degree of divergence of M in iteration, and the scale of
the solutions is determined when effects of Ai and Ao
cancel each other. Larger G/G; requires larger scale of
M since the effect of Ai should be suKciently large for
canceling that of Ao.

Ai has another effect in general, which rotates eigen-
modes and generates mixings. Starting kom Mi with
G & Gi, which is the most dominant mode, one opera-
tion of (4.2) leads us to

M = G (Ap[M] + Ag[M]), (4.2) A2
p~ =In ) (5.2)

respectively, where Ao is a linear operation and Ai is a
nonlinear one. One operation of Ao on M, is

G:GA [M]= M;, (4.3)

which means that, if G ) G, , the corresponding mode
M; grows with iteration, and if G ( G, , it dumps. The
mode corresponding to the smallest eigenvalue Gi is most
dominant, as mentioned in the preceding section, since it
has the largest factor G/Gq in (4.3). If G g G;, M;
diverges or vanishes by repetition of (4.1). This indicates
that Eq. (4.1) demands that G is one of the eigenvalues
and M is the corresponding eigenvector.

with cutoff A and horizontal gauge boson masses M„.
Before entering into detailed discussion, we will briefly

summarize the base transformations of the gap equations.
Equation (5.1) contain multi-index quantities (T„);~ and
M;~ where i, j denote the quark generations running 1—3
and r the SU(3) generators running 1—8. Corresponding
to these two types of indices, we deal with two different
types of bases: (a) the quark base (i, j, . . .) and (b) the
horizontal gauge (HG) boson base (r, r', . . . ; n, P, . . .).

(a) The quark base is transformed by the SU(3) matrix.
Quark mass matrices can always be diagonalized by this
base transformation.
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(b) The HG boson base is transformed by 0(8) matrix.
We have already used this type of rotation to diagonalize
the HG boson mass matrix and T„= 2A„was replaced
by T„.

Type (a) transformations U constitute a proper subset
(subgroup) of the type (b) transformations. Indeed, type
(b) transformations have greater degrees of freedom than
(a). We can always rewrite any SU(3) matrix U as its
adjoint representation R p [60(8)] defined by

1 Ut A U AP (5.10)

and redefine the quark mass matrices

U~Mg) Ug) : D~ ——
md

(5.11)

where we denote 0 = OB, using a rotation matrix B
defined by

B p ———trUtA UAP.
1

2
(5.3)

By virtue of the orthogonality of the Cell-Mann matrices
trA AP = 2h P, Eq. (5.3) can also be written as

UD MU UDt : Mv = &KM I
mc

mt
VKM ~

a. AP = UtA-U. (5.4) (5.12)

However, we cannot express every O(8) rotation in
the form of Eq. (5.3). Especially, horizontal mixing
angles, i.e., a rotation matrix 0„, which transforms
the HG bosons from the standard Gell-Mann base into
the mass diagonal base, cannot always be compensated
for by the quark base transformation. In other words,
T„= 2O„A can never be written in the form of the
right-hand side of Eq. (5.4) in general. We write down
again the gap equations (5.1), indicating the horizontal
mixing angles manifestly

M~ ——x„O„O„pA M~AP,

MU = (x„O„O„pA 1+ ln MUA,

(5 5)

(5.6)

where z„= 4GLi p„and ( = G~/Gz&. ( is evaluated from
Eq. (2.8):

( = 1+ O(1o-'). (5.7)

D~ ——x„O„O„pA D~AP,

M~ = (x„O„O„pA 1+ ln MUA,

(5.8)

(5.9)

Now, let us define the down-quark diagonalizing base
(DDB), which is selected to diagonalize the down-sector
quark mass matrix. Suppose that we successfully solve
Eq. (5.5) for given z„, O„and obtain a solution Mri.
There exists a unitary transformation U~ which diago-
nalize MLi. Transforming Eqs. (5.5) and (5.6) by ULi, we
obtain

Here, VKM is the CKM matrix. Note that, in this ex-
pression, all ambiguous unphysical degrees of freedom
are fixed; i.e. , the mass matrices are written only by the
quark masses and mixing angles.

VI. DOWN-SECTOR EQUATION

In the preceding section, we obtained the set of equa-
tions (5.8) and (5.9) in the DDB, which the quark mass
parameters, i.e., the masses and the mixings, should sat-
isfy. Our task is now to find out weight parameters x„
and rotation matrix 0„,which give rise to phenomeno-
logically acceptable quark mass parameters. Note that
x„and O„are constrained by the DDB condition. In
fact, the vanishing of the ofI'-diagonal elements of D~ in
Eq. (5.8) imposes six real conditions on 8 + 28 degrees
of freedom of x„and 0„.Moreover, taking account of
the experimental values of the diagonal elements (down
quark masses), two additional real conditions exist. Note
that Eq. (5.8) does not determine an overall scale of so-
lutions.

Since the down-sector equation (5.8) is a linear equa-
tion for D~, we can rewrite it in the form of the nine-
dimensional eigenvalue problem to see the above condi-
tions in more detail. Let us define nine orthonormal ma-
trix units cr„of the Hermitian matrices:

l
~0

0
l

o)

o)

1)

(0
o4 —— 0

2 (0
(0

os ——~ 0
2

(0
0

o l
1
o)

o)
l

o)

I'0
op=~ 0

2 (0
t'

os=
2 (i

(0

0 Ol
0

o)
0 il—
0 0
o o)—i ol
0 0
o o)

(6 1)
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satisfying tropoq: bpq The down-sector mass matrix
can be represented in terms of o.„:

only nonzero x„of x3, x6, x8. We also constrain 0„
to be a 3 x 3 matrix with K and n being 3, 6, 8. The
corresponding three Gell-Mann matrices are

D~ = dpo'p) d„= trope~, (6.2)

dp ——Apqdq, (6.3)

where d„'s are components corresponding to o„'s. Tak-
ing trace of Eq. (5.8) multiplied with 0~, we obtain the
eigenequation for the nine-dimensional vector d„:

(1 ) (0 0 0~—1 ) A6 —— 0 0 1
0) &0 1 0)

(1
As ——

~
1

3 2)
(7.1)

where A„q is defined as

Apq
——x„O„O„ptropA o.qAp. (6.4)

The 9x9 matrix Apq, which is real symmetric and trace-
less by definition, contains all physical information of the
mass matrix of the horizontal gauge boson corresponding
to x„and 0„

Generally, Apq has several eigenvalues. We introduce
eigenvalue g explicitly into Eq. (6.3):

Under this assumption, the first generation does not cou-
ple with the other generations. In addition to the diag-
onal elements (2,2) and (3,3), only the real part of (2,3)
element in Eq. (5.8) gives the nontrivial constraint:

(
m = x„O„sO„s+ —O„sO„s — 0 sO„s m,

3

dp ——&Apqdq. (6.5) +O„6O„6m',
By construction of Azq, Eq. (6.5) must have the solution
of d„= (mg, m„ms, 0, 0, 0, 0, 0, 0) with q = 1, which cor-
responds to the down quark diagonalized solution (DDS)
of (5.11). In addition to this, g g 1 solutions can also
be realized for gauge coupling gG~. In order for DDS to
be chosen, we require that the DDS (5.11) should be the
most stable solution, which corresponds to the smallest
eigenvalue and is realized for the weakest gauge coupling.
If there exist solutions for g ( 1, they will dominate as
was seen in Sec. IV. Therefore, Eq. (6.5) should not have
g ( 1 solutions.

Consequently, we can summarize the following DDB
conditions for the matrix Azq. (I) Azq should have an
eigenvector d„= (md, m„ms, 0, 0, 0, 0, 0, 0) with eigen-
value 1; (II) the eigenequation (6.5) has only rj & 1 eigen-
values or negative.

VII. A TOY MODEL

Let us apply our formulation to some simple cases. We
assume that only three HG bosons are light, which have

mg ——x„O„60„6m,+ —0„80„8m'
3

(7.2)

0 = x„~ O„sO„s —0„30 s m,
3

O„sO„sms
3

Since mg is negligible compared with m, and mg, and
the first generation is decoupled &om the other two gen-
erations, we take mg ——0 by hand. It means that the
constraint &om the (l, l) element in Eq. (5.8) is trivial.

By setting m, /m& to its experiinental value, we can
calculate x„ for given O„using the above equations
(7.2). We parametrize O„by Euler-like angles:

(cosess —singss 0) (cosgss " —»ness ) (1
O = sin 036 cos 036 0 0 1 0 0 cos 6I68

o 0 1 j ( singss 0 cos8ss ) (0 si»ss

0
068

cos Oss

(7.3)

We search all parameter space of these Euler angles and
have found some allowed region (Figs. 2,3) which sat-
isfies the DDB conditions (I) and (II), by the following
procedures.

(1) Give the Euler angles, and calculate x„Rom Eq.
(7.2). [For some peculiar values of the Euler angles, Eq.
(7.2) is degenerate so that we cannot obtain x„Rom

this equation. These values are presented by 'v' in the
figures. ]

(2) Check all x„ to be positive. (The negative x„ is
unphysical. It is indicated as '-' in the figures. )

(3) Construct A~~ in Eq. (6.4) for this x„with the
0„,and find its eigenvalues g [see Eq. (6.5)]. If there
exists some g which is less than 1, DDS is less stable and
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FIG. 2. Allowed regions of the 86s —838 Plane with
836 —10, which are indicated as 'A. '

FIG. 3. A magni6cation of Fig.
83s = —60' + 40, 86s ——13' + 5.7'.)

2. (836 = 10',

M~ = (x„o„o„pi M~ + (M~ A~. (7.4)

Here, we present an interesting solution MU, which is not
proportional to MD, as expected, such as

not realized (indicated as 'x'). Only the case with g being
not less than 1 is allowed by the DDB conditions. There
exists at least one eigenvalue which is equal to 1. It is
corresponding to DDS and indicated as 'A'.

For example, Fig. 2 shows a 068 —038 plane with 036 ——

10, and an allowed region is magnified in Fig. 3.
We can now solve Eq. (5.9) for up sector with al-

lowed Euler angles obtained above by iteration. We
simply replace the matrix (1/A ) ln[M&/A2] by
(1/A ) ln [(Mrr)ss/A ], since this modification does not
acct our result so much:

corresponding A„q is as shown in Table I.
Here, we arrange Table I in order of inverse of eigen-

values. Since Azq is nonvanishing only for p, q ( 6, we

regard A as a 6x6 matrix. Eigenvector d( ) with g = 1
corresponds to the down-sector solution.

I et us investigate features of the above solutions in
brief. As shown in Sec. IV, up-sector solution MU is
formed by mixing a little d( ) with d( ). These two eigen-
values are close compared with others except for g( ), the
eigenvector of which is decoupled in the gap equation
(5.9).

The present solution can generate CKM mixings. Prom
Eq. (5.12), the CKM matrix is given as

(0
0 75.15 x 10

(0 —1.75 x 10

0
—1.75 x 10
0.00876880

(7.5)

(1 O

VKM — 0 1 —2a.
(0

o
with o. = 0.0002,

with (Oss, ess&068) = (10,—85.765, 10 ) and ( = 1.001.
It means that mq ——175 GeV, m = 1.5 GeV, m„= 0
when A = 20 TeV. The above Euler angles correspond
to the weights p3 ——0.75008512, p6

——0.00080017, and
ps ——0.72880273. The eigenvalues and eigenvectors of

(7.6)

off-diagonal elements of which arise &om mixing the d( )

eigenvector. Since we have not searched all allowed re-
gions, we could not here realize agreement between Eq.
(7.6) and the experimental results.

TABLE I. The eigenvalues q' and eigenvectors d' of A„q.
(1)

1.00000000
d(1)

0.00000000
0.03996804
0.99920096
0.00000000
0.00000000
0.00000000

q(2)

1.01981096
d(2)

1.00000000
0.00000000
0.00000000
0.00000000
0.00000000
0.00000000

q(3)

1.02345204
d(3)

0.00000000
0.99915918

—0.03996637
0.00914431
0.00000000
0.00000000

&(4)
—2.10257169

d(4)

0.00000000
0.00000000
0.00000000
0.00000000

—0.32998315
0.94398682

&(5)
—2.01046516

d(')
0.00000000

—0.00913700
0.00036548
0.99995819
0.00000000
0.00000000

&(6)
—1.98033194

d(6)

0.00000000
0.00000000
0.00000000
0.00000000
0.94398682
0.32998315
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TABLE II. The ratio r of d~ to d for several c'ouplings G.

1.0004
—0.0110

1.0006
—0.0166

1.0008
—0.0223

1.0010
—0.0281

1.0012
—0.0340

VIII. CONCLUSIONS AND DISCUSSIONS

We have discussed the dynamical mass generation and
the possibility of CKM mixings by the broken horizontal
gauge interactions. The essential point of generating the
difference between MU and MD is that the fine-tuned
system is perturbed by the radiative U(1)y corrections.
The above results are induced by the mechanism that
nonlinear terms of the gap equation mix eigenvectors of
the linearized gap equation. We should emphasize that
the above results are caused though the horizontal inter-
actions themselves do not discriminate between up and
down sectors.

In the above model, there arise no Cabibbo angle and
CP-violating phase. In order to get realistic CKM ma-
trix, we should consider the first generation and hori-
zontal interactions corresponding to A„with imaginary
elements.

In this paper, we have replaced broken horizontal
gauge interactions with four-Fermi interactions, which
corresponds to some truncation of the full Schwinger-
Dyson equations. In general, this approximation does not
affect the above discussions so much. However, the first
generation considered, this replacement may have huge
effects since mass matrices have a hierarchical structure
with a small eigenvalue.

In Sec. III, we adopted the linearized gap equation for
down sector. This is justified by confirming that the
solution of the nonlinear equation goes to that of the
linearized equation in the limit of G ~ G„. We ex-
plain it by using the model in Sec. VII with 036 —10',

038 ———85.75, and 868 ——10 . We define the eigenvec-
tors in this case as d~'~ like in Sec. VII. The solution of
the linearized equation is d~ ~ and that of the nonlinear
equation is a linear combination of d~ ~ and dI & approx-
imately. Table II shows the ratio r of d~ ~ to d~ ~ for the
solutions of nonlinear equation with several coupling G.
Next, we discuss the horizontal breaking scale A. In
the model of Sec. VII, mq ——175 GeV demands that
A = 20 TeV. It does not agree with the present ex-
periments of Ravor-changing neutral currents (FCNC's),
which requires that A ) 1000 TeV. However, the diago-
nal horizontal interactions are free &om this constraint.
Off-diagonal interactions do not satisfy this constraint in
general. Fortunately, in the above solution, the small
weight p6 obtained above suppresses FCNC's due to II6
interaction to some extent.

In the original top-quark condensation scenario, in
which the cutofF scale is larger than the grand unified
theory (GUT) scale, renormalization effects are not so
small because of long evolution of renormalization group
down to low energy. In the present case, the cutofF scale
is much smaller than the GUT scale. The effect of the
evolution is negligible as far as semiquantitative structure
of mass matrices is considered.
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