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We reanalyze the problem of fermion masses in supersymmetric SO(10) grand unified models. In
the minimal model, both low energy Higgs doublets belong to the same 10 representation of SO(10),
implying the unification not only of the gauge but also of the third generation Yukawa couplings.
These models predict large values of tan P 50. In this paper we study the effects of departing from
the minimal conditions in order to see if we can find models with a reduced value of tan P. In order
to maintain predictability, however, we try to do this with the addition of only one new parameter.
We still assume that the fermion masses arise from interactions of the spinor representations with a
single 10 representation, but this 10 now only contains a part of the two light Higgs doublets. This
enables us to introduce one new parameter u = Ax, /Ai. For values of ur (( 1 we can in principle reduce
the value of tan P. In fact, u is an overall factor which xnultiplies the down quark and charged lepton
Yukawa matrices. Thus the theory is still highly constrained. We show that the first-generation
quark masses and the CP violation parameter ez are sufBcient to yield strong constraints on the
phenomenologically allowed models. In the end, we find that large values of tan P are still preferred.

PACS number(s): 12.10.Dxn, 12.15.Ff, 12.60.Jv

I. INTRODUCTION

The standard model describes with a great degree
of precision the observed elementary particle interac-
tions. It provides, however, no answer to the funda-
mental questions about the origin of the gauge group
SU(3), x SU(2)L, x U(1)v, the structure of fermion masses
and mixing angles and their quantum numbers. Grand
unified theories (GUT's) have the power to fill the gap
between theory and experiment [1]. Indeed, within this
&amework the low energy group proceeds &om the spon-
taneous breakdown of a single compact group. The sim-
plest and most attractive grand unified theories are based
on the unitary group SU(5) or the orthogonal group
SO(10). Remarkably, all low energy fermion quantum
numbers find a natural explanation within these theo-
ries. For instance, the 15 Weyl fermions in a standard
model family, with their correct quantum numbers un-
der the standard model gauge group, are contained in a
10 and a 5 representation of SU(5). Most notably, they
are contained in a single spinor representation of SO(10),
the extra state having the quantum numbers of a right-
handed neutrino and leading therefore to the possibility
of including neutrino masses in a natural way.

If the grand unified group breaks at very high ener-
gies to the standard model gauge group, an essential re-
quirement is that the theory should be supersymmetric
[2]. Not only does supersymmetry stabilize the hierar-
chy between the grand unified scale and the weak scale,
but also the predictions coming &om gauge coupling uni-
fication within supersymmetric theories are in remark-
ably good agreement with the precise measurements of
the weak mixing angle performed at the CERN e+e

collider LEP [3—5]. Moreover, supersymmetry provides
the natural &amework for the construction of a theory
of quantum gravity, and hence for the unification of all
forces observed in nature. Supersymmetric grand uni-
fied theories also provide a simple theoretical &amework
for the understanding of fermion masses. The condition
of bottom-w Yukawa coupling unification implies, for in-
stance, a large value of the top quark Yukawa coupling
at the grand unification scale [6, 7], the low energy value
of the top quark mass being governed, in general, by
the infrared fixed point structure of the theory [8—10].
Hence, supersymmetric GUT's provide an understand-
ing of the large value of the top quark mass [4, 5, ll,
12]. Moreover, in the minimal SO(10) model, the three
Yukawa couplings of the third generation unify at the
grand unification scale. This yields predictions not only
for the top quark mass, but also for the ratio of Higgs vac-
uum expectation values (VEV's), tanP, which becomes
naturally large [13]. Large values of tanP are also as-
sociated with large corrections to the bottom mass [14,
15], which depend on the supersymmetric spectrum and
which should be computed in a consistent way in order
to obtain phenomenologically correct predictions for the
top quark mass [16].

II. MINIMAL SO(10) MODELS

The hierarchy between the third- and the first- and
second-generation quark masses, as well as the intergen-
eration mixing angles, may be explained by assuming
that only the third-generation quarks couple to the 10
of the Higgs fields by renormalizable interactions, while
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the other mass terms are induced through higher order
operators. A systematic search for this class of models
within the framework of minimal SO(10) was done in
Ref. [17], under the assumption that the model includes
only three spinor representations, containing the three
low energy families, a few extra heavy spinor representa-
tions, the 10 Higgs multiplet and some 45's, necessary
for the correct breakdown of the gauge symmetry and for
the generation of the fermion mass operators. All higher
order operators are of the form

There are several properties, which are shared by all
these models. First of all, they maintain the Georgi-
Jarlskog relation [20] of the y Clebsch factors: ~y, ~: ~yd~:

~y„~ = 3:1:0. This relation of Clebsch factors appears in
a natural way, for example, through the operator

45x 45a —I. 1022 ——162 10 162)
45x

and it is important in order to derive correct predictions
for the first two generations of quark masses. In fact,

M~ 45k+g . 45 MG 45„+g 45„
M 45P X M' 45"-'P X

2 1

m, (y~ )~ m„z,z.
md (y, ) m, zgz~

(4)

(0 z.'C 0 )
z Cy Ee'&x B )

0 x~B A
(2)

where the 45 VEV's in the numerator can be in any
of the four directions X., Y, B —L, Tsn (discussed be-
lovr) and the 45 in the denominator can only be in the
X direction which breaks SO(10) down to the subgroup
SU(5)xU(1)x. . This occurs at a scale Mqo which is as-
sumed to lie between the GUT scale MG. 10 GeV
and the Planck scale MP.

The adjoint 45's may be labeled according to the direc-
tion of their vacuum expectation values. There are four
special directions [17]. The A direction, necessary for
the breakdovrn of SO(10) to SU(5) xU(1)~ at the scale
Mio. The 45~ in the denominator can arise when inte-
grating out heavy 16 and 16 states with mass from the
45X VEV. Of course, this only makes sense if M~0 ) M~.
Other directions are the Y and B L, which b—reak SU(5)
to the standard model gauge group. The presence of the
latter is required for a natural solution of the doublet-
triplet splitting problem in this theory [18]. Finally, there
is another, linearly dependent direction TBR, which, as
we shall explain below, may be useful to achieve low val-
ues of tanP within this model.

Taking into account the experimental constraints on
the lowest generation fermion masses and the Cabibbo-
Kobayashi-Maskawa (CKM) mixing angles, the authors
of Ref. [17] identi6ed nine potentially acceptable mod-
els, in which the up and down quark and lepton mass
matrices are of the form

I I

Hence, as long as the equality z,z = zpz& holds, the
ratio of lepton and quark masses is in good quantitative
agreement with the observed experimental values.

Another important property of these models is the uni-
Gcation of the three Yukawa couplings of the third gen-
eration and, in particular, the unification of the bottom
and top Yukawa couplings, which requires large values
of tanP. Such large values of tanP are associated with
three efFects.

(1) Potentially large corrections to the down quark
mass matrix (these radiative corrections are discussed in
detail in the Appendix).

(2) With some Sne-tuning of GUT scale soft
supersymmetry- (SUSY-) breaking parameters in order
to obtain radiative electroweak symmetry breaking at
the weak scale. The range of parameters which satisfy
the second constraint (when universal scalar masses are
imposed at M~), in fact, requires the corrections to down
quark masses to be large.

(3) The proton decay rate resulting from dimension-
five baryon-violating interactions is enhanced.

It has recently been shown that the Brst two conse-
quences of large tanP are ameliorated when the con-
straint of universal scalar masses is removed [21]. The
corrections to the down quark masses can be small and
the amount of fine-tuning is greatly reduced. The prob-
lem of an enhanced proton decay rate is unafFected. On
the other hand, these strong constraints become weaker
for smaller values of tan P. It becomes an important ques-
tion vrhether the prediction for large tan P can be altered
without destroying the predictability of the theory.

I I

where z, z, x, x, and. y are Clebsch factors, while A. ,

B, C, E, and P are arbitrary parameters, which respect
the hierarchy A )) B,E )) C and must be adjusted in or-
der to obtain predictions in agreement with the present
data. The Higgs sector provides an additional free pa-
rameter, which is the ratio of vacuum expectation values,
tan P. Using the presently best known lovr energy param-
eters m„m~, m, m„mr„and ~V,g~ as input, the values
of Mt, , tanP, ~Vr, ~, ~V„r, ~, m„, mg, m„and the CP-odd
Jarlskog invariant J [19] are predicted (we shall denote
physical and running masses by capital and small let-
ters, respectively). This leads, hence, to eight lovr energy
predictions, which should be compared with the present
experimental values.

III. TRVING TO REDUCE tanP
IN MINIMAL SO(10) MODELS

Lower values of tan P can easily be achieved by assum-
ing that only one 10 of Higgs couples to fermions, but
this 10 contains only a piece of the two Higgs doublets,
the other components coming, for instance, &om an ad-
ditional 10. The overall efFect is to multiply the down
and lepton mass matrices by a factor u, which is the ratio
of the relative components of the two Higgs doublets in
the 10 which couples to fermions. The minimal model
would hence be obtained for u = 1.

Such a situation can come about as follows: Consider
the superpotential
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W = 10 45B L10 + Mi10 + (M2+ 45x) 10 10

Mi 2 —(M2+ v) 2
2L,

Mi2 + (M2 + v)

and

2L,
Mi 2 —(M2 —v) 2

Mi2 + (M2 —v)

where (45x) = v x X, with X = + (—) when it acts
on the 5 (5) of a 10 representation, respectively. Since
2 couples to the up quarks and 2 couples to the down
quarks, in this example we have

Miz+ (M2+ v)

Mi
7

Mi2 + (M2 —v)
(8)

and

Mi2+ (M2+ v)

M2+ (M2 —v)

Notice that, in this simple example, Mi (or Mq + v)
cannot be too small, or else a pair of light triplets 3 and
3 would appear in the spectrum, affecting the prediction
for sin 0~. Hence, u cannot become too small in this
case.

From now on, we shall discuss the consequences of the
departure &om the minimal conditions, taking values of
u lower than one. Values of ~ lower than one decreases
the bottom to top Yukawa coupling ratio but still requires
bottom-~ Yukawa coupling unification.

A. SO(10) models with moderate values of tanP:
The second and third generations

We have introduced the parameter u & 1 in an attempt
to lower tang. In this section we discuss the results for
the second and third generations with the additional pa-
rameter u. In general, taking into account variations of
u and reasonable assumptions on radiative corrections
to down quark masses, we find that, in order to avoid a
very heavy top quark, with mass larger then 190 GeV,

(5)
I IE

where Mi and M2 are of order MGUT, 10, 10, and 10
are decouplets and only 10 participates in the fermion
mass operators.

The first term in TV implements the Dimopoulos-
Wilczek inechanism [18] and yields four light doublets:
2, 2, 2, and 2; the color triplets get a mass of order
MCUT. The second term gives a mass to a linear combi-
nation of 2 and 2 (by pairing it with 2 ) and a difFerent
linear combination of 2 and 2 (by pairing it with 2 ).
Explicitly, the light states are given by

the value of tan P should be either larger than 20 or very
close to 1.

As a general feature, in order to obtain unification of
the bottom and v Yukawa couplings, the third generation
Yukawa couplings must partially compensate the strong
gauge coupling renormalization group eKects. For u = 1,
this is partially achieved by large values of the bottom
Yukawa coupling. Indeed, the relation between the bot-
tom quark and w masses is given by

mb = C exp( —Ii —3Ib+ 3I ),
mT

(10)

where C includes the u independent, gauge coupling de-
pendent factors, I = j(h /4ir) dt with 6 the corre
sponding Yukawa coupling and t = ln(Q/Mz). In the
following, we shall always assume that the right-handed
neutrinos acquire large Majorana masses of order Mc U T
and hence decouple &om the renormalization group equa-
tions. Although there is a partial cancellation of the bot-
tom and 7. Yukawa coupling contributions at scales close
to the unification scale, due to the factor 3 and the rela-
tion Ig ) I, the bottom contribution becomes important
for ~ = 1. For values of ~ ( 1, for which only the bottom
and 7 Yukawa couplings unify, the top Yukawa coupling
must increase in order to compensate for the smaller con-
tribution of the bottom Yukawa coupling. For smaller
values: w ( 0.5, associated with moderate or small values
of tan P, and in the absence of supersymmetric threshold
corrections, the top quark Yukawa coupling must acquire
large values at the grand unification scale, being driven
towards its in&ared fixed point value at low energies. The
convergence of the top quark mass to its fixed point value
is naturally weaker for w 1.

For tang ) 5, the fixed point value of the pole top
quark mass reads M& 190—210 GeV, which is some-
what large in comparison to the current experimentally
preferred value M& 180 + 12 GeV [22]. The conver-
gence to the fixed point for moderate values of ~ may
be softened by the presence of large bottom mass cor-
rections, which become particularly relevant for values of
tanP ) 10. For values of tang ( 5, the bottom mass
corrections are generically small, but the in&ared fixed
point value of the top quark mass, M& sin P x 200 GeV,
is lowered by the sing factor (see Fig. 1). Indeed, values
of tanP + 3 are required for the fixed point solution to
be in the range of phenomenologically preferred values.
As we shall discuss below, these small values of tanP
demand very small values of u.

Figure 1 shows the dependence of the pole top quark
mass on tanP (and also on tu) for three difFerent values
of the strong gauge coupling n, (Mz) and difFerent val-
ues of the coeKcient K, parametrizing the bottoxn mass
corrections, bmb = —mbK tan P. Values of K ) 0.005
lead to significant corrections to the predicted top quark
mass values and, as was shown in [16],may appear in the
presence of universal soft supersymmetry-breaking mass
parameters at the grand unification scale. We concen-
trate on positive values of K, since for negative and large
K either the top quark mass is above its experimen-
tally preferred values or a Landau pole in the top quark
Yukawa coupling appears at scales below MCUT. In Fig.
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1 we have chosen a representative value of mb(mb) = 4.15
GeV. Larger (lower) values of mb within the experimen-
tally allowed range mp ——4.25+ 0.25 GeV, would lead to
somewhat lower (larger) values of Mb [5], without chang-
ing the general properties of the solutions.

It is interesting to note that, for large values of K,
and low values of n, (Mz), the top quark mass predic-
tions in model 6 difFer from the ones obtained in model
9 for the same values of u. This reQects the efFect of the
mixing between the second and third generations on the
predictions for the third-generation masses. It is easy
to prove that, although this eKect is generically small,
the w mass in model 9 receives a significant correction

due to the mixing, which for values of n, (Mz) = 0.115
and K = 0.006 becomes of order 15%. Because of the
condition of bottom-7 Yukawa unification, large 7 mass
corrections also imply large variations in the top quark
mass predictions.

To summarize, we observe that depending on the size
of the one-loop supersymmetric corrections to the down
quark masses, successful top quark mass predictions may
be obtained for the minimal models with ~ = 1, but also
for moderate and small values of tanP (associated with
moderate or very small values of w). It is hence important
to know if the same is true for the first two generations
of quark masses and mixing angles. Since the relation

A, (Mz) = 0.115 A, (M) = 0120
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FIG. 1. The pole top quark mass as a
function of tan P for a running bottom mass
mb(mb) = 4.15 GeV and three different val-
ues of the strong gauge coupling, n, (Mz) =
0.115, 0.120, and 0.125, respectively, for (a)
model 6 and (b) model 9. The coeff1cient
K parametrizing the down quark mass cor-
rections takes values, K, = 0 (dashed line),
K, = —0.003 (dotted line) and K, = —0.006
(dot-dashed line). The solid lines repre-
sent, from right to left, values of u = 1,
0.6, 0.2, and 0.06, respectively. For large
values of n, (Mz) the curves are cutted at
the point at which the top Yukawa cou-
pling becomes strong at high energy scales,
h~ (MoUT)/47r ) 1.
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between the down quark and lepton masses is only weakly
dependent on u, we should maintain the Georgi- Jarlskog
relation even for values of w different &om one. Moreover,
the values of U b can also be successfully accommodated
for lower values of co. This can be easily seen writing its
dependence in terms of the top and charm quark masses:

where y = I*& ~ II+I~ *'
I

and g are the cu indepen-
dent, renormalization group factors relating the running
masses at the scale Mz with the on-shell ones (for the
u, d, and 8 quarks, the scale of definition of the run-
ning masses is taken to be 1 GeV). For n, (Mz) 0.12,
for which the value of g, 2.2, it follows that the phe-
nomenologically preferred values of ~V,b~

= 0.040 6 0.005,
require values of y & 1 [23]. The different values of y are
the basis for the classification of models performed in Ref.
[17], where the best fit to the data was achieved by two
models: inodel 6, with x„=z' = —4, xg = x& ———2/3,
and x, = x' = 6, and model 9 with x„= x„' = 1, xg ——

1/9, x, = 9 and x& ——x', = 1. These models have y = 5/6
and 8/9, respectively, and both lead to somewhat large
values of Vb Mod. el 4, with y = 2/3, leads to a better
prediction for V b, but yields insufficient CP violation.

For lower values of ur, the dependence of Eq. (11) on
Ib and Iq is such that the values of Vb tend to decrease.
Moreover, in the absence of down quark mass matrix cor-
rections, for tanP & 4, the value of V,q decreases due
to larger top quark mass values, which, as we discussed
before, may become too large in comparison with the ex-
perimentally preferred ones. As shown in Fig. 1, lower
values of the top quark mass may be obtained through
large bottom mass corrections. Lowering the top quark
mass enhances the value of V,b, but the total effect of
the down quark mass corrections on V b cannot be de-
termined a priori; it depends on the relative size of the
gluino corrections, which affect the value of V,b due to
their effect on the predicted top quark mass value, and
the chargino corrections, which modify not only the top
quark mass value through the bottom mass corrections,
but they have also a direct effect on the CKM matrix
elements [24] (see the Appendix).

Figure 2 shows the predictions for V,b for models 6 and
9, as a function of tan P, for three different bottom mass
corrections and three difFerent values of a, (Mz), under
the assumption that (bmi, /ms) = —3(bmg/mq)'" (which
is reasonable in view of the running of the soft breaking
parameters and the structure of the bottom mass correc-
tions when the squark mass matrices are approximately
three by three block diagonal [16]).We see that, indepen-
dently of the bottom mass corrections, the predictions for
V b may be significantly improved for moderate values of
u. Indeed, apart from the solutions with tan P very close
to one, u = 1 leads to the largest values of Vb for each
Axed Lmb correction. Observe as well that for values of
tan P & 2, V,g increases, due to the lower values of mq ap-
pearing in this regime. Furthermore, for the present case,
for any fixed value of ~, there is an effective cancellation
of the chargino and gluino-induced one loop corrections

to Vb and the total effect of the down quark mass cor-
rections on V,b is small. Consequently, since for a fixed
value of w large down quark mass corrections lower the
value of tan P, as can be seen from Fig. 2, they also yield
larger values of V,g for a given fixed value of tan P. From
Fig. 2 we also observe that the predictions for V b im-
prove for larger values of n, (Mz). In fact, for moderate
values of u, if large values of n, (Mz) and large bottom
mass corrections are present, the predictions for V b in
model 6 may actually be below the preferred experimen-
tal values, but these solutions are associated with values
of Mz which are generally too large.

Prom the discussion above, we see that the second-
and third-generation fermion masses and mixing angles
can be consistently described within an SO(10) GUT
with ~ & 1. However, as we shall show in the follow-
ing, the constraint coming &om the predictions for the
first-generation quark masses rule out values of ~ & 0.5
within the minimal model. In Sec. IV we show how to
overcome this difficulty at the expense of adding one new
operator and two more parameters, in addition to u.

B. The Qrst generation

The operator Oi2 is necessary to achieve acceptable
predictions for the lowest generation quark masses. In-
deed, within the minimal model, there is a "unique" op-
erator,

45'
qM~) gM) (12)

From Eq. (13) it follows that independent of the source of
the hierarchy between the top and bottom quark masses,
large ratios of Clebsch factors are necessary in order to
obtain the phenomenologically preferred values for the
ratio of the up to down quark masses, 0.2 & m /mg & 0.8

with n = m = 3, which yields acceptable ratios for the
masses of the up, down, and strange quarks. This opera-
tor determines the equality of the Clebsch factors z and
z and the ratios of the Clebsch factors z~/z„= 27 and
zd/z, = 1 (the ratio of Clebsch factors zg/z„ increases
by a factor 3 for each power of 45'). In addition the ra-
tio, appearing in Eq. (4), (z,z,')/(zqz&) = 1. The above
operator is of dimension ten, meaning that the absence
of any lower dimensional operators should be insured by
some symmetry of the theory.

For u = 1, one might think that the large ratio of
Clebsch factors, z~/z„, arising from the above relation,
Eq. (12), is necessary in order to compensate the tanP
( mi/mb) dependence of the up-type quark masses with
respect to the down-type quark ones. It is interesting to
investigate then if lower values of tu, and hence of tanP,
can serve to relax the restrictions on the Clebsch factors
and hence, to lower the dimensionality of the above Oi~
operator. This, however, is not the case, as can be easily
shown considering the relation
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[25]. The additional dependence on the integral factors
Ig and Iq does not help to lower this ratio. On the con-
trary, since for lower values of u, the integral factor Ip
decreases, while I& changes only slightly, for the same val-
ues of the second — and third-generation quark masses the
ratio of the up to the down quark masses increases. This
means that, in order to keep phenomenologically allowed
values of the erst-generation quark masses, the ratio of
the Clebsch factors zg/z„should actually increase, im-
plying that the dimensionality of the operator O&2 should
correspondingly increase for lower values of u.

It is therefore apparent that, keeping the same opera-
tor structure as before, the range of possible values of u,

that is to say of tanP, will be restricted. Indeed, Fig. 3
shows the dependence of the ratio m„/mq as a function
of tan P (u) for models 6 and 9 and for different values
of the down quark mass corrections, under the same as-
sumptions discussed for Fig. 1. It follows that the down
quark mass corrections help only marginally in getting
phenomenologically allowed values for m„/mg, and val-
ues of u 0.5 are disfavored for all these models. Indeed,
for larger values of n, (Mz) ) 0.12, even larger values of
~ are necessary in order to achieve good predictions for
the erst generation masses.

Increasing by one the dimensionality of the operator
I I

Oq2 keeps the equality z,z, = zpz&, necessary to achieve
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ement V, t, as a function of tan P.
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md

ms

zd
/ ~

zd
(14)

I
Relaxing the equality zd ——zd by increasing by one the
power of one of the 45~ in Og2 would change 8 by a
factor ~3, what would lead to predictions in conflict with
present data.

Therefore, for low values of ~, if the dimension of the

the proper ratio of first- and second-generation quark and
lepton masses, Eq. (4), but leads to wrong predictions for
the Cabibbo angle [17]. Indeed, ignoring small factors,
the Cabibbo angle is approximately given by

operator Oi2, Eq. (12), is changed, to obtain correct
values for the ratio of the erst- and second-generation
quark masses, it should be increased by two units. Once
more, however, the variation in the dimensionality of
this operator has an additional efFect, which is related
to the behavior of the Jarlskog CP-odd invariant J =
1m[V„gVisVi&V„*&]. Ignoring again small, inessential fac-
tors, it is straightforward to show that

J y ", — ' exp (2' + 2' —3I ) . (15)z,z,' I yd

Thus, increasing the dimension of the operator Oq2 in
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FIG. 3. The same as in Fig. 1 but for the
ratio of the first-generation masses m„/mq as
a function of tan P.
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two units implies a decrease in the CP-odd invariant J
in a factor 3. Since the observed CP violation in the K
system is well described by models 6 and 9 before the
modification of the operator Oi2, a factor 3 suppression
of the Jarlskog invariant would imply that the amount
of CP violation associated with the Cabibbo-Kobayashi-
Maskawa is insuflicient to explain the experimental data.
The possible variations of V,b (or equivalently of Vqg)
due to supersymmetric threshold corrections in the down
quark sector, which we have discussed above, are not suf-
ficiently large to compensate this type of effect. Numer-
ically, we observe the effect of increasing the dimension
of the operator Oi2 through the prediction for the bag
parameter B~ [26]:

~z,z,
~

m mq exp(2I, + 2Ib —3I )

(16)

which tends to be larger than one in all models, and,
hence, unacceptable since the phenomenologically pre-
ferred values are BJr = 0.8 + 0.2 [27, 23].

The general conclusion of this study is that, keeping
the same operator structure as in Ref. [17], values of
~ & 0.5 cannot be accommodated, without spoiling the
predictions for either the first-generation quark masses,
the Cabibbo angle, or the CP-violation sector of the the-
ory. Hence, the preferred value of u 1 restricts us to
be close to the minimal SO(10) model and the values of
tanP and Mq which lead to acceptable predictions are
also quite restricted (see the discussion in Sec. III A). In
the next section we show that it is still possible to obtain
acceptable predictions for the first-generation with small
values of tanP. However, this solution requires the ad-
dition of one new operator and thus one more complex
parameter in addition to the free parameter u discussed
above.

IV. EXTENDING MINIMAL SO(10)
AND tanP 1

One could think of improving the agreement between
the theoretical predictions and the experimentally ob-
served values of the first generation masses, or the e~ pa-
rameter, by assuming very large supersymmetric thresh-
old corrections to these variables. In Fig. 3 we have
shown that if the down quark mass corrections have the
structure which naturally appears when the squark ma-
trices are block diagonal (see the Appendix), only slight
changes of the predictions for the first-generation masses
are obtained through such threshold corrections. In the
general case, however, the squark mass matrices may be
far &om being three by three block diagonal and first-
generation down quark mass corrections, proportional to
the second- or even third-generation masses, as shown in
the appendix [Eq. (Al)], may be present.

Persuing this direction however opens up a Pandora' s
box of new possibilities and new problems. It is inter-
esting to note that, if the supersymmetry breaking is
transferred to the observable sector through gravitational

efFects, a nontrivial intergeneration squark mixing, gener-
ated through renormalization effects at scales of the order
of the grand unification scale, is unavoidable [28—31]. A
reliable computation of this efFect demands, however, the
knowledge of the precise physics beyond the grand uni-
fication scale. In general, a large squark mixing would
also involve large flavor-changing neutral current effects.
Barring unnatural cancellations, large flavor violations in
the fermion sector can only be consistent with the exper-
imental constraints on Bavor-changing neutral currents
and the neutron electric dipole moment if the character-
istic scale of the squark masses is larger or of order 1 TeV.
A large squark mixing also implies significant couplings
of these heavy squarks to the Higgs sector of the theory
(unless the third-generation squarks do not mix with the
first- and second-generation ones), this will in turn imply
a significant fine-tuning in order to preserve the stability
of the weak scale. The presence of large supersymmet-
ric corrections to the e~ parameter have similar conse-
quences. In this work, we assume the presence of a super
Glashow-Iliopoulos-Maiani (GIM) mechanism and avoid
the discussion of nonuniversal squark and slepton masses
at the GUT scale. Note that in order to reduce the fine-
tuning and large corrections associated with large values
of tanP it is only necessary to have nonuniversal Higgs
boson masses.

To improve the agreement between the theoretical
and experimental predictions for small values of tanP,
a possible alternative is the modification of the struc-
ture of the operators discussed above. Since, as shown
in Sec. III, low values of w are perfectly consistent
with the second- and third-generation quark and lep-
ton masses and mixing angles, any modification should
concentrate on the form of the "12" elements. In
Ref. [17], it was argued that if Oi2 proceeds from a
single operator, its form is uniquely determined. This
conclusion is based on the analysis of the associated
Clebsch factors and the relations given in Eqs. (4),
(13), and (14). However, since Oi2 has a large di-
mension, the relaxation of the assumption that the
"12"elements come Rom a single operator seems natural.
If the efFect of two operators had to add in an unnatu-
ral way in order to lead to the correct phenomenological
predictions, the predictive power of the theory would be
spoiled. Therefore, the additional operator should not

I

modify the equality of z,z and zpz& and should give no
relevant corrections to the ratio of zg/zd. On the other
hand, we want to modify the ratio of m„/mg without
affecting the CP-odd sector in a relevant way. It is cru-
cial to notice that there is a very important difFerence
between the dependence of j and that of m„/mg on the
Clebsch factors. While m„/m~ depends on the prod-

I
uct z„z„, the CP-odd invariant J depends on z„, but is

I

independent of z„. Hence, we are searching for an op-
I

erator which modifies z„, leaving z„ invariant. There is
only one combination of operators which satisfies all the
above criteria: namely,

Oiz ——16i (45' )"10(45')"162

+K16i (45' ) (45~3~) 10(45~) 162, (17)
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where K is of order 1. The predictions for z and z
within this &amework are

zd

ZQ

= 1, z„ = 1 + f,
= (-3)" z~ = (-3)"+ (-1)'(-3) f
= (-3)" z. = (-3)"+ (-1)'(-3)»

V. CONCLUSIONS

where f is the coefficient characterizing the relative
weights of the two contributions, and it is computable
&om K and the vacuum expectation values above. For
simplicity, we shall assume that f is a real number. In
that case, for values of f of order 1 and values of m
smaller than n by at least two units, it is easy to see that
the only prediction which will be modified considerably
is m„/m~. One can therefore achieve low values of tan P
with a correct prediction for m„/mg. This demands very
low values of w and values of f close to —1. For instance,
for model 6, mq(mb) 4.2 GeV, and n, (Mz) 0.12, the
value of ur which leads to tan P 1.5 is as small as 0.004.
In this case, values of f —0.8, n = 3, and m = 0 lead
to good predictions for the CKM matrix and the quark
masses.

under the assumption that, within a good approximation,
a super GIM mechanism is in eG'ect. We have shown that,
for ur ( 1 (moderate values of tan P), and considering the
simplest operator structure, large bottom mass correc-
tions are helpful in accommodating the experimentally
preferred values for Mq, yielding also acceptable values
for V,q. However, moderate or low values of tanP lead
to wrong predictions either for the first-generation quark
masses or for the t P-odd sector of the theory, a property
that is not changed by the presence of supersymmetric
threshold corrections. We have also shown that the op-
erator structure may be extended to yield proper values
for all fermion masses and mixing angles for low values of
tan P ( 3. This extension requires, however, the presence
of additional 45 states in the theory, one new operator
contributing to the first-generation masses and another
complex parameter.
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We have analyzed the fermion mass problem within the
context of supersymmetric SO(10) uniffcation, studying
not only the minimal case, but also the departure &om
the minimal conditions assuming that the fermion masses
arise &om interactions of the spinor representations with
a single 10 representation, but this 10 only contains a
part of the two light Higgs doublets. Moreover, we stud-
ied the implications of the down quark mass corrections,

APPENDIX: SUPERSYMMETRIC
THRESHOLD CORRECTIONS

I.et us discuss the down quark mass corrections in-
duced by supersymmetric particle loops in more detail.
The dominant corrections to the down quark mass matrix
are given by chargino-up squark and gluino-down squark
one loop contributions and they read

md IL—

+)
2=2

'2 2) '2 2 2'i
Mg ) DI~D(1+3) )m„- —mq ~I .

~
mq, md, M-

d~j=2-

L + ( 2 2 l () Z2 Z2 m C~l Ulc uMU(M+3) jCMI (
m„- —m„-,

)
I

(
m„-, m„-, , m')cx:1

(Al)

ab ln(a/b) + bc ln(b/c) + ac ln(c/a)
I(a, b, c) =

(a b) (b c) (a c)
(A2)

All indices denoted by capital letters run &om 1 to 3 and
a summation over the indices K and M is implicit. The

The above expression has also been obtained in Ref. [24].
In the above, U and D are the unitary matrices diagonal-
izing the six by six up and down squark mass matrices
(Dq; and D4; denote, for example, the component of the
mass eigenstate d; in the left- and right-handed down
squark, respectively), Z+& are the unitary matrix which
diagonalize the two by two chargino matrix, m are the
chargino mass eigenstates, Clg are the CKM matrix el-
ements, dr and ul are the down and up quark Yukawa
couplings, respectively, and Mg is the gluino mass. The
integral I(a, b, c) is given by

state dq (uq) denotes any particular eigenstate, which

may be chosen, for example, as the heaviest one. A de-
pendence of the above expression on the quark mass ma-
trices is implicit in the necessary left-right-mixing term,
which is only generated by terms proportional to the
quark masses.

Furthermore, if the up and down squark matrices are
three by three block diagonal, implying the existence of a
super GIM mechanism in the theory, the following prop-
erty is satisfied:

d~(A, —ptanP)v,
&K&&~~+3~, = +~K~

dz d(a+3)

u~(A„—p, cot P)v2
UK2 U(M+3)2 +~KM

&K &(~+3)

where AK are the conventionally de6ned trilinear soft
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x A„Cml I
I
m„-,m„-,m

(
~M ~ ~(M+3) ~ ~) (A4)

The above expression reproduces the one obtained in

supersymmetry-breaking terms and p is the supersym-
metric Higgs boson mass parameter appearing in the su-
perpotential. The positive sign in the above expression
corresponds to the case j = K, while the negative sign
corresponds to the case j = K + 3. Keeping the dom-
inant terms in the large tanP regime, the down quark
mass corrections take, hence, a very simple form

(hmd)IL, = '
hll, (dive) tanP pMgI [ m&, m&, M20,'q '2 2 2'

37r L ( +L3)

6 2
(dl, vt ) tan p ++) ), Z, Z, m CML[uM[

/=2 @x=1

Ref. [24] under similar assumptions. In the present limit,
the gluino corrections acct only the values of the mass
eigenstates, while the chargino corrections give also cor-
rections to the off-diagonal terms. Studying the renor-
malization group evolution of the soft supersymmetry-
breaking mass parameters one can show that the gluino
contributions are generally dominant and opposite in sign
to the chargino contributions [16]. Moreover, because of
the hierarchy between the up quark masses, only the term
proportional to [us] becomes important in the chargino
contributions. Hence the chargino-induced corrections
to the down and strange masses are very small. Fur-
thermore, as has been shown in Ref. [24], the most
relevant corrections to the CKM matrix elements are
given by bV, &/V, &

—(bm&/m&)'" hV«/V&&, where
(bms/m~)'" represents only the chargino contributions
to the total bottom mass corrections.
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