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It is pointed out in the example of the pion form factor that the usual factorized hard scat-
tering amplitude Ty in perturbative QCD is derived from the light-cone time-ordered perturbative
expansion. In the light-cone perturbative expansion, the natural variable to make a separation of
perturbative contributions from contributions intrinsic to the bound-state wave function itself is the
light-cone energy, rather than the gluon virtuality of TH. We find that the “legal” PQCD contribu-
tion defined by the light-cone energy cut saturates to the full PQCD prediction without any cut in
the smaller Q? region as compared to that defined by the gluon four-momentum square cut. This
is due to the contribution from highly off-energy-shell gluons in the end-point regions of the phase

space.

PACS number(s): 12.38.Bx, 13.40.Gp

It has long been discussed whether perturbative QCD
(PQCD) is applicable to exclusive processes at currently
available experimental energies [1-7]. In view of the
current trend of upgrading the electron beam energy at
the Continuous Electron Beam Accelerator Facility (CE-
BAF) [8], this issue needs to be further clarified. The ex-
plicit criticism of the PQCD applicability can be found in
the example of pion and proton form factors [2]. For the
main critique, it has been argued that in order for per-
turbation to be consistent the four-momentum squared
of the exchanged gluon, k;, has to be larger than the
typical hadronic scale u? < 1 GeV2. Thus the “legal”
PQCD contribution was defined by requiring k; > pl.
If 42 was taken to be 1 GeV?, then the “legal” PQCD
contribution was too small to compare with the currently
available experimental data.

However, there is not yet a consensus on what value
of u? should be taken to define the “legal” PQCD. Fur-
thermore, the ambiguity of the scale Q? for the argument
of the QCD running coupling constant a,(Q?) and the
renormalization scheme dependence in the PQCD expan-
sion add more uncertainty to the criticism of PQCD [9].
These issues are quite delicate because the hard scatter-
ing amplitudes in the leading order PQCD are very sen-
sitive to the values of u? and Q2. An important question
for evaluating exclusive amplitudes in the transition re-
gion between hard and soft QCD processes is how to ana-
lytically separate perturbative contributions from contri-
butions intrinsic to the bound-state wave function itself.
In this respect, we note that the factorization of the co-
variant hard scattering amplitude from the nonperturba-
tive quark distribution amplitude is originated from the
light-cone quantization method of the QCD Fock state
expansion [1]. In the renormalization group approach on
the light cone [10], the variable that makes this separa-
tion is the light-cone energy, rather than gluon virtuality
of the hard scattering amplitude. In this paper, we in-
vestigate this point in the explicit example of the pion
form factor calculation using the light-cone perturbation
theory. We first explicitly show that the sum of six light-
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cone time-ordered diagrams shown in Fig. 1 is equivalent
to the usual PQCD hard scattering amplitude Ty and il-
lustrate our point in leading twist level (see Fig. 2 and the
corresponding discussions). However, we will attempt to
include at least the higher twist effects which arise within
the lowest Fock component of the hadron. More recently,
Li and Sterman [6] have shown that by including the
Sudakov effect the PQCD calculation can be made self-
consistent at much lower Q% values. An essential step in
their work was to bring the intrinsic transverse momen-
tum dependence back in the hard scattering amplitude.
The transverse momentum was neglected in the leading
twist approximation but could become important in the
end-point region. Thus we consider higher twist effects
such as the intrinsic transverse momentum and the mass
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FIG. 1. Leading order light-cone time-ordered diagrams
for the pion form factor, where ki = (z:P1, k),
k2 = (22P*, k1), b = (1P y1q0 + 11), 2 = (y2P'T,
y2qL — 1), and ¢ = (0,¢%,¢1) in (+, 1) components with
the — component being determined by on-mass-shell condi-
tions. Here g, P, and P’ are the momentum of the photon,
the pion in the initial state, and the pion in the final state,
respectively. In each diagram, the instantaneous diagrams for
the intermediate quark and gluon are implicitly included by
using the technique shown in Ref. [1].
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FIG. 2. Leading twist PQCD results using Dziembowski’s
wave function with 8 = 0.46 GeV. Each curve is described in
the text.

of the constituents in examining the self-consistency of
PQCD. Jacob and Kroll [7] had also considered the role of
transverse momentum by repeating the Li-Sterman anal-
ysis but with the transverse momentum effect in the wave
function as well. However, we note that our main point
in this paper is not the inclusion of the higher twist effect
but the observation that the natural variable to separate
the hard and soft contributions is the light-cone energy
rather than the gluon virtuality of Ty. This observation
is independent of whether or not we include the higher
twist effect. While the present discussion focuses on the
pion form factor, the point addressed here is applicable
to any other exclusive processes. Some works advocating
a cutoff in invariant mass as a light-cone Hamiltonian
regulator and natural variable in light-cone wave func-
tions can be found in Refs. [11,12] which also discuss the
advantages and consistency of this procedure.

The PQCD calculation of the pion form factor in the
leading order can be given by [11]

Fr(Q?) = [dadyd?k,d*l 4(z, kL)
XT(CC,:% EJni:qu—l)'l/)(yal-‘J_) ) (1)

where ¥(z, k 1) is the light-cone wave function of the two-
body Fock state and T(z,y,l;:.i_,tj]_) is obtained by the
two-body irreducible diagrams. In order to show that the
sum of the light-cone time-ordered diagrams is equivalent
to the covariant Feynman diagrams, the reducible one-
gluon-exchange diagrams which can be obtained by the
light-cone two-body bound-state equation of ¥(z, k 1) are
also needed in the leading order calculation [13]. Thus, in
the leading order of the light-cone PQCD, the six light-
cone time-ordered diagrams shown in Fig. 1 were calcu-
lated in order to establish the equivalence to the covari-
ant hard scattering amplitude. Also, the results are then
gauge invariant. In each diagram, the instantaneous dia-
grams for the intermediate quark and gluon are included
using the technique shown in Ref. [1].

The main structure of each diagram is given by A; =
N;/Dy;Ds;, where N; is the numerator expressing the

spinor and y-matrix algebra of the light-cone perturba-
tion theory and D;; and D,; are the energy denominators
designed by the dashed lines in Fig. 1. Even though the
detailed expressions of all D;; and D,; depend on the
time ordering, the general features are the same. For
example, for A; we obtain

1 . -
Dy = —{(z2qL + k1) + m? — 12, M2}, (2)
T1T2

2
1 . - o~
Dy = ————<y1y2 (wm +kL— —zh)
y1-’62(y2 - 562) Y2
+_£I:_2( _x)fz +(T_z+m_2_M2) (3)
2 Y2 2)t ” s x ) -

Here z; = k' /P*, y; = I} /P'* are the momentum frac-
tions of the 7th constituent for the plus component in the
initial and final states, respectively, with ; + 2 = 1 and
Y1 + y2 = 1. When transverse momentum and masses
are neglected, one can verify that, by multiplying the
plus components of the intermediate quark and gluon
momenta, D; and D, give the quark and gluon propaga-
tors, respectively, i.e., £2Q? and z3y,Q?, which appear
in the covariant leading twist calculation. Applying the
condition M, < 2m of the bound-state pion, D; and D,
do not develop any singularity and they are positive in
the entire phase space. Notice that z(= z1) > y(= y1)
for A; and, therefore,

2 2 2
m m
- M?>

7+1—m T z(l—1x)

-M2>0. (4)

We verified that the same properties hold for all energy
denominators D;; and D,;. To leading order and leading
twist in the light-cone gauge A™ = 0, the explicit results
for the six diagrams in Fig. 1 are given by

86 — 80 -
Ay = (y2 2-"32) (y2 — z2) _, (5)
T2Y2q7 (yz - le)l‘zyqu
8z,0 - 8z.0 -
Ay = Ty g-’vz . yz) T (ivz - y'z)2 , (6)
z3Y197 (z2 — y2)z5y197
Ay = 8(z2 — y2)0(x2 —y2) _ 8(z2y1 + Z1y2)0(x2 — y2)
T3Y1Y297 (w2 — y2)Tiy1y243
(7)
80(z2 — y2 80(x2 — y2
By =¥l2—ra)  8@azv) g
T2Y2q ) (wz yz)-’ﬂzyqu
8y, 60 — 8y10 —
B, = Y1 (yz2 . 932) 3!1_ (y2 51322)2 , (9)
T1Y29) (y2 — z2)z1y397
Bs = 8(yz — 2)0(y2 — x2) _ 8(x1y2 + 7291)0(y2 — Z2)
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(10)
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If we sum Egs. (5)—(10) and include the common color
factor and QCD running coupling constant, we obtain
the usual hard scattering amplitude:

64ma, ey €2 )
Ty = +
" 3Q? (mzyz Z1Y1

Thus we showed that the results of calculating the six
diagrams are equivalent to the covariant calculation of
the two Feynman diagrams. Here our main point is that
the larger are the light-cone energy denominators, the
smaller is the light-cone time uncertainty of the parton
system. Therefore the natural variable to separate per-
turbative contributions on the light cone from contribu-
tions intrinsic to the bound-state wave function itself is
the light-cone energy [10]. Then, our criterion is that the
boost-invariant quantity given by the multiplication of
the plus component of the meson momentum (P71) with
the light-cone energy deficit Ak~, that is, the light-cone
energy denominator D;, is greater than some hadronic
scale p?;

(11)

PTD; > u?. (12)
In the rest of the text, we will take PT = 1 for conve-
nience. This should be contrasted to the previous criteria
based on the gluon virtuality of Tg. If one includes the
intrinsic transverse moraenta k 1 and I 1 and the mass
m of the quarks, the light-cone gauge part proportional
to 1/k} leads to a singularity even though the Feyn-
man gauge part g,, gives the regular amplitude. This is
due to the gauge-invariant structure of the amplitudes.
The covariant derivative D,, = 8, + igA, makes both
the intrinsic transverse momenta & L,f | and the trans-
verse gauge degree of freedom gff L be of the same or-
der, indicating the need of the higher Fock state con-
tributions to ensure the gauge invariance. However, we
can show that the l/k; terms of A; + B; + Bz and
B + A; + A3 are proportional to the light-cone energy
differences given by A, = M2 — (m? + k2)/z(1 — z) and
A, = M2 — (m? + fﬁ_)/y(l — y). Thus we calculate the
higher twist effects in the approximation of A, = A, =0
to avoid the involvement of the higher Fock state contri-
butions. Since our main argument is based on consider-
ation of the energy denominators, the small changes of
the numerator and the choice of the wave functions, etc.,
do not alter our conclusions.

For the numerical calculation, we used the light-cone
wave function suggested by Dziembowski [14] which has
the Gaussian parameter 3. Note that the quark distribu-
tion amplitudes obtained by 8 = 0.32 GeV and 3 = 0.46
GeV are very similar to the asymptotic quark distribu-
tion amplitude and the double-hump-shaped quark dis-
tribution amplitude obtained by Chernyak and Zhitnit-
sky [15], respectively. Figure 2 shows the leading twist
case (i.e., k; and masses are neglected) for the Chernyak-
Zhitnitsky-type distribution amplitude. We compared
the results obtained by different definitions of “legal”
PQCD (i.e., different ways of cutting the integral). The
solid curve corresponds to the full answer; the dashed
liner is obtained by requiring |k2| > u? = 1 GeV? and
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FIG. 3. Phase space of the momentum fractions. The
shaded area indicates the region where 1 — p/Q <z ~y < 1.

the dash-dotted curve for both |Dq| and |Dz| > p? =1
GeVZ2. As we have discussed earlier, it is not yet clear
what the p value should be. However, we took the more
conservative value p = 1 GeV for the illustration. As
one can see, the curve with the light-cone energy cut sat-
urates to the curve without any cut in a much smaller Q2
region compared to the curve with the four-momentum
square cut. A very similar pattern can also be obtained
for the asymptotic quark distribution amplitude. We
also note that the difference between the dashed curve
and the dash-dotted curve would be even larger if one
required the quark to be far off mass shell in the covari-
ant calculation as well. The large difference between the
dashed and the dash-dotted curves comes from the con-
tribution in the region of 1—u/Q < z ~ y < 1, i,
the shaded area shown by Fig. 3. While this region
is certainly near to the end points of the quark distri-
bution amplitudes, the gluons in this region are highly
off energy shell. Thus, from the light-cone quantization
point of view, this region should be included in the “le-
gal” PQCD. When transverse momentum and masses
are included as shown in Fig. 4, the dash-dotted curve
(|D1],|D2| > 1 GeV?) saturates to the solid curve (full
answer) even faster, indicating that the PQCD calcu-
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FIG. 4. PQCD results including the higher twist effects
using Dziembowski’s wave function with 8 = 0.32 GeV. Each
curve is described in the text.
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lation becomes self-consistent at even lower Q2. Here
we use § = 0.32 GeV to compare with the soft contri-
bution (dotted curve) calculated in Ref. [14]. However,
we should stress that our main point based on energy
denominators is independent of the choice of the wave
functions. The reason for the faster saturation is be-
cause the light-cone PQCD result is dominated by the
contribution from the region where D;, Dy > p? when
higher twist effects are included. This can be seen from
Egs. (2)-(4). Because of Eq. (4), one can prevent D; and
D, from being zero. Furthermore, the gluon light-cone
energy becomes nearly on shell at the kinematic point:
o =ys and I, = k) + y2q, . For x5, ys not nearly zero,
i.e., away from the end-point region, !, ~ ¢, , and there
is a suppression coming from the wave function evaluated
at large [, . Near the end-point region, I; ~ k,, and 1
is not necessarily large. However, there is again a sup-
pression factor exp(—B2m?/z1z;) evaluated at small z
values. Therefore the wave function naturally suppresses
the soft contribution.

One may consider the definition of a “legal” region
for PQCD as the one in which higher order corrections
are not large. The absence of large logarithms due to
radiative corrections is the basic requirement for such a
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region. A further investigation along this line is needed.
In conclusion, we point out that the gluon four-
momentum square cut may have cut too much to define
the “legal” PQCD. As we observed from the numerical
computation, the “legal” PQCD contribution defined by
the light-cone energy cut saturates to the full PQCD pre-
diction in a much smaller Q2 region when it is compared
with that defined by the gluon four-momentum square
cut. We find that if £ ~ y the gluons are highly off
energy shell even if they are in the end-point regions
z,y > 1— pu/Q. We also observe that the PQCD cal-
culation becomes more self-consistent when higher twist
terms (k; and m) are taken into account. This obser-
vation is model independent since our consideration is
based on the structure of the energy denominators.
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FIG. 3. Phase space of the momentum fractions. The
shaded area indicates the region where 1 — p/Q <z ~y < 1.



