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Atomic alchemy: Weak decays of muonic and pionic atoms into other atoms
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The rates of weak transitions between electromagnetic bound states, for example, (7te™) —
(uTe " )v,, and the exclusive weak decay of a muonic atom into an electronic atom, (Zp~) —
(Ze™ )vube, are calculated. For Z = 80, relativistic effects are shown to increase the latter rate by a
factor of 50 compared to the results of a nonrelativistic calculation. It is argued that the conditions
for producing the muonic decay in neon gas (Z = 10), where the branching ratio for the decay
per captured muon is 1.7 x 10™°, can be realized using cyclotron traps, though the prospect for a
practical experiment seems remote. In lead the same ratio would be approximately ~ 1 x 1078,
In addition to providing detailed information on the high momentum tail of the wave functions
in atomic physics, these decays of QED bound states provide a simple toy model for investigating
kinematically analogous situations in exclusive heavy hadronic decays in quantum chromodynamics,

such as B —+ K*v or B — wev.

PACS number(s): 36.10.Dr, 11.10.St, 13.20.He, 13.35.—r

I. INTRODUCTION

The calculation of the rate of a weak decay of a heavy
meson into an exclusive channel, such as B — vK* as
B — Dev, poses an important and challenging prob-
lem in nonperturbative quantum chromodynamics be-
cause all the complexities of strong interactions enter. In
this paper we study the simpler non-Abelian analogues
of these processes in atomic physics, the weak decays of
one electromagnetic bound state into another. In QED
the calculation can be done exactly for bound states at
rest and their motion can be systematically taken into
account. In both the non-Abelian and the Abelian case,
one is sensitive to the high momentum tail of the wave
functions, and, in fact, there are important relations be-
tween the two theories. It was shown that in high mo-
mentum transfer reactions the factorization theorems are
the same once one adjusts for the differing 3 function [1];
additionally, the heavy quark symmetries are the same
[2].

Thus, we consider transitions of the form

(re”) = (e )y,
(Zu™) > (ZeT)vube . 1)

The latter process is particularly interesting because
large values of the nucleus charge Z make the effective
electromagnetic coupling constant strong, thus suggest-
ing an analogy to the QCD coupling constant. In addi-
tion, the process may be experimentally accessible, albeit
with great difficulty, using cyclotron traps.

Because the atom remains in a bound state, but
the atomic or nuclear species is changed, we refer. to
such processes as “atomic alchemy.” Other examples of
atomic alchemy are the decay of muonium to positron-

0556-2821/95/52(7)/4028(10)/$06.00 52

ium, (ute”) — (ete”)D,v., and the decays of mesonic
and hadronic atoms such as (#~Z) — (p~Z)v, and
(X72) - (pZ)n°. However, observation of the muonic
transition just mentioned is impractical because of its
tiny branching ratio with respect to the decay of the
muon into a free electron, and observation of the others
is impractical because of the high rate at which hadrons
are absorbed by the nucleus.

Another interesting class of “induced atomic alchemy”
occurs when a nucleus is forced to change its state be-
cause of external scattering, while an atomic electron re-
mains bound. The scattering may be due to neutron-
induced fission, nuclear Compton scattering, or photodis-
integration; the latter is particularly interesting for deu-
terium, y(dte~) — (p*e~)n. One can also study atomic
alchemy when a nucleus changes its state by an internal
process, such as (# decay. Similarly, one might consider
the observed reactions K — (wu)v and (udt) — (pa)n.

In this paper, we concentrate on the exclusive transi-
tion, B; — B; + X, where both B; and B, are bound
states consisting of particles (b;s) and (b2s), respectively,
and the transition proceeds by a weak decay b; — by +X.
To justify the calculations of the branching ratios given
below, we require that the 1S state in By will be empty
to receive the particle by, so that the Pauli principle
does not block the largest branch for the decay. We
also require that the rate at which the spectator absorbs
the particle b;, instead of allowing it to decay, is neg-
ligible. Both requirements are easily met in the decay
(rre”) = (ute )v,; however, in the decay of bound
muons, (Zu~) — (Ze™ )v,D., they can be met in prac-
tice only with great difficulty. These problems we address
in Sec. IV.

The basic features of atomic alchemy can be easily un-
derstood using nonrelativistic mechanics; the analysis is
similar to that for nuclear collisions involving capture of
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atomic electrons, as discussed, for example, by Migdal
[3]. We review the major points before plunging into the
full relativistic calculation. Because the weak decay oc-
curs over a time short compared to the period of an orbit,
we can use the “sudden approximation.” The probabil-
ity amplitude for the atomic transition then factors into
the free matrix element of the weakly decaying (moving)
particle times a form factor F(¢2). This form factor is
just the overlap of the wave functions of the initial and
final states, which we write as 1; and 1». In the rest
frame of the initial state, F(g2) is

d3k,

F(@*) = @y

1(E1)9s (Fa = Mred,2Teer2) - (2)

Here El is the momentum of b; (see Fig. 1), and Myeq,2
and Trel,2 are the reduced mass and the relative velocity
of the final state particles b, and s. The velocity ¥rel,2
is a function of ¢, the momentum transfer carried by X,
which by conservation of momentum is equal to the recoil
momentum of B;. We have

6rel,2 = kl a + kl = kl - L . (3)

mp, mg Mred,?2 my,

In the decay (Zp~) — (Ze™)v,ube, the argument ko of
the wave function v} is approximately ko ~ Ky — q.- In
momentum space the muon wave function does not vary
much over the domain where the electron wave function
differs appreciably from zero. The integral in Eq. (2) can
therefore be approximated by

F(q?) = $1()93(7=0) . (4)

For small Z the momenta of both the muon and the elec-
tron are nonrelativistic and the effects of the finite nu-
cleus size are small; we therefore can use for v; and ¥,
the Schrodinger wave functions for a point nucleus. For
the 1S states

8y/ma’/?

i 1
1+ a2k2)2’

i=———— (1=12), 5
%= Za (¢ ), (8)

pi(k) =

where a; denote the Bohr radii of the atoms. Because
¥;(7 = 0) = [y7al*?]71, Eq. (4) becomes

m 3/2 1 2
2\ Tte
Fia )‘S(mu) [1+<72/(Zamu)2] - ®
X (q)
b‘ (;1) ba (;1_5)
Bl ind Bz
S(_kl)

FIG. 1. General diagram for a weak alchemy transition
B; — B2 + X as discussed in the text. The momenta of
the particles are indicated in parentheses.
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The physics of capture into a hydrogenic nS state is
controlled by the ratio of the change in nuclear velocity
to the atomic velocity Za/n. Equation (6) suggests that
the highest rates for the transition of muonic to electronic
atoms will be found for heavy nuclei with (Zam,)? > ¢2.
For these atoms, however, Eq. (6) provides only a very
rough estimate for the form factor because relativistic
effects [mainly affecting the wave function of the (Ze™)
atom] become crucial and greatly enhance the transition
rate.

In the case of the transition (7te™) — (ute ™ )v,, the
monoenergetic weak decay changes the species and veloc-
ity of the heavy particle serving as a nucleus. Since the
momentum transfer from the pion to the muon is much
larger than either Bohr momentum, the integrand in the
form factor in Eq. (2) is dominated by those values of
k, for which either k; or k; matches a Bohr momentum.
Both contributions turn out to be equally important, and
using for the 1.5 states the Schrodinger wave functions for
a Coulomb potential, we obtain for the form factor

4
" . . . a
F(QZ) ~ 2'(/)1(7‘ = 0)’(,/12 (mred,zv,elyz) ~ 16 (’U 12) .
rel,

(7)

Here vpe12 = (m2 — mi)/(Zm,,m,‘) = 0.28, which is
small enough that our nonrelativistic treatment is jus-
tified. The probability for capture of the electron from
the muonic decay is unfortunately very small:

P = [F(q?))? ~ 2560%/v5, , ~ 5 x 10711 . (8)

II. RELATIVISTIC ANALYSIS OF ATOMIC
TRANSITIONS

We now turn to a more detailed analysis which allows
us to treat decays such as (Zp~) — (Ze™)v,Pe, where
for large Z the velocities of the bound constituents are
relativistic. In principle, the analysis requires a fully co-
variant description, such as the Bethe-Salpeter equation
or the light-cone Fock state expansion. In Ref. [4] such
a covariant description was given, but at the expense of
a somewhat artificial momentum-dependent mass for the
decaying constituent. While that description works well
when the decaying constituent is much heavier than the
spectator, it fails when the spectator is the heavier parti-
cle, because the high momenta of the constituents, which
prove crucial, are cut off [see Eq. (2.1) of Ref. [4]]. Here
we use a noncovariant description that is adequate for the
cases of interest, where the spectators in the initial and
final bound states have small relative velocity, but where
the velocities of the particles bound to the spectators can
be relativistic. This description is particularly appropri-
ate for the transition (= Z) — (e~ Z) + v,V because the
mass of a nucleus is much greater than m,,.

We begin with a relativistic treatment of the simple,
monoenergetic, two-body atomic transition (7te”) —
(ute™) + v,. The relative velocity of the (we) and (ue)
systems is only v, = 0.28, so one can simplify the kine-
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matics by assuming them to be at relative rest. We con-
sider only S-wave bound states, so the spin of the bound
state B; is just the spin of the electron, and the final
bound state B; is either a pseudoscalar or a vector parti-
cle with the corresponding well-known spin combinations
of the constituents. For example, the initial state B; with
spin projection R is represented in its rest frame as

&3k,
By,fs = 0,R) = /2mp, | et
|B1. 75 ) ? /,/4kg’kg(2w)3

xy(F)af(kR)b* (R)I0) . (9)
where k3 = —Fk;, and k? = (l::? + m?)Y/2 for (i = 1,3),
and a* (K1) and b+ (k3) are creation operators for the con-

stituents that act on the vacuum state |0). The state is
“covariantly” normalized in the volume V', so that

(B1,98 = 0,R|B1,pp = 0,5) = 2mp, Végs
a3k,
it [ Gkl = (10)

The matrix element for the decay (nte™) — (ute™)+v,
is then written as’

4G Vu
Mrs = F d Y 4m mp,mpB,

frmg

/ d3k1 ¢1(k1)¢2(k2)s. (11)
(2m)3 \/2k9 /2K 2

Srs = ﬁr(‘f)"/o ! ;751)3(’;1 - tf) )

kg = [m2 + (kv — 9)]'/?, (12)

where f, =~ 130 MeV is the pion decay constant, and
Vua is the relevant Cabibbo-Kobayashi-Maskawa (CKM)
matrix element. Here u,(q) and v,(E; — §) are the Dirac
spinors of, respectively, the neutrino with spin r and the
muon with spin s. The argument k» of the bound state
wave function 3 is given by Ez = El — (Mred,2/mu)q.
Note that in S,; we have kept only the zeroth component
of the weak current since the pion is essentially at rest.
In the limit k; — ¢ < my, only the large components of
the spinor need to be retained, and S,, takes the simple

form
e ()]
e =1do3, x{ =(1,0), x3 =(0,1). (13)

We square the matrix element, sum over pseudoscalar
and vector final states, and average over the spin of the
initial state. Using

1We use spinors normalized as @, (5)us(p) = —0-(P)vs(5) =
2mbrs.
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Z SrsSny = 2m;4|q_1 ) (14)
T8

the spin-averaged matrix element becomes

|M% = 4GE|Vaa|* f2m2 | F(§%) Pmyldl

F@) = [ SRk EwsE) (1)

where we have used [see Eq. (11)] the approximation
4k?k3 ~ 4mp,mp,. The two-body kinematics fixes the
momentum transfer |q] to be

4] = (m}p, — m%,)/(2msp,)
~ (m2 — mi)/(2m,,) . (16)

The decay rate in this approximation is

2
= Zr =TT (17)

To get an estimate of the errors made by using nonrela-
tivistic mechanics, we calculated the decay rate of a free
pion making the same approximations, i.e., just taking
the zeroth component of the weak current and retain-
ing only the large components of the Dirac spinor of the
muon. We find

GEVudl? frmam, (mZ — m2)?

I-\?r]:]:rox — w 87rm3 ™ . (18)

This differs from the rate calculated using relativistic me-
chanics only by the factor

gact JTePPr* = m, /m, ~ 1.3, (19)
which indicates a possible error of about 30%. The
branching ratio for decay to the 15 state, obtained by
dividing Eq. (17) by the approximate form in Eq. (18),
is

(tp™) = (uteT)y,
B [ —2\12 .
o 1r ) (20)
Using the Schrédinger wave functions of Eq. (5) (with
Z =1 of course) this is 4.51 x 10711,

III. RELATIVISTIC EFFECTS IN MUONIC
TO ELECTRONIC ATOM DECAYS

We now consider the transition (u~Z) — (e~ Z)v, e,
using with obvious replacements the same kinematics as
in Fig. 1. This is a close analogue to the hadronic de-
cay B — Dev. For simplicity we will take the nucleus
to be spinless. As we now consider a three-body de-
cay, we first discuss the range of the relevant kinematical
variables. Because the two constituents have extremely
different masses (especially if Z is large), it is useful to
write the masses mp, and mp, of the bound states B;
and B in the form
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mp, = M + mq, where m; =m, — Ebind,l )
mp, = M + m;, where my = m. — Ebping,2 - (21)

Here M is the mass of the heavy nucleus. In the rest
frame of the decaying atom, the momentum transfer |g] to
the neutrino pair is kinematically restricted to the range

0 < |q] < (mE, —m}%,)/(2mB,)
= (my —my) + O(1/M) . (22)

For a given value of |g], the fourth component ¢° as seen
in the rest frame and the square of the four-vector , g2,
are fixed:

¢° = (m1 —map) + O(1/M), ¢*>= (my— ma)? — g% .
(23)

Thus ¢? lies in the range [0, (m; — m3)2]. The momen-
tum transfer |g] is always very small compared to the
masses of the bound states, so the bound states can be
considered to be at relative rest; in this approximation
our formalism will still be covariant up to O(1/M) correc-
tions. Writing the relevant four-Fermi operator for muon
decay in charge retention form, the matrix element for
the transition reads

M, = 4%’ VAmp,mp, N, S%. (24)

where

_ 11—+~
N, = u(Pv,‘)'Yu 2 SU(PVC) ) (25)

_ dakl P */7 '17.,(6; El - ‘D
St = / W"/’l(kl)d’z (k1 — (D_—\/?T;O——

w1 = s U (i K1)

2 2P
k) = \/m2 + k2, k) =+/mZ+(Ki—2. (27)

The muon spin r and the electron spin s are just the
spins of the bound states B; and B;. In general a Wigner
rotation [4] must be used to relate spins in two different
frames, but here the rotation is essentially unity because
the velocity of B, relative to B; is small.

We seek an expression for M,, that is correct to zeroth
order in 1/M. This is found most easily by first writing
the trivial identity

Xy (26)

Sf, = (53315,’;‘,,,.,6,-17- ) (28)

and then by rewriting the Kronecker §’s in terms of the
spinors for the bound states and their constituents:

8orr = [2mp, (kY + m )]~ 24, (u; El)u,(Bl; 0),
Sear = [2mp, (kS + m.)] " 2@, (Ba2; $B, )ua(e; k1 — @) .
(29)
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The first relation is exact, and the second introduces er-
rors only O(1/M). Then S“ can be written as

8L = (4m31mBz)_1/2ﬁa(B2;ﬁBz)T”ur(Bl;6) ,»  (30)

where T# may be derived using Eqs. (26), (28), and (29).
By repeatedly using the Dirac equations

’Your(Bl;ﬁ) = ur(Bl;ﬁ) )
Ug (BZ;ﬁBz)'YO = ﬂs(BZ;ﬁBz) + O(I/M) ) (31)

and dropping terms ~ ¢*, which vanish when contracting
with the neutrino tensor N, of Eq. (25), we arrive after
some not completely straightforward algebra at

T" = Fi1(¢*)y*L + F2(*)v*R + Fs(qz)“Y"mLL
n

2 u-_i_
+Fa(q%)y my (32)
Here L = (1 —v5)/2, and R = (1 + vs5)/2, and the form
factors F;(g?) are given as

Fi(¢®) = / ((1737?)131/’1(51)1/’;(E1 -q)
h;

X R 33
Wz o e R
with
hi = (kY +my) (k3 + m.)
+4°[(1 — O) (kD + m,.) — C(kY + m.)]
+(B - C)(qO)Z —A )
hy = (C - B)¢®* — 24,
hs = [(1 - C)(k{ + m,) + (B — C)¢°lm, ,
hs = [C(k3 +me) — (B — C)g°|m,, . (34)
The quantities A, B, and C are
=272 I 2 7 2 _ =272
_ G%ki— (k-9 _ 3(k1-9)* — %Ki
. A O
Ey-q
c="119 (35)

6’2

The form factors F; may seem noncovariant, because af-
ter the integration d3k; the variables ¢° and |g] remain
as well as the square of the four-momentum g?. But the
form factors were derived in the rest frame of B;, so ¢°
and |q] are functions only of g2 according to Eq. (23).

In terms of the quantities introduced, the matrix ele-
ment can be written in the suggestive form

4Gp _ _ o P
M,, = T;u(pu,‘)va(pu,)ua(Bz;pB,)T“ur(Bl;0) .

(36)
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The calculation of the decay rate, differential in the momentum transfer |g], is now standard. Expressing the bound
state masses mp, and mp, in terms of M, m;, and m, as defined in Eq. (21), one obtains

ar' G%|q)1?
FE WK(l‘ﬂ) ,

K(|q1) = [¢* + 2(m1 — m2)*|(F} + F3) + Ti—i[4(m1 —ma)? — ¢*)(F5 + FY)

®

where the F; are the form factors defined in Eq. (33).
Note that m; and m. enter only through their differ-
ence; this is clear from the decomposition (21), which is
invariant under the change of variables M — M + A and
m; — m; — A

The wave functions that enter the form factors F; in
Eq. (33) are plotted in Figs. 2 and 3 (solid line). For
comparison we have also drawn the wave functions for a
point nucleus. The finite size of the nucleus affects the
muon 1S5 wave function at high Z, as shown in Fig. 2.
The finite size also affects the ultrarelativistic momentum
tail of the electron 1S wave function, as shown in Fig. 3.
The calculation of these wave functions is discussed in
detail in the Appendix. Briefly, we have approximated
the shape of a nucleus of atomic number A as a homo-
geneously charged sphere of radius ro = 1.34Y/3 fm. In
position space we solve the Dirac equation inside and
outside 7o; the condition that these solutions match at
r = 1o determines the ground state wave function. We
then take its Fourier transform.

From the kinematics [see Eq. (22)] it is clear that the
muon 15 wave function is tested to momenta the order
of m,. As shown in Fig. 2, relativistic effects are moder-
ate. However, the finite size of the nucleus enhances the
low momentum part of the muon wave function, which is
fortunate because for lower momenta the electron wave
function is large, and so the overlap increases. The elec-
tron 1S wave function is also tested up to momenta the
order of m,, and so the ultrarelativistic tail of the Dirac
wave function is important. As shown in Fig. 3 the finite
size of the nucleus diminishes the tail, and so the overlap

1 T T T T T T T ™)
[ ___ Fin. nucl. (Dirac) ]
0.8 <---- Point. nucl. (Dirac) ]
T [ /.\.- Point. nucl. (Schrédinger) ]
Eo.s:— A\ (Zw) (2=80, A=200) .
S o AT\ ]
ZLo0.4aH j . ]
=0 3 f
x [ ) ]
0.2 e 7
i B ]
0 L T i

0 50 100 150 200

k [MeV]

FIG. 2. Schrédinger and Dirac wave functions (multiplied
by |k|) for a (Zp~) atom with Z = 80.

2 mi —m
~6? |FyFy + L FyFy + T2
m m

®

(F1 — F2)(Fs — F4)} ; (37)

©w

with muon wave function decreases. For a nucleus with
Z = 80, we find that the two effects associated with the
finite size of the nucleus balance remarkably, giving ap-
proximately the same branching ratio (defined below), as
the calculation using a point nucleus.

Using the same approximations, we also calculate the
free-electron decay rate I'g free for (Zp~) decays. We
write the mass of the bound state B, as mp, = M+Am,,
so that 4m,, is the total energy of the muon [see Eq. (22)].
We find

I“e,free = FO;?2 (L_1> ’

= [ é—if;—awl(ﬁlnz

my

\/ k2 +m2

where I'® = G%m},/(1927®) is the decay width of a free
muon, and (L~!) can be interpreted as the mean inverse
Lorentz factor representing the slowing of the muon de-
cay rate due to its orbital velocity. Numerically, we
have (L™!) = 0.96, for Z = 80 and A = 200; and
(L) = 1.00, for Z = 10 and A < 20. For Z = 80 and
A = 200, numerically 4 is 0.91; for a point nucleus with
Z = 80 note that 4 and (L~!) are significantly smaller,
4 [1 — (Za)?)*/? = 0.81 and (L~ ') = 0.85. The branch-
ing ratio for the decay of a bound muon to produce a 15,
instead of a free, electron in the final state is obtained
by numerically integrating the spectrum in Eq. (37) and
then by dividing by ¢ free as given by Eq. (38). Using

(38)

. Dirac wave functions, the results for Z = 80 are

10! L e I B S s B
. ____ fin. nuecl. (Dirac) 3
.
_____ Point. nucl. (Dirac) 3
,§_. 107e\ point. nucl. (Schrédinger) !;
E 10-2 _ (Ze) (2=80, A=200) E
":‘10‘3 SRl E
x B o~ T 3
> 10-4 1§
Hrosp el .
oef TR

N S I

0 20 40 80 100 120

FIG. 3. Schrédinger and Dirac wave functions (multiplied
by |k|) for a (Ze™) atom with Z = 80.
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B(Zu_) — (Ze )vuPe [ 3.59 x 1075 (finite nucleus, A = 200) ,
] 3.60 x 10~° (point nucleus) .

(Zu~) = Ze~ v,

We note that the finite size of the nucleus leaves the
branching ratio essentially unchanged. The effect of the
finite size will be even smaller for smaller Z, so we can
calculate the branching ratio for Z = 10 using the Dirac
wave functions for a point nucleus. We get

B (Zp™) = (Ze™)vuie

=248 x 107°
(Zp~) = Ze v,

(point nucleus, Z = 10) . (40)

To demonstrate the increase in the branching ratio due
to the Dirac wave functions, we also show the branching
ratio calculated using the Schrédinger wave functions for
a point nucleus:

B(Z;r) — (Ze )vuP. [ 6.98x 1077 (Z = 80) ,
(Zu~) = Ze~vup, | 1.85x107° (Z =10) .

(41)

The relativistic enhancement for Z = 80 is a remarkable
factor of 50.

In Fig. 4 the decay distribution dI'/d|q], normalized
to unit integral, is given for Z = 80. For illustration we
also give the spectra predicted using the Schrédinger and
Dirac wave functions for a point nucleus. Comparing the
latter two curves shows that relativistic effects cause the
spectrum to peak at higher momenta. However, the finite
nuclear size causes the shape of the spectrum to narrow
again. This can easily be understood by looking at the
muonic wave function in Fig. 2. In Fig. 5 the same
distribution is shown for Z = 10; as might be expected
both relativistic effects and the effect of a finite nuclear
size are small. Transitions of the form (Zu) — (Ze) +
v have as their signature a bound state recoiling with
a large momentum the order of m,. The momentum
distribution for heavy atoms (Z = 80) peaks at about 20
MeV as seen in Fig. 4.

0.05 T )
r __ Fin. nucl. (Dirac) 1
T0.04:— ... Point. nuecl. (Dirac-)i
> . el e Point. nucl. ]
Zo03F S N (Schrédinger) 3
N Lo (Z=80, A=200) ]
'To.02f ! S\ -- 4
z 0 E AN ]
= Lo - ]
&) F . ]
~0.01f - 3
0 L. L 1 i ]

0 20 80 100

4q, 80
lal [MeV]

FIG. 4. Decay spectrum dI'/d|q], normalized such that
fdl"/d|¢j'|d|¢ﬂ = 1, for Z = 80. The solid line is obtained
by using Dirac wave functions which take into account the
finite size of the nucleus. The dashed (dashed-dotted) line
corresponds to pointlike Dirac (Schrédinger) wave functions.
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IV. PROSPECTS FOR EXPERIMENTAL TESTS

Prospects for an experimental test of atomic alchemy
are very dim but not hopeless. While the branching ratio
is too small to detect (m+e™) atoms, it may be detectable
for muonic atoms. To see it one must prepare a sample
of (Zp~) atoms with no electrons in the 15 state, and
prevent electrons from refilling the 1S state over the ~ 1
ps lifetime of the muon. The increase in the calculated
branching ratio with Z [see Eqs. (39) and (40)] would
argue for high-Z experiment; however, as Z increases, the
atomic nucleus no longer remains a passive spectator but
absorbs muons at an increasing rate. Using the measured
rates of Ref. [5], for neon and lead, we find the branching
ratios with respect to the total rate at which 1S muons
disappear are

(Zy'-) — (Ze-)l/}tﬁe _ 1.70 x 10'9 (Z = ]_O) ,
(Zp~)—= X T 1 9.70x 1077 (Z = 80) .

(42)

B

Despite the increased capture rate, the increase in the
yield per 1S muon near lead (Z = 82) remains a factor of
570 due to the large relativistic enhancement. Neverthe-
less, we shall examine a possible experiment using neon
gas, instead of, say, xenon, because the most is known
theoretically and experimentally about the lighter gas,
and because the same difficulties, although of a different
scale, are present in both.

On paper, the conditions for observing atomic alchemy
in neon can be realized by injecting and capturing ~ 5
keV muons in a cyclotron trap [6] containing neon gas
at a pressure of ~ 10 Pa. Muons of this energy injected
into the trap’s magnetic field will lose energy as they or-
bit and will come to rest in ~ 1 us (adopting estimates in
[6]) and be captured by a neon atom. The muons cascade
rapidly to the 15 state, ejecting almost all of the atomic
electrons. In neon the mean number of electrons remain-
ing in the K shell has been measured [7] to be between
0.07 and 0.68 (to be compared with 2) by the time the

0.3 T T T
L (Zp7) ——> (Ze) 7, v,
— (z=10) -
I> = ‘l \\ B
© 02~ -
= S \ ____ point. nucl. |
[ Loy (Dirac) 4
X b i
DG A N point. nucl. |
T o1} (Schrédinger)H
a L N 4
1 B e ]
09 5 5 10 i5
lal [MeV]

FIG. 5. Decay spectrum dI'/d|q], normalized such that
de‘/dlcj']d[(ﬂ =1, for Z = 10. The solid (dashed) line corre-
sponds to pointlike Dirac (Schrodinger) wave functions.
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muon has fallen to states with principal quantum number
n = 5, in agreement with simple estimates [8] of 0.25; the
number remaining will diminish somewhat more as the
muon continues to the 15 state. Total ionization of an
atom has been observed in the cascades of antiprotons in
atoms as heavy as krypton [9]; total ionization of neon
by muons is however less probable because of the lighter
muon mass and its weak binding energy. Nevertheless, in
neon the electron K shell will often be vacant to receive
the electron from the muon decay. At the low pressure of
10 Pa, the time taken for the ion (Neu)®* to capture an
electron is also ~ 1 us (using estimates [8] for the veloc-
ity of the ion, ~ 10% cm/s, and for the cross section for
electron capture of Ne®+t on Ne, ~ 3 x 107% cm?). Most
of the captured muons will decay before the electron K
shell can refill and block desired decay; furthermore, only
31% of the muons in the 15 state will be lost to muon
capture [10].

Such a scheme involves scaling existing cyclotron traps
from operating pressures [7] ~ 5000 Pa down to ~ 1 Pa.
An application of Liouville’s theorem shows that the ra-
dial and axial distribution of the particles in space when
they come to rest is determined only by their radial and
axial spread where they enter the trap, provided only
that the rate at which the particles slow is small com-
pared to the orbit frequency in the trap [6]. Once the
particles are in the trap, lowering the gas pressure in-
creases only the time it takes for them to come to rest.
However, existing schemes for injecting particles into the
trap rely on choosing the particles initial orbit to miss a
moderator for the first few critical loops after they pass
through it; after that they have slowed too much in the
target gas ever to hit it again. Despite this difficulty, cy-
clotron traps have captured antiprotons when operated
at gas pressures well below 10 Pa [6]. Such a scheme is
much harder to work with injected muons, instead of an-
tiprotons, because the muons being unstable cannot be
stacked and cooled and so the emittance of the injected
beam is much larger. Whether muons can be successfully
injected in such a low-pressure trap at a rate as high as
107 s71, a rate which the high-pressure traps are expected
to achieve [7], is a technical problem beyond the scope of
this paper.

To see the alchemy transitions, once made to occur,
is also difficult. The signature for the transition is the
appearance of 2°Ne®" ions with a distribution dN/dg?
extending to momenta the order of m,. These ions are
difficult to distinguish from 2°F°* jons, made also with
a momentum of m, by interval conversion. Nor will it
be easy to extract any ions for analysis, because in neon
at a pressure of 10 Pa a bare ion can fly only ~ 1 mm
before capturing an electron, and the gas pressure cannot
be lowered much without letting the muons in the trap
decay in flight before they can be captured.

We have examined so far only the decay of a bare (Zp)
ion to a bound state. It is easy to estimate the decay rate
when the electronic 15 state of the ion remains partly or
wholly filled, either because electrons are captured from
nearby atoms before the muon decays, or because (at
high Z) the cascading muon fails to eject all the atomic
electrons. When there is one electron in the K shell the
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rate is halved. When the K shell is full the electron from
the muon decay will populate the L shell; we expect the
rate for decay to a vacant L shell to be ~ 1/8 of the
rate for decay to a vacant K shell, based on naive 1/n3
scaling. This estimate assumes that the only role of the
K electrons is to Pauli-block the 1S state, and this is
approximately true. For the probability that one electron
in the 1S jumps to any other state when the nuclear
charge changes from an effective charge of Z — 1 to 7 is,
in the sudden approximation,
Z3(Z -1)3 3 .
I—Té—:;)%—zmzo.OOSmNe,

and the probability that it jumps when a nucleus of
charge Z acquires a recoil velocity v is [16]

v —4 2v \?

1 [1 + (Zac)] = (Zac) ’
which is only 0.024 at the maximum recoil velocity of a
neon nucleus and is certainly negligible when averaged
over the velocity spectrum. In principle, promoting one
of the original 15 electrons to the 25, to free the 1S state
to receive an electron from the muon decay, is a path with
an amplitude that interferes with that for the muon to
decay directly to the 2S; in practice, however, the effect
is negligible.

V. CONCLUSIONS

We have calculated relativistically corrected rates for
some weak transitions between electromagnetic bound
states. For (Z) atoms and for large Z, the rate of these
transitions and also the shapes of the spectra depend
drastically on relativistic corrections; these corrections
enhance the rate by a factor of 50 for Z = 80. The QED
analysis of these alchemy transitions illustrates some of
the physics of the relativistic wave functions that must
invariably enter the QCD analysis of the corresponding
exclusive electroweak decays of hadrons.

An experimental measurement of atomic alchemy,
while conceivable for the favorable transition (Zp~) —
(Ze™)vuve, seems a remote prospect.
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APPENDIX: DIRAC WAVE FUNCTIONS

In atomic alchemy (Zp) — (Ze)v,D, the electron
wave function is probed at momenta the order of m,.
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Schrodinger wave functions are not appropriate and the
Dirac wave functions [11] must be used. Recoil correc-
tions due to the finite nuclear mass are extremely small,
so the Dirac wave functions for an electron in the field of
an infinitely heavy nucleus will describe adequately the
high momentum tail of the electron (and muon) wave
function. At large Z the Bohr radius of the muon 15
state is less than the nuclear radius, so the effect of the
finite size of the nucleus on the muon wave function must
obviously be included; the effect of the finite size is also
important on the high-momentum tail of the electron 1.5
wave function.

We sketch how the momentum-space wave functions
¥1(k) and (k) that appear in the form factors in Eq.
(33) are extracted from the usual four-component Dirac
wave functions in position space. Because everything can
be worked out analytically for a point nucleus, we de-
scribe this case first.

Nm(1 - 1)
7k2(1 + a2k2)1+‘7/2

§(k) =

a= =4/1—(Za)?, p=~yarctan(ak), N

mZa

Here m denotes the reduced mass of the system, which we
take to be identical to that of the muon or the electron
because we work to lowest order in 1/M. The corre-
sponding energy eigenvalue is then F = m-y. For Z = 80
the numerical value of v is 0.81.

The Dirac wave function for a bound state of course
projects onto plane waves of both positive and negative
energies; the latter waves correspond to antiparticles. We
therefore define the relevant wave function (to be used in
calculating the form factors) by the projection on positive
Thus we expand ®(k) in terms of
spinors u, (k) and v,(—k), writing

energy plane waves.

B(E) =3 [AT(E) wrlb) B:(—E)——“:/(%)] ,

™

k°=\/E2+m2.

(A6)
If j. = 1/2 we get
- KO+ m ko
Ayl = BT (f(k) i ®)
A—1/2 =0, (A7)

. ~ kO +m (k' 4+ ik?
Buja(—F) = /ot (F 4K

< () -9

. - ko4 m k3 k
B2 (k) =\ 5 7(k0+m

F(k) —g(k)) .

{[1 + (1 + v)a®k?]sinp — yak cosp} ,
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1. Point nucleus

From the literature (e.g., from [11] on p. 55) we take
the (four-component) ground state wave function in po-
sition space, ¥n—1=1/2,j,=1/2(r,0,¢). For brevity we
write this as ®(£). Taking the Fourier transform, we
get the wave function in momentum space:

&(F) = / B2®(F)exp(—ik - 7) , (A1)
7 (5)
&(F) = ) , k=Ik, (A2)
a0)% ( §)
with
fk) = R ai\lfcz)1+7/2 (sinp + ak cosp) , (A3)
(A4)
— g+l am(l+7)
=271 4+ v) TA T2y (A5)

Here A,.(E) is the probability amplitude to find an elec-
tron with momentum k and spin r in the atom, while
B:(—E) is the probability amplitude to find a positron
with momentum k and spin r; the latter amplitude arises
from the creation of ete™ pairs on the nucleus. Be-
cause the wave function in position space is normalized
as [d3z®*(Z)®(&) = 1, the Fourier transform is au-
tomatically normalized as [[d%k/(27)3|®* (k)& (k) =
Therefore A, (k) and B(—k) are normalized so that

(2 )3 Z{lA (k)lz + |B- (k)l }=1. (A8)

The integral [[d3k/(27)3] Y, |B,(k)|? gives the proba-
bility to find a three particle Fock state (eTe~e™) in the
atom. Even for Z = 80 this fraction is tiny (= 0.2%), so
we only consider the one-Fock contribution characterized

by A, (k) We mention that if we consider the atom with
jz = —%, we get A+1/2(k) =0, and A_,/>(k) is identical
to A+1/2(k), given in Eq. (A7) for j, = +1. The wave

function denoted in the text as 1/)(1_5) is therefore given in
the relativistic case by

P(k) = Ayrya(k) . (A9)

Because the coeflicients B, are very small, the effects of
antiparticle production are small, and we get essentially
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the same form factor as we would have gotten had we
naively computed the simple overlap of the wave func-
tions in position space.

2. Finite-size nucleus

As usual (see, e.g., [12]), we model a nucleus of atomic
number A as a homogeneously charged sphere of ra-

dius 7¢ = 1.34Y3 fm; numerically ro ~ 7 fm for
A = 200: Inside the sphere the potential has the form
V(r) = —(Za/ro)(3 — r%/r2)/2, and outside we have

V(r) = —Za/r. In the notation of Landau-Lifschitz [13]
we write the four-component Dirac function ®(7) as

f(r) (3)

—ig(r)&F ( . )

a(F) =N

, r=If, (A10)

where the constant N is chosen such
that [d*r®*(7)®(F) = 1. The radial equations for f
and g are

fir)—[BE+m-V(r)g(r) =0,

J()+ 290+ E-m - V@) =0, (A1)

which are solved separately in the two regions r < ro and
r > ro for an arbitrary constant £ < m. In the outer
region r > 7 there is (up to an overall constant) exactly
one solution (f, g) that is square integrable at 7 = co. It
is given by (see Landau and Lifschitz [13])
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F(r) = Vm + Eexp(=Ar)r"1(Q; + Q5) ,
g(r) = —vVm — Eexp(=Ar)r*~1(Q; — Q3) ,

Ql U(’Y_ —Z%E"_az’Y"'l’Z’\r) 9
Qs = — (1—Z"Tm> U(7+1—¥,2y+1,2,\r) ,

A=vm?2—-E2 y=,/1-(Za)?.

The hypergeometric function U is defined and discussed
in detail in Chap. 13 of Ref. [14]; it is also related to
Whitaker functions, which are numerically accessible in
the CERN library.

In the inner region (r < 7o) a simplified solution for
the (massless) electron has been obtained by Khriplovich
[15]; however, the substantial mass of the muon requires
a more complete treatment. It turns out that the Dirac
equation has (again up to an overall constant) exactly
one solution (f, g) that is square integrable at r = 0; in
the present case it has a Taylor series expansion around
r = 0. While f starts as a constant, g begins with a term
linear in 7. The coefficients of the power series expansions
of f and g may be defined recursively.

The inner and outer solutions must satisfy the match-
ing condition

(f/g)f‘—n‘o— = (f/g)r—"‘o+

in order to be solutions of the complete equation. This
can only hold for certain values of E; these are just the
eigenvalues. For Z = 80 and A = 200 the lowest eigen-
values for £ = 0.908m, and E = 0.811m,. for the 15
states of the muon and the electron, respectively.

The Fourier transform ®(k) is then defined and written
in terms of f (k) and §(k) precisely as in Egs. (Al) and
(A2). Proceeding through the same steps as for a point
nucleus, one finally gets the wave function 1/1(E) [compare
with Eq. (A9)] in a numerical form. This wave function
is shown for the (Zp) and the (Ze) atoms in Figs. 2 and
3, respectively.
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