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I. INTR, ODUCTXON

Direct analytical or numerical calculations of the
higher-order terms to the physical quantities in concrete
renormalization schemes provide important information
about the behavior of the corresponding perturbative ap-
proximations. However, there are also some other ap-
proaches to treat the problem of the extraction of cer-
tain information &om the truncated perturbative series.
These approaches are the principle of minimal sensitivity
(PMS) [1] and the eff'ective charges (ECH) prescription
[2], which is equivalent a posteriori to scheme-invariant
perturbation theory [3]. Of course, it is better to use
these approaches directly in the concrete orders of the
perturbation theory, as was done in QCD in Refs. [4—8].
However, if one adopts the point of view that these meth-
ods really pretend to the role of "optimal" procedures in
the sense that they might provide a better convergence of
the corresponding approximations in the nonasymptotic
regime, it is possible to try to go one step further and
apply the procedure of reexpansion of the "optimized"
expressions in the coupling constant of an initial scheme.
One can consider the residual (N+l)th order term as the
estimate of the (N+l)th order correction in the initial
scheme [1].

The reexpansion procedure was already applied for the
analysis of the perturbative predictions for (g —2)„ in
QED [1,9] (for related considerations see Ref. [10]) and.
for estimates of the QCD corrections to definite physical
quantities. In these works, the quantities under study
are the Drell-Yan cross section at the O(n2) level [ll],
R(s) = oi i(e+e -+ hadrons)/o(e+e m p+p ), B
I'(r -+ v + hadrons)/I'(r —+ v v, e), nonpolarized and
polarized Bjorken sum rules at the O(o., ) and even O(ns)
levels [12, 13], and the singlet contribution to the Ellis-
Jaffe sum rule at the O(ns) order [14].

It is clear that the reexpansion formalism, which is
similar to the procedure used in Ref. [15] to predict the
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renormalization-group- (RG-) controllable ln(m~/m, )
terms from the expression for (g —2)„ through the effec-
tive coupling constant K(m„/m, ), correctly reproduces
the RG-controllable terms [1, 16]. One can also hope
that it can give an impression about the possible values
of the constant terms as well. This hope is based on the
observation of the existence of a satisfactory agreement
of the results of application of the reexpansion procedure
in QED [9] and QCD [12, 13] with results of the explicit
calculations. It should be stressed that contrary to the
RG considerations of Ref. [15], the "optimization meth-
ods" deal with the full RG invariance of the quantities
under consideration, which produce additional equations,
relevant to the &eedom of the choice of higher-order coef-
ficients of the P function. The solution of these equations
gives the possibility to define the sets of scheme invari-
ants [1] which are the cornerstones of the "optimization"
methods.

However, in definite cases the procedure of reexpansion
of the "optimized" results can run against some barrier,
which was overlooked in the process of some previous
applications [1,9, 10]. In the case of the analysis of the
perturbative series for (g —2)~ this problem grows Rom
the noncareful treatment of the light-by-light scattering
graphs with the electron loop coupled to the external
photon line.

In Sec. II of this work we describe the basis of the for-
malism used by us. The exact expressions for the terms in
the reexpansion formulas are derived. It is demonstrated
that the estimates obtained using the reexpansion of the
ECH expressions are identical to the results of calcula-
tions of (N+1)th order corrections in the special scheme,
where all lower-order coeKcients of the physical quan-
tities and the P function are defined in a certain fixed
scheme [in the case of QED the on-shell (OS) scheme is
usually used] and the (N+l)th order coefficient of the
P function coincides with the (N+1)th order scheme-
invariant coefficient of the ECH P function P,ii.

In Sec. III, using the information about the four-loop
coefficient of the QED P function in the OS scheme [17]
we generalize the considerations of Refs. [1,9, 10] to the
five-loop level. We follow the proposals of Ref. [18] and
consider the light-by-light scattering graphs mentioned
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above separately in our RG-inspired analysis. We show
that this empirical improvement leads to more satisfac-
tory and thus more reliable estimates of the five-loop con-
tributions to (g—2)„than in the case of the nonseparation.
of the light-by-light scattering contributions.

II. DESCRIPTION OF THE FORMALISM

with a = n/vr being the solution of the corresponding
renormalization group equation for the P function which
is defined as

,aa, (
p,', =P(a) =boa 1+ ) ca' (2)

The coefBcients d;, i ) 1 and ci, i ) 2 are scheme depen-
dent. In order to calculate them in practice it is neces-
sary to specify the scheme of subtractions of the ultra-
violet divergences. In @ED the OS scheme is commonly
used. However, this scheme is not the unique prescrip-
tion for fixing the renormalization scheme ambiguities,
which affect the values of these coefBcients. In both phe-
nomenological and theoretical studies other methods are
also widely applied.

The PMS [1] and ECH [2] prescriptions stand out
&om various methods of treating scheme-dependence am-
biguities. Indeed, they are based on the conceptions
of the scheme-invariant quantities, which are defined as
the combinations of the scheme-dependent coefficients in
Eqs. (1) and (2). Both these methods pretend to the
role of "optimal" prescriptions, in the sense that they
might provide better convergence of the corresponding
approximations in the nonasymptotic regime, and thus
allow an estimation of the uncertainties of the pertur-
bative series in the definite order of perturbation theory.
Therefore, applying these "optimal" methods one can try
to estimate the effects of the order O(aN+ ) corrections
starting f'rom the approximations D~~ (a pt) calculated
in a certain "optimal" approach [1,9, 16].

Let us follow the considerations of Ref. [1] and reex-
pand DN (a ~t) in terms of the coupling constant a of
the particular scheme

D "( -, ) =D ()+»" "",
where

6DN' = AN(d;, c, ) —ON(d, ', c, '), (4)

are the numbers which simulate the coefficients of the
order O(aN+1) corrections to the physical quantity, cal-
culated in the particular initial scheme. The coefficients
O~ can be obtained &om the following system of equa-
tions:

Consider first the order O(a ) approximation of a
renormalization-group-invariant quantity

N 1—
DN=doa~ 1+) da*

ol
(DN+ ANa +') = O(a + ), i ) 2,

&i
(5)

where the parameter r = Po in(p /A ) represents free-
dom in the choice of the renormalization point p. The
conventional scale parameter A will not explicitly appear
in all our final formulas. The system of these equations
can be solved following the lines of Ref. [1]. Let us
stress again that the difference between the "optimiza-
tion" equations and the RG approach of Ref. [15] lies in
the fact that the latter one deals with the first equation
from the system of Eq. (5) only. The quantities Ol can be
related to the scheme invariants p~ in the following way:

1
lol —dl + cl ~ll(dig r dl —li c1) r cl—1)

L —1
(6)

Note that the general expressions of the scheme invari-
ants p~ and of the correction terms O~ can be defined
in different ways. Various definitions differ by scheme-
independent constant terms. We are choosing these cor-
related constant terms by imposing the condition that
the expressions for the scheme invariants p~ are connected
with the coefficients cl of the ECH P function:

p ff(aECH) PoaECH ~

1 + c1aECH +):c; "aECH
i)2

(7)

as
ECH
lPl-

t —1

where

D(aECH) = doaECH(a) . (9)

03 —dodi(c2 —3cidi —2di + 3d2)

and the new term which we evaluated:

(12)

04 ———(3csdi + c2d2 —4czdi + 2cidid2 —cid3 + 14d,
dp 2 4

3
—28did2 + 5d2 + 12did3). (13)

These terms reproduce the RG-controllable logarithmic
contributions. In the case of the five-loop level one can
reobtain the @ED results presented in Ref. [19]. We
discuss this point in more detail in the next section.

It should be stressed that in the ECH approach d,
0 for all i ) 1. Therefore one gets the following expres-
sions for the higher-order corrections in Eq. (3):

Concrete expressions for the invariants p~ and thus for
the correction terms O~ can be derived from the equation

BEECHP.ff(aECH) =
~ P(a).

We present here the final expressions, which are al-
ready known [1],

~12 = dodi(ci + di))

(DN + QNaN+1) O(aN+2)
07 bD3 = 03(di, ci), (14)
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bDs = Os(di, d2, c„c2),

bD4 = 04(di, d2, ds) Cii c2) Cs).

(i5)

(16)

One can understand from Eqs. (6), (8) that the ex-
pressions for O~ and for the corrections bD~ in Eqs.
(14)—(17) are the exact numbers which are related to the
special scheme. This scheme is identical to the initial
scheme at the lower-order levels and is de6ned by the
condition c~ = c~cH at the (N+1) order, where c@~+H

is considered as an unknown number. This means that
the correction coeKcients bD~ are related to the initial
scheme only partly. However, it was shown in Refs. [12,
13] that in certain cases the numerical values of these
coeKcients are in satisfactory agreement with the results
of the explicit calculations. A posteriori we consider this
fact as an argument in favor of the possibility of the appli-
cation of the reexpansion procedure in the cases discussed
by us.

In order to find similar corrections to Eq. (3) in the
I

Nth order of perturbation theory starting from the PMS
approach [1], it is necessary to use the relations ob-
tained in Ref. [20] between the coefficients d; and
cPM (i & 1) in the expression for the order O(aPMs) ap-
proximation D~ (apMs) of the physical quantity under
consideration:

dPMs 1
~

N 2i
~

PMs O( ) (17)
1 f'N —2i —1

i+ q
— j

where ci ——ci. Using now Eq. (17) it is possible to
find the following additional correction terms in Eq. (4)
which result from the application of the PMS approach:

C
(dPMS PMS) O i)ci 4

(dPMS PMS) 0

The expression for 04(dPMS, cP s) derived by us is more
complicated:

(dPMS PMS) 0 PMS
4 i ) i 3 4 1 3 ( PMS)2 2 PMS + 45 7

8] 8] 648
(19)

where

PM
~

CH+ 2 ~+O(
9( 7
8 2 36

9 ( 7= —
~

d2 + c2 —di —cidi + —ci
~
+ O(aPMs)

8 36
(20)

cs = 4
I

ds + —cs —c2di —3di&2 + 2di
~

+ —ci
~

&2 + c2 + 3&i —cidi + i I
+ O(aPMS).PMS 2 1 2

2 108
(2i)

The expressions for Eqs. (19)—(21) are the pure num-

bers, which do not depend on the choice of the ini-
tial scheme. We will show in the next section that in
the case of the consideration of perturbative series for

(g —2) ~ the numerical values of 04(d, , cPMS) are small
and thus the a posteriori approximate equivalence of
the ECH and PMS approaches, which follows from the
small value of 02(dP, c M

) and from the condition
Os(dPM, cPMs) = 0, is preserved for the quantity under
consideration at this level also.

In certain considerations we will need to use a gener-
alization of the expression for 02 to the case when the
intitial perturbative series is starting from corrections of
order O(a") with p ) 1:

D~ ——doa" 1 + ) d;a

It differs from Eq. (23) by the additional small contribu-
tion

g(p) (gPMS PMS) p d 2

2(p+ 1)
(24)

III. APPLICATIONS TO (g —2)„

It is well known that the expressions for anomalous
magnetic moments of the electron a, = (g —2),/2 and
muon a„= (g —2)~/2 are known at four-loop order from
the results of calculations of Ref. [21] and Refs. [22,
23] respectively. The three-loop correction to a, is now
known with more accuracy than previously [24]. Com-
bining the currently available information about the co-
eKcients of the perturbative series for a, and a~ we have
the expressions

In this case the expression for the correction terms reads
a, = 0.5a —0.329 478 9...a + 1.176 19(21)a

—1.434(138)a, (25)

02 = dOd1 + dod1C1 ~
(p) = P+1 2

2P

The corresponding correction related to the PMS-
improved expression was originally obtained in Ref. [1].

a„—a, = 1.09433583(7)a + 22.869265(4)a
+127.55(41)a, (26)

where the expansion parameter a = o./7r is related to the
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FIG. 1. The diagrams which are included
in the set (I).

c)

fine structure constant n and the last term in Eq. (26)
is the result of the most recent calculations of Ref. [23]
stimulated by the work of Ref. [17]. Combining Eq. (25)
with Eq. (26) we arrive at the following approximate
expression for a„:

expression for a~ in the form

(&) + (&I)
V I

The concrete contributions to Eq. (28) read

(28)

a„=0.5a+ 0.765 85a + 24a + 126a + O(a ).
The order O(a ) correction to a~ is only partly known
[22]. Our aim will be to try to estimate the existing
uncertainty due to the totally noncalculated order O(as)
contribution to Eq. (27) using the reexpansion procedure
outlined in the previous section.

It is known that in the OS scheme the coefBcients
of the corresponding perturbative series depend on the
large In(m~/m, ) contributions starting from the two-
loop level. The parts of these effects are governed by
the RG method [15, 25] (for a recent application of the
RG method to a~, see Refs. [26, 19]). However, there are
also certain ln(m~/m, ) contributions, which are not gov-
erned by the RG method. They are associated with the
light-by-light-scattering electron loop insertions coupled
to the external photon line. These contributions appear
first in the three-loop graphs, which were subsequently
calculated numerically in the works of Refs. [27, 22] and
recently evaluated analytically in the work of Ref. [28].

In view of the difFerent origin of the lower ln(m„/m, )
contributions we divide all diagrams into two classes.
The first class contains all diagrams with an external
muon vertex and dressed internal photon lines (see Fig.
1). As well as in Ref. [22] we will not include the dia-
grams with electron loops to which four internal photon
lines are attached. However, we will include four-loop
diagrams typical to a, but with substitution of the ex-
ternal electron vertex to the muon one. The second class
of diagrams includes diagrams with an electron light-by-
light scattering subgraph, to which three and four inter-
nal photon lines are attached (see Fig. 2). Let us stress
that all ln(m„/m, ) terms of the diagrams contributing to
the first class are totally controlled by the RG method,
while in class (II) only part of these contributions is gov-
erned by the RG technique.

In accordance with our classification we represent the

(ii) d( )as(I+ d(i ) + d(i ) + )

(29)

(30)

~

m' +P(a) —~

a('") =0,
c)m2 Ba )

(31)

where P(a) is the @ED P function in the OS scheme,
which is de6ned as

m =p(a) =) p, a*+.
i)0

From our point of view, the separation of all diagrams
into the two classes mentioned above is respected by the
property of the RG invariance. At least we do not know
any arguments why the sums of the diagrams which be-
long to the class (I) and to the class (II) should not obey
the RG equations s'eparately.

The coefficients of the @ED P function in the OS
scheme are known at the four-loop level [17]. They have
the form

1
po = —,

3
1

1 4
121

p2
——— ———0.42,

288
(5561
4, 5184

= —0.571. (33)

Thus, the related coefficients c; = P, /Po (i ) 1) read

23 8

9 3
——&(2) + -&(2)»(2) —-&(3) I—

8 ) 2

Note that the coefficients d, (i ) 1) contain the RG-
controllable in(x) = ln(m„/m, ) terms. Indeed, the cor-
responding contributions to a~ are governed by the RG
equation

e, p

+ ~ ~ ~
FIG. 2. The diagrams which are included

in the set (II).

a) b) c)
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ci ——3/4, c2 ———1.26, cs ———1.713. Let us write down
the asymptotic expansions of the coefficients of the con-
tributions a~ as

0

d(I) d(I)
0 1

g(I) d(I)
0 2

d(') d(')
0 3

d( )g( )
0 4

=B1,
= B2+ C2ln(z),
= Bs+ Csin(x) + Dsln (z),
= B4 + C4 ln(z) + D4 ln (z) + E4 ln (x),
= Bs + Cs ln(x) + Ds ln (z) + Es ln (x)

+Fsln (z) (34)

and

do
——B(II)

do(
1 d(2 1 = Bs + Cs ln(z) + Ds ln (x) . (35)

The coeKcients C;, D;, E;, E,. and C, , D, can be related
to the coefficients of the P function using either the RG
considerations of Refs. [15,25, 19] or the explicit expres-
sions for the coeKcients 0, and 0,-" in the corresponding
reexpansion formulas [see Eqs. (11)—(13) and Eq. (23)].
The results of the corresponding analysis have the form

C2 = 2poBi,

Cs ——4PpB2 + 2PiBi,
Ds ——4Pp Bi)

C4 ——6poBs + 4piB2 + 2p2Bi,
D4 ——12PpB2 + 10PpPiBi,
E4 = 8Po Bi,

(36)

(37)

Cs ——8PpB4 + 6PiBs + 4P2B2 + 2PsBi,
Ds —24PpBs + 28PpPiB2 + 6PiBi + 12PpP2Bi,

104
Es = 32PpB2 + PpPiBi,3
Fs ——16po Bi, (39)

C2 = 6poBi,
C3 —8poB2 + 6pi Bi,
Ds ——24Pp Bi (40)

OS OS OS OSB':0' —i(dp di d' g ci c' 2)
n. r nOS n. OS q«i —1 (~1 ) ~ .) ~i —1) C1) ~ ..) Ci —2J' (41)

Note that in the case of the diagrams of set (II) the cor-
responding coe%cients B1, B2) and B3 contain the con-
tributions of the ln(x) terms that are noncontrollable by
the RG method.

Let us first discuss the applications of the procedure
of Sec. II to the diagrams of set (I). In this case the cor-
rection terms 02—04 reproduce all ln(x) contributions
presented in Eqs. (34). Moreover, one can get from the
reexpansion procedure the exact values of the constant
terms B, (i ) 3) which do not depend on the ln(x) terms.
In the case of the application of the EC¹improved vari-
ant of the OS scheme these constant terms are defined
by the conditions

TABLE I. Estimated values of the coefBcients B, for the
diagrams of set (I).

Order
i=1
i=2
i =3
i=4
i=5

gOS

0.5
—1.022923

2.741
—7.74

B,(ECH)

1.326
—5.48
41.6

B,(PMS)

1.396
—5.48
41.7

Similar terms which arise from the PMS-improved ex-
pressions can be obtained after taking into account the
additional small scheme-independent contributions de-
rived in Sec. II.

Concrete values of the coe%cients B1)B2 ) B3 are
known &om a comparison of the results of the RG-
inspired analysis with the results of the analytical and
numerical calculations [22]. The coefficient Bi ——0.5 is
of course well known. The asymptotic expression of the
coefficient B2, derived in the limit m, /m„~ 0, can be

found in Ref. [22]: Bus = —
s + a, = —1.022923.

The value of the coeKcient B3 ——2.741 was obtained
in Ref. [22] after subtracting the contributions of the
light-by-light scattering graphs of the set (II) and of the
RG-controllable contribution of Eq. (34) from the ex-
pression for the three-loop correction to a„.

In order to determine the value of the coeKcient B4
we used the expression

B4 ——a( 1 —A„ l(pp) —C41n(x) —D41n (x) —E4 ln (x),
(42)

where C4, D4, and E4 are determined by Eqs. (38) and

the value of A& (pp) ——116.7 is the sum of the eighth-(8)

order contributions of the diagrams with electron light-
by-light scattering subgraphs [22]. The numerical value
Qf the coe&cjent B4os is thus B4os 7 74

In order to study the predictive abilities of the reexpan-
sion procedure described in Sec. II we present in Table I
the numerical results of our estimates of the coeKcients
B; (i ) 3) and compare them with the exact results for

B3 and B4 presented above.
One can see that the reexpansion procedure used by us

reproduces well enough the values of the coeKcients B3
and B4 (it gives the correct sign and predicts the order
of magnitude of these coefficients). Therefore, we hope
that the estimate of the five-loop constant term Bq is also
rather realistic. Notice also the sign-alternating charac-
ter of the results of the estimates presented in Table I.
This feature has something in common with the expecta-
tion that the RG-improved @ED series for the Euclidean
physical quantities should have sign-alternating behavior
[29].

Taking now into account the numerical value of the
RG-controllable terms in Eqs. (34), (39) we arrive at the
following estimate of the five-loop contributions of the
diagrams of set (I) into a„:

a~ 1(I) = B + 8.55
= 50.1 (ECH)
= 50.2 (PMS).
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d d = 116.7.0 i (45)

Using now Eqs. (23), (24) we arrive at the following
numerical estimate of the sum of the corresponding five-
loop graphs:

ai l(II) = 520.8 (ECH)
= 525.2 (PMS),

which includes the contribution of both RG-controllable
and non-RG-controllable 1n(x) terms.

Our estimate of Eq. (46) should be compared with the
result

This estimate is almost nonsensitive to the concrete re-
alization of the method of optimization. Notice also the
effect of the reduction of the value of the RG-controllable
five-loop contributions presented in Refs. [19, 17],

al "l(I) Bos + 83

which was obtained &om Eqs. (39) using the value of the
constant term B4 s = —2.503(55) given in Ref. [22]. The
difference between this value and the value B4 ———, 7.74,
which follows from Eq. (42), is explained by two facts.
First, it is necessary to use the corrected expressions ob-
tained in Refs. [17, 23] of the certain four-loop graphs
contributing to a„. Second, it is necessary to add to the
value of B4os of Ref. [22] the negative constant terms due
to the four-loop graphs typical to a but with a substi-
tution of the electron vertex and internal electron loops
for the muon ones. This contribution was missed in Ref.
[22] while deriving the expression for B4 . As is known
&om Ref. [30] the addition of the negative contributions
of the five-loop graphs containing vacuum polarization
insertions on fourth-order vertex graphs to the positive
contributions of the five-loop diagrams with vacuum po-
larization insertions in the second-order graph, as calcu-
lated in Ref. [19], leads to strong cancellations. Com-
parison of the RG-controllable contributions of Eq. (43)
with the ones of Eq. (44) indicates the same pattern. The
origin of this cancellation is the same, namely, the inclu-
sion in the considerations of the diagrams with vacuum
polarization insertions to the eighth-order vertex graph.
Our ffnal estimate of Eq. (43) should be also compared
with the conservative estimate a„=+1.40 of the RG-(zp)

controllable contributions, given in Ref. [22].
I.et us now discuss the applications of the outlined pro-

ced.ure for the estimates of the five-loop contributions
of the diagrams with the light-by-light scattering sub-
graphs of Fig. 2. The most precise value of the coefBcient

dp —Bi ——20.947 92... is known &om the results of the
analytical calculations of Ref. [28]. The numerical result
for the sum of the corresponding four-loop graphs reads
[22]

FIG. 3. The example of the five-loop diagram, calculated
in Ref. [22].

of the tenth-order diagrams depicted in Fig. 4 which were
not calculated in Ref. [22]. These diagrams are formed
by the insertion of the two-loop electron loop into the
internal photon line of the lower light-by-light-type dia-
gram. In ord.er to understand. the uncertainties of this
estimate of Ref. [31] better it is useful to write down a
RG relation analogous to Eqs. (35) for this set of dia-
grams separately. Notice that this contribution should
be proportional to the two-loop coefficient of the @ED
P function (which is determined by the graphs inserted
into the internal photon line). Using this observation we

arrive at the relation

a„' l (Fig. 4) = Bs(Fig. 4) + 6BiPi 1n(x). (48)

The main contribution to the estimate of Ref. [31] comes
from the ln(z) term. Indeed, it has the numerical value

6BiPi ln(x) = 167.47. This expression should be com-

pared with the estimate a„(Fig. 4) = 176 + 35 given
in Ref. [31]. One can see that this estimate is relevant
to the RG-controllable contribution only. However, from
the reexpansion procedure we conclude that the contri-
butions noncontrollable by the RG methods might be
non-negligible [see Eq. (43)] and might affect the final
numerical value of the diagrams belonging to this set. In
order to study this guess in detail it is of interest to calcu-
late the diagrams of Fig. 4 explicitly. This calculational
project is rather realistic [32].

It is also interesting to understand deeper the uncer-
tainties due to other diagrams which are included neither
in the "optimized" estimates of Eqs. (43), (46) nor in
the estimates of Eq. (47). These diagrams, depicted in
Fig. 5, form a new class of diagrams, which cannot be
touched by the RG-inspired analysis. Indeed, one can
hardly expect that any resummation procedures dealing
with light-by-light-type graphs with three internal pho-
ton lines will be able to give the estimate of the light-
by-light-type graph with five internal photon lines. The
expressions for the 1n(x)-terms the non-controllable by
the RG-method for this type of graphs can be read &om
the considerations of Refs. [33]. The result was used in
Ref. [31] where the following estimate of the diagrams of

ai l = 570+ 176(35), (47)

where the first contribution comes from the exact cal-
culations made in Ref. [22] of the diagrams belonging
to the set of the light;-by-light-scattering diagrams with
2 one-loop electron vacuum polarization insertions into
the internal photon lines (see Fig. 3). The second contri-
bution to Eq. (47) comes from the estimates of Ref. [31] FIG. 4. The five-loop diagram, estimated in Ref. [31].
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FIG. 5. The five-loop diagram, estimated in Ref. [31],
which cannot be estimated by the approach considered in this
work.

Fig. 5 was presented:

a( ) (Fig. 5) = 185 + 85. (49)

Combining our estimates of Eqs. (43) and (46) with the
ones of Eq. (49) we get the final result of applications
of the reexpansion procedure supplemented by the esti-
mates of the diagrams of new structure which are not
touched on by this method:

a(") = 750.P

Let us stress again that the new ingredient of our anal-
ysis, which distinguishes it from previous applications of
the reexpansion procedures in @ED [1,9, 10], is the sepa-
ration of the considered initial diagrams into two classes,
one of which consists of the diagrams relevant to the ef-
fects of "new physics, " discussed in more detail in Refs.
[34, 33]. This procedure finds its support in the theoret-
ical considerations of Ref. [18].

Moreover, we checked that in spite of the good agree-
ment of the application of the reexpansion procedure to
the nonseparated sixth-order expressions for a~ with re-
sults of eighth-order calculations [9], the straightforward
application of Eq. (13) to the nonseparated eighth-order
approximation of Eq. (27) results in the uncomfortably

large tenth-order estimate a& 2160. It is possible to
understand that the reason for the success of the appli-

cation of the reexpansion procedure to the nonseparated
sixth-order approximation is connected to the fact that
the use of Eq. (12) (and more definitely its last term)
gives for the eighth-order light-by-light-type term the es-

timate a~( i(pp) = 3dpdidz(pp) = 6a~l a~~ (pp), which is
known to be in good agreement with the results of direct
numerical calculations [22]. However, at the next level
of perturbation theory the expression for the correction
term 04 of Eq. (13) has a more complicated structure
and thus the resulting nonseparated estimates turn out
to be uncomfortably large.

Another interesting question is connected to the prob-
lem of the comparison of our estimates with the results
of the recent applications of the Pade resummation tech-
nique to the perturbative series for a„[35]and a„—a, [35,
36]. It should be stressed that in their analysis the au-
thors of Refs. [35, 36] did not consider the light-by-light
scattering graphs separately. Note also that the coefE-
cients of the corresponding Pade approximants depend
on the ln(x) terms. In spite of the fact that our results
for a& are in qualitative agreement with the results of the
applications of the Pade resummation method, namely,

a~ 656 [35] and a~ = 705(275) [36], it is interest-
ing to try to understand the predictive abilities of the
Pade resummation methods better. Clearly, this prob-
lem is connected to the necessity of a more detailed un-

derstanding of the relations of the Pade results to the
ones obtained using the RG-inspired analysis. Note that
the Pade resummation methods are not able to analyze
the problem of reproducing the structure of the RG-
controllable ln(z) terms.

ACKNQWLEDC MENTS

It is a pleasure to thank R.N. Faustov, T. Kinoshita,
and P.M. Stevenson for discussions. This work was partly
supported by the Russian Fund of the Fundamental Re-
search, Grant No. 95-0214428.

[1] P.M. Stevenson, Phys. Rev. D 23, 2916 (1981).
[2] G. Grunberg, Phys. Lett. 95H, 70 (1980); Phys. Rev. D

29, 2315 (1984).
[3] A. Dhar and V. Gupta, Phys. Rev. D 29, 2822 (1984);

V. Gupta, D.V. Shirkov, and O.V. Tarasov, Int. 3. Mod.
Phys. A 6, 3381 (1991).

[4] S.G. Gorishny, A.L. Kataev, S.A. Larin, and L.R. Surgu-
ladze, Phys. Rev. D 43, 1633 (1991).

[5] A.L. Kataev, in qCD '90, Proceedings of the Interna-
tional Workshop, Montpellier, France, edited by S. Nar-
ison [Nucl. Phys. B (Proc. Suppl. ) 28B, 72 (1991)].

[6] J. Chyla, A.L. Kataev, and S.A. Larin, Phys. Lett. B
267, 269 (1991).

[7] A.C. Mattingly and P.M. Stevenson, Phys. Rev. Lett. 69,
1320 (1992); Phys. Rev. D 49, 437 (1994).

[8] J. Chyla and A.L. Kataev, Phys. Lett. B 29'7, 385 (1992).
[9] J. Kubo and S. Sakakibara, Z. Phys. C 14, 345 (1982).

[10] J.H. Field, Ann. Phys. (N.Y'.) 226, 209 (1993).
[11] P. Aurenche, R. Bair, and M. Fontannaz, Z. Phys. C 48,

143 (1990).

[12] A.L. Kataev and V.V. Starshenko, in Proceedings of
the Workshop "@CD at LEP: Determination of a, from
Inclusive Observables, " Aachen, Germany, 1994, edited
by W. Bernreuther and S. Bethke, Aachen Report No.
PITHA 94/33, 1994 (unpublished), p. 47; A.L. Kataev
and V.V. Starshenko, Mod. Phys. Lett. A 10, 235 (1995).

[13] A.L. Kataev and V.V. Starshenko, in @CD 9$, Proceed--
ings of the Conference, Montpellier, Prance, 1994, edited
by S. Narison [Nucl. Phys. B (Proc. Suppl. ) 39H, 312
(1995).

[14] A.L. Kataev, Phys. Rev. D 50, 5469 (1994).
[15] R. Barbieri and E. Remiddi, Phys. Lett. 57B, 273 (1975).
[16] V.V. Starshenko and R.N. Faustov, JINR Rapid Com-

munications 7, 39 (1985).
[17] D.J. Broadhurst, A.L. Kataev, and O.V. Tarasov, Phys.

Lett. B 298, 445 (1993).
[18] S.J. Brodsky, G.P. Lepage, and P.B. Mackenzie, Phys.

Rev. D 28, 228 (1983); H.J. Lu, ibid. 45, 1217 (1992).
[19] A.L. Kataev, Phys. Lett. B 284, 401 (1992).
[20] M.R. Pennington, Phys. Rev. D 26, 2048 (1986).



52 RENORMALIZATION-GROUP-INSPIRED APPROACHES AND. . .

[21]

[22]

[23]
[24]
[25]

[26]

[271

[28]

T. Kinoshita and W.B. Lindquist, Phys. Rev. D 42, 636
(1990), and references therein.
T. Kinoshita, B. Nizic, and Y. Okamoto, Phys. Rev. D
41, 593 (1990).
T. Kinoshita, Phys. Rev. D 47, 5013 (1993).
S. Laporta, Phys. Lett. B $43, 421 (1995).
B. Lautrup and E. de Rafael, Nucl. Phys. BV'0, 317
(1974).
R.N. Faustov, A.L. Kataev, S.A. Larin, and V.V.
Starshenko, Phys. Lett. B 254, 241 (1991);T. Kinoshita,
H. Kawai, and Y. Okamoto, ibid. 254, 235 (1991).
J. Aldins, S.J. Brodsky, A. Dufner, and T. Kinoshita,
Phys. Rev. D 1, 2378 (1970); A. Peterman, CERN Report
No. TH. 1566, 1972 (unpublished); J. Calmet and A.
Peterman, Phys. Lett. 588, 449 (1975).
S. Laporta and E. Remiddi, Phys. Lett. B 301, 440

[29]

[30]
[31]
[32]
[33]

[34]
[35]

[36]

(1993).
C. Itzykson, G. Parisi, and J.-B. Zuber, Phys. Rev. D
16, 996 (1977).
S. Laporta, Phys. Lett. B 328, 522 (1994).
S.G. Karshenboim, Yad. Fiz. 56, 252 (1993).
T. Kinoshita (private communication).
A.I. Milstein and A.S. Yelkhovsky, Phys. Lett. B 233, 11
(1989).
A.S. Yelkhovsky, Yad. Fiz. 49, 1059 (1989).
M.A. Samuel, G. Li, and E. Steinfelds, Phys. Rev. D 48,
869 (1993).
J. Ellis, M. Karliner, M.A. Samuel, and E. Steinfelds, Re-
port No. SLAC-PUB-6670, CERN-TH. 7451/94, TAUP-
2201-94, OSU-RN-293/94, hep-ph/9409376, 1994 (un-
published) .


