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Motivated by the recent investigation of neutrinoless 7.-lepton decays by the CLEO collaboration,
we perform a systematic analysis of such decays in a possible new-physics scenario with heavy Dirac
and/or Majorsna neutrinos, including heavy-neutrino nondecoupling efFects, finite quark masses,
and quark as well as meson mixings. We 6nd that the 7.-lepton decays into an electron or muon
and a pseudoscalar or vector meson can have branching ratios close to the experimental sensitivity.
Numerical estimates show that the predominant decay modes of this kind are r ~ e P, r -+ e p,
and v —+ e vr, with branching ratios of the order of 10

PACS number(s): 13.35.Dx, 11.30.Fs, 12.60.—i, 14.60.St

I. INTRODUCTION

Recently, the CLEO Collaboration has reported con-
siderably improved experimental upper bounds on the
branching ratios of 22 neutrinoless decay channels of the
7 lepton [1]. In the CLEO analysis, some candidates for
lepton-flavor and/or lepton-number-violating events have
been found in the decays 7 —+ e K', 7. ~ e ++K

~ p m K+, and ~ ~ p+m K, which are, how-
ever, compatible with backgrounds expected in the min-
imal standard model (SM). Such decays are strictly for-
bidden in the SM due to the fact that the light neu-
trinos v„v„and v are exactly massless, so that chi-
rality conservation implies lepton-number and/or lepton-
Qavor conservation to all orders of the perturbative ex-
pansion. Since there is no fundamental theoretical rea-
son for lepton-number and/or lepton-flavor conservation
in nature, future confirmation of the CLEO candidates
may point towards physics beyond the SM and, in par-
ticular, to some modification of the lepton sector. Such
possible lepton-number and/or lepton-flavor-violating ef-
fects can naturally be accounted for in the context of lep-
toquark models [2], left-right-symmetric models [3], B
parity-violating supersymmetric scenarios [4], or theories
containing heavy Dirac and/or Majorana neutrinos [5, 6].

In this paper, we will study the size of new-physics
interactions in models with heavy Dirac and/or Majo-
rana neutrinos. In such scenarios, decays of the w lepton
into three charged leptons, . such as v —+ eee, etc. , have
been analyzed in Ref. [7]. Here, our main interest will be
devoted to semileptonic decays of the v lepton. Specif-
ically, we will analyze decays of the type w —+ e vr,

~ e p, etc. In a previous work [8], three of the
numerous decay channels of this type were considered
in the &amework of a theory with heavy Dirac neutri-
nos. We will extend that analysis by including lepton-

number-violating interactions due to Majorana neutri-
nos, heavy-neutrino nondecoupling efFects [7, 9], flnite-
quark-mass contributions, Cabibbo-Kobayashi-Maskawa
(CKM) quark mixings, and meson mixings. We will per-
form a complete analysis, which comprises all ten decay
channels of the type w —+ e M, where M denotes
either a pseudoscalar or vector meson. The efFect of a
modi6ed lepton sector on v decays into two mesons, i.e. ,~ l+M1 M2+, will be estimated in a separate paper
[1O].

In our calculations, we will adopt the conventions and
the model described in Ref. [6]. In this minimal model,
which is based on the SM gauge group, the neutrino sec-
tor is extended by the presence of a number (nR) of neu-
tral isosingletp leading to n~ heavy Majorana neutrinos
(N~), while the quark sector retains the SM structure.
If the theory contains more than one neutral isosinglet,
then the heavy-light neutrino mixing [ll]

3 fL+

(s2)' = 1 —).I@,l' = ).I@~,l' (1 1)

with Bi~ being the neutrino mixing matrix [see also

Eq. (1.4) below], scales as [m&(m~ ) m~]ii, where mD
is the Dirac mass matrix related to the breaking of the
SU(2)L, gauge symmetry and mM is a general nrt x n~
isosinglet mass matrix. Light neutrinos (vi) can ra-
diatively acquire masses in compliance with experimen-
tal upper bounds [6]. On the other hand, the heavy-
light neutrino mixings (s& ) are dramatically relaxed and
do not obey the traditional seesaw suppression relation
(s&) oc m„/mN. Then, the (sLI) may be viewed as free
phenomenological paraoieters, which may be constrained
by a variety of low-energy data [11,12]. In this way, the
following, rather conservative upper limits for the heavy-
light neutrino mixings have been found [12]:
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(s";)', (s",")' & O.O15, (s";)' & O.O5O, (si')'(si")' & 10 (1.2)

More recently, a global analysis of all available electroweak data accumulated at the CERN Large Electron Positron
(LEP) collider has yielded the more stringent limits [13]

(si ) & 0.0071, (s",")' & O.OO14, (sL ) & 0.033 (0.024 including LEP data), (1.3)

) I ii Uf, *,
A:=1

C;~ = ) Ui",;Ui
k=1

(1.4)

where V and U are the unitary matrices that are needed
to diagonalize the charged-lepton and neutrino mass ma-

at the 90% confidence level (C.L.). These upper bounds
on the (tree-level) mixings (s& )

2 depend, to a certain ex-
tent, on the C.L. considered in the global analyses (e.g. ,
90%, 95%, or 99% C.L.) and further model-dependent
assumptions [7]. For example, at the 99% CL, the lixn-

its presented in Eq. (1.3) are still compatible with those
of Eq. (1.2). While using upper limits such as those in
Eqs. (1.2) and (1.3), we should bear in mind that there
exist possible physical scenarios and theoretical caveats
which might be able to weaken these limits. Specifically,
we would like to mention the following points.

(1) Limits derived from LEP data depend on whether,
in addition to our new-physics model, there exists some
und. erlying theory of decoupling physics, such as super-
symmetry (SUSY) [14], which may inHuence some of the
LEP observables. For example, the possible decay of a
Z boson into a pair of lightest supersymmetric particles,
say, light higgsinos in a B-parity-conserving SUSY ex-
tension of the SM [15], may invalidate bounds obtained
&om the invisible width of the Z boson [7].

(2) Several theoretical explanations have been sug-
gested to account for the intriguing discrepancy, by about
2o, between the SM theoretical prediction and exper-
iment in the observables Ri, = I'(Z -+ bb)/I'(Z
hadrons) and the left-right polarization asymmetry AI, R
measured at the SLAC Linear Collider (SLC). One of
them is based on the assumed presence of a new Z' bo-
son which is degenerate with the SM Z boson and weakly
couples to fermions. Such theoretical scenarios might sig-
nificantly affect the LEP observables [16].

(3) In the global fits, the mixings (s&)2 are assumed
to be tree-level parameters. One might worry about the
efFect of radiative corrections.

(4) As discussed in Ref. [13], the limits given in
Eq. (1.3) are weakened by 20% for a heavy top quark,
with mq ——200 GeV.

In view of these points, we will report theoretical re-
sults and upper bounds adopting in turn the constraints
of Eqs. (1.2) and (1.3).

In an nG. -generation model, the couplings of the
charged- and neutral-current interactions are correspond-
ingly mediated by the mixing matrices

trices, respectively. B and C satisfy a number of identi-
ties that guarantee the renorinalizability of the model [6,
17]. Such identities are found to be very helpful in or-
der to reduce the number of &ee parameters present in
such theories and, by the same token, to establish re-
lations between B, C, and the heavy-neutrino masses.
For definiteness, in our numerical calculations, we will
use a model with two right-handed neutrinos. In such a
scenario, we have [7]

1/48~i
BlN1

L

g1+ pii2 ' B~N, = ~p '~'BiN, ) (1 5)

where p = miv /miv, with Ni and N2 being the heavy
Majorana neutrinos. Furthermore, the mixings CN, N,
are given by

l/2 A~

CNgNg —
1 i(2 / ~( L )+ p

—1/2
CNgN2 —p CN1 N1 )

N1 N2 — Ng N] — P N1 N1 ~ (1 6)

Obviously, our minimal scenario only depends on mN,
and miv, —or, equivalently, on miv, and p—and (sL')
which are assumed to satisfy the constraints in Eqs. (1.2)
and (1.3).

The outline of this work is as follows. In Sec. II,
we will calculate analytically the branching ratios of the
decay processes 7. —+ e M . Technical details will be
relegated to the Appendix. Our numerical results will be
presented in Sec. III. Sec. IV contains our conclusions.

Charge conservation forbid. s the lepton-number-
violating decays of a 7 lepton into a meson and an an-
tilepton. For the same reason, the outgoing meson has
to be neutral. The recent CLEO experiment [1] observes
one v —+ e K ' event within the signal region, which
is still consistent with the estimated background due to
hadron misidenti6cation. The same experiment has con-
siderably lowered the upper bounds on the rates of the
d.ecays with one p or one K * in the 6nal state.

The scattering-matrix element of w —+ l' M re-
ceives contributions from p-exchange graphs, Z-boson-
exchange graphs, and box graphs:
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S(r ~l' M ) =S~(r ~l' M )+Sz(r ~l' M )+Sb „(r ~l' M ). (2.1)

Feynman diagrams pertinent to these decays are shown in Fig. 1. The p and Z-boson amplitudes factorize into
leptonic vertex corrections and hadronic pieces. The loop integrations are straightforward. The hadronic parts are
local. Exploiting translation invariance, the phases that describe the center-of-mass motion ofI may be isolated and
one is left with space-time-independent hadronic matrix elements. These phases assure four-momentum conservation.
The p and Z-boson amplitudes read

P l/

S~(r m l' M ) = (2m) 6( )(p —p' —pM) 2 u& Il '
l
p" — l(1 —») —G ' "(m (1+»)4M~ ( q2 g2

+m, (1 —»)) u. (M'l-,'G(o)7„u(0) —,-'d(0)q„d(0) ——,'s(0)q~s(0) lo),

XO!~Sz(r -+ l M ) = (27r) h( )(p —p —p~) 2 Ez u) p (1 —»)u (M lu(0)pp l

1 —» ——s~ lu(0)lo)
16M~2 3

( 4, l—(M'Id(0)~~
l

1 —» —-s~
l
d(o) lo) —(M'ls(0)~~

l

1 —» —-s~
l s(o) Io)

)
(2.2)

where p, p', and pM are the four-momenta of r, I', and Mo, respectively, q = p —p' = pM, a~ ——a, / sin 0~ = 0.0323
is the weak fine-structure constant, and u(z), d(z), and s(z) are quark-field operators acting on the meson states
lM ). In Eq. (2.2), Fz, E ', and G are form factors, which may be found in Ref. [7t.

The box diagram is more involved, as it contains a bilocal quark operator. Taking the difFerence X and the averaged
sum of the space-time coordinates of the two hadronic vertices as integration variables, using translation invariance,
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FIG. 1. Feynman graphs pertinent to
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and performing the integration over the leptonic space-time coordinates, one arrives at the following expression for
the box amplitude:

2 n~+n~ 4

Sbo„(~ m l' M ) = (2m) b (p —p' —pM) ) Bi;B';
i=1

1
(p' + I)2 —m2 l2 —M2 (q —/) 2 —M2

ng
4 —i(l —q/2) X 0)-v „v„„dxe i' -~~'l (M'Id, —&„(1—»)s~""(x)~„(1—»)d.

x&
IO) —) V„*qV„g, d Xe '~' ~~ l (M IG

xp„(1 —»)s~' (—x)p„(l —»)u — IO) + (w m G),(d') (x&

)
(2.3)

where (W -+ G) stands for the terms obtained by replacing one or two W bosons with unphysical charged Higgs
bosons and S&"" ' (x) are the u;- and d;-quark propagators in coordinate space. An exact expression for the quark
propagator is not known, but using the free-quark propagator is known to yield a good approximation for large
momentum transfers. The corresponding box amplitude, which contains only free quarks, receives its dominant
support &om xnoxnenta with virtualities comparable to Mxv (if the virtual lepton is light) or larger. Only a sxnall
&action of the Feynman-parameter space permits potentially large contributions &om low squared-momentum values.
Therefore, it is plausible to approximate the quark propagator with the &ee-particle propagator and neglect the
momenta of the external leptons and the X dependence of the quark wave functions as well. Thus, we recover the
&ee-quark expressions for the box functions and evaluate the hadronic Inatrix elements by taking the quark current
operators to be local. In this way, Eq. (2.3) simplifies to

~~W2

Sbo„(w m t' M ) = {2m) b (p —p' —pM) 2 uxlp„(1 —»)u~
6Mw

x +b.'.""(M'Iu(0)~"(1 —»)u(0) Io) — ): +b.'.'"(M'Id-(0)~" (1 —»)ds(0) Io) (2 4)
d~ g=dis

l'd dwhere I"b " "' and Eb „""may be found in the Appendix.
To calculate hadronic matrix elements, we invoke the

hypothesis of the partial conservation of axial-vector cur-
rents (PCAC's) [18—20],

V„(x) = V„(x).
27v

(2.7)

A~(x) = i ~2fpO„P(x) + (2 5)

m2j," (x) = p p"(x) + (u"(x) sinai
7p 2 37

2mf+ gP(x) cos Hv',
2 3

(2 6)

and its extension for any vector current [20],

where the ellipsis denotes terms not contributing to the
meson-vacuuxn amplitude, fx is the decay constant of the
pseudoscalar meson P, represented by the field P(x), and
A (x) is the axial-vector current having the same quark
content as P. The pion decay constant is f = 92 MeV.
Furthermore, we exploit the vector-meson dominance
(VMD) relation [19,20]

In Eq. (2.6), j," (x) is the electromagnetic current, p"(x),
&u" (x), and P"(x) are the p-, &u-, and +meson fields, re
spectively, p~, p, and py measure the strengths of their
couplings to the photon, and 8~ is the usual mixing angle
of the octet and singlet vector-meson states. In Eq. (2.7),
V is the vector 6eld having the same quark content as
the vector meson field V. Equation (2.7) is based on the
assumption that the dominant contribution to the form
factors is due to the vector mesons, which works very well
for the electromagnetic current [21].

The calculation of the hadronic matrix elements pro-
ceeds as follows. One expresses the quark operators,
which appear in the hadronic matrix elements, in terms
of the axial-vector [A+(x)] and vector currents [Vv(x)]
that have the same quark content as the produced pseu-
doscalar (P) and vector mesons (V). Then, one applies
Eqs. (2.5) and (2.7). The relevant matrix elements read
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(ol&„( ) lM(p5r)) = 4r I ~~fI ps
m2

(ol&~(z)lM(pM)) =s - v ~ „(pv &v)e
Iv

(2 8)

where e&„stands for the polarization vector of the vector

boson V and the Kronecker symbols bM~ and bM& as-
sure that the matrix elements give nonzero contributions
only if the final-state quantum numbers match those of
the vector and axial-vector currents. The matrix ele-
ments appropriate to mesons in the final state emerge
&om Eq. (2.8) by Hermitian conjugation.

The decomposition of the vector and axial-vector cur-
rents into meson field operators depends on the quark
content of the meson (for the pseudoscalar mesons, see
Table I). The quark content of pseudoscalar rnesons hav-
ing zero isospin and zero hypercharge is not yet defi-
nitely established [22, 23]. The mixing of SU(3)-octet
and SU(3)-singlet meson states with zero isospin and zero
hypercharge is usually parametrized by some angle 0~,
which is not precisely known. The corresponding mixing
angle for vector mesons is called 0v. From the study of
P decays it is known that Ov is very close to the ideal
value arctan(1/~2). Notice that the state lM) and the
corresponding field M(z) have opposite quantum num-
bers. This is due to the convention (OlM(z)lM(p))
e ' eM(p); i.e. , the meson field annihilates the corre-
sponding meson state. In the second line of Table I,

TABLE I. Quark content of the pseudoscalar meson states
lM) and field operators M(z).

lM)
lK+)
lK )

IK )
lK')
l~s)

Quark content of lM)
~8 bt dt
d8
—ted—'(uu —dd)
(AD

—88—'(uu + dd —2ss)~6
~(uu+ dd+ ss)
cos 8s lrls) —sin 8l lgi)
sin 8l lgs) + cos 8~ lrli)

Quark content of M(z)

88
—chic—'(uu —dd)

—As—'(uu +. dd —2ss)~6
~i(uu+ dd+ ss)
cos 8~rls(z) —sin 8~pi(z)
sin8I ris(z) + cos8J.rli(z)

we indicate the relevant creation and annihilation oper-
ators that are contained in the meson states. Here, b

and d, are the annihilation operators of the quark u and
the antiquark 8, respectively, and bt and dt are their cre-
ation operators. The quark structure of the vector-meson
states and fields may be read oR' &om Table I after the re-
placements E+ -+ X+', sr+ ~ p+, m' —+ p', Z' ~ X'*,
Ko m K *, rls i m Ps i, rl —+ P, rl' -+ (u, and OJ m 8v.

Following the procedure outlined above, we obtain the
following expressions for the w —+ l' M matrix ele-
ments:

T(r -+l' K)=—

'Loiiv (2c~ 'il 28& lT(r ~i'-~) =, ul &.(I —»)u. f,p„" -l +

ICE~T(r m l' K ) =
2 ul'pl, (1 —»)u~ v2flcplc I"box

16M~2

L'du l"7ps (1 —» )u ~ ~2fIcpic Fb ox

T( ~ ' ~') =—,ul ~~( —»)u- f-p."[+z' + +b.'.""+ b.'.""1
16M~2

( cg +28gl l ( cg ~2sl ) «dg (2cy ~2sl
bl

( ~3 ~3

T(r -+ l' ri')

T(r +l' K')=—

T(r w l' Ko*)

T(r wl' p )

16M' "' " ' """' ~3 v~

l(pcs' sg ll~ l (+2c~ + sg
)l~I, «i&&+ (+2c~ 2sp) +

2 2
ZO!~ p TL 8d

ul p~(l —») v ~ ICo~ box16M~2 +2pz
2 2

ZO!~ P Tl'd8ul' Ygs(1 —»)u7 ~ ego ~ Ebox
16M~2 +2pao

V

2s~ul S,"'
l
p„—", l(1 —») —G ", [~.(1+»)+~i (1 —»)] u-

+iii g„(& —vii)ii Ii:aw+z~ + i&i, + —,&i, t)
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—G ' ""
[m (1+ p5) +mi (1 —ps)] u

(cv av), ( cv av)
+u) p„(l —ps)u ~ cg~ + II"Z +

i

— iFb „""
3 6) (2 3 6)

~ cv av ~i'ez ~ cv av ~

v~~
'"

T{7- m t' (u) =, e" u) I"
~
p„— i(1 —ps)

i~w m.' „2a' av ., r'
q~ g)

V

—G
' "",~ [m.(1+p,)+m). (1 —p, )] u.

&av cv& .( & av cvi+u&'&~(1»)u
I

c&~ I&z +
I

+
I
+bo

""
3 6) (2 3 6)

av cv ) ~l'dd i av

&2V~ A) '"
&V~

cv ) ~ i'.s
box (2.9)

where we have introduced the shorthand notation s~ ——sin8~, c~ ——cos8~, c2~ ——cos 20~, and similarly for 8~
and 0~.

The branching ratios for pseudoscalar mesons can be compactly written in the form
1

1 m A~(m , m&, , mM, ) z(m —m&, ) —mM, (m + m&, )
8' I'„ m.' m.' (2.1O)

where the form factors aMD are listed in the Appendix, I = 2.227 x 10 GeV is the total width of the 7 lepton
measured experimentally [22], and A(x, y, z) = (x —y —z) —4yz. Similarly, in the case of the vector mesons, one
finds

p 1 m A (m, m&, , mM, ) z 12m&,2 2 2 2

B(~ +l' M )=- ~MD
8~ I'. m2 Mo

(m + m&)(2(m —m&) —mz, (m + m&) —mz, ]

lm mMQ

z (m —ml, ) + mM, (m + m&, ) —2mM,+ &MO+bMO
mTmMO

W

(m —m, , ) —mM, (m + mp)—6Re aMo + bMo cMO
m+ mMO

(2.11)

where aMO, bMD, and OMO may also be found in the Ap-
pendix.

experiment. The upper bounds on si', 8&", and 8& are
given in Eqs. (1.2) and (1.3). On the other hand, the
perturbative unitarity relations

III. NUMERICAL RESULTS

In our numerical analysis, we will assume that the SM
is extended by two right-handed neutrinos, as described
in the Introduction. The additional parameters in this
scenario are the two heavy-neutrino masses mN, and mN,
and the three mixing angles 8&, 81", and 8I . These are
&ee parameters of the model, which may be limited by

I'N, 1

mN, 2

lead to a global upper bound on mN,

1 —1
2 2M~ 1 +P )~{v')z

pg

(3.1)

(3.2)
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where p is defined after Eq. (1.5) and it is understood that
p ) l. In this context, we should mention that, adapt-
ing the results of Ref. [24] based on a renormalization-
group analysis in a four-generation Majoron model, one
may find a bound which is slightly more restrictive than
Eq. (3.2) but still lies in the same ball park.

Furthermore, our results depend on hadronic observ-
ables and quark-level parameters such as the Cabibbo-
Kobayashi-Maskawa (CKM)-matrix elements, the quark
and meson masses, the mixing angles of the meson sin-
glet and octet states, the pseudoscalar-meson decay con-
stants, and the coupling strengths of the vector mesons
to the gauge bosons. In our calculations, we use the max-
imum experimental values for the CKM-matrix elements
[22] and the quark-mass values [22, 25]

m„= 0.005 GeV, m~ ——0.010 GeV,

f + =92.4 MeV, flc+ ——113 MeV,

f 0 = 84.1 MeV, f~ = 94 MeV,

f„= 89.1 MeV,

and exploit SU(3) Havor symmetry

(3 4)

fr=-fx = fr&+ ~ (3 5)

The constants p& are partly extracted &om the V ~
e+e decay rates, with the result that

Mann —Okubo mass formula to be 0~ ——39.3 . We treat
8~ as a free parameter because its value is not yet well
established [23, 26]. For the most part, we use 8~
—23', the value extracted &om e+e ~ e+e
e+e (P -+ pp) experiments [26]. This value is consistent
with a previous analysis [23]. For the pseudoscalar-meson
decay constants, we use the experimental values [22, 26]

m, =0.199 GeV, m = 1.35 GeV,
Ppo = 2.519, P = 2.841, Py = 3.037, (3.6)

mg ——4.3 GeV, mq ——176 GeV.

We keep all quark masses finite, since, e.g. , the c-quark
and t-quark contributions to the box amplitudes turn out
to be comparable. The mixing angle for vector-meson
nonet states may be determined &om the quadratic Gell-

and partly estimated assuming SU(3) symmetry: We put
0 ppo because K* and p are members of the same

SU(3) octet, while P and ur are mixtures oi' octet and
singlet states. Notice that all pv values in Eq. (3.6) are
very similar in size.

Having specified our input parameters, we will now
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0.02 ( (s~ ) ( 0.05, 8~ = —23', and
8~ ——39.3 .
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discuss our numerical results. The widths for the decays
with K, K, K *, or K * in the final state only receive
contributions &om box diagrams. The branching ratios
for these decays are found to be always smaller than10, that is, much smaller than present experimental
sensitivities ( 10 s), rendering these decay xnodes unin-
teresting &om the experimental point of view. Therefore,
we will not pursue their study any further.

For definiteness, we will consider decays of the form
-+ e Mo only. We set (s&")2 = 0 to satisfy the third

inequality in Eq. (1.2); this is also motivated by the ob-
servation that (s&") receives the most stringent bound
in Eq. (1.3). Of course, our estimates are also valid for
the w ~ p, M decays with (sL') = 0. Our results
for the branching ratios B(7 ~ e pro/xI/rl'/po/P/u)
are illustrated in Figs. 2—6. Each figure describes the
dependence of the branching ratios on two of the &ee
paraineters, one varied continuously and the other one
in a discrete manner. All other parameters are kept

fixed. Figure 2 shows the dependence of the branch-
ing ratios on m~ = mxv, = mxv, and (sL ) . The
most promising modes are r -+ e P, 7 ~ e p, and

-+ e mo, which, for maximum values of mdiv and (s&)
from Eq. (1.2), reach branching fractions

B(w me $) 1.4x10
B(7 -+e p ) 0.8x10
B(~ -+e x ) 10x10

(0.7 x 10 s),

(04 x 10 ),

(0.5 x 10 s). (3.7)

B(w ~e p )(4.2x10
B(~ me ~ )(14x10
B(w —

& p m ) (4.4 x 10 (3.8)

In Eq. (3.7), the values quoted in the parentheses are
obtained by using the maximal (s&')2 values in Eq. (1.3).
This has to be compared with the present experimental
bounds[1, 27]
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FIG. 3. Branching ratios versus ratio m~, /m~, for the
decays of Fig. 2, assuming m~, = 1 TeV (0.5 TeV), (s~ )
0.01, (sP) = 0.05, Hx = —23', and ev = 39.3'.

at the 90% C.L. Unfortunately, B(v —+ e P) has not
been measured yet. The P meson being a narrow res-
onance, with a width of just 4.43 MeV [22], this decay
channel may be searched experimentally by looking for a
sharp resonant bump located at My in the distribution
with respect to the recoil mass, (p —p, )

2 [28]. We con-
clude that an experimental investigation of w ~ e
and a more precise determination of B(v ~ e m.o) and
B(w -+ p m ) would be highly desirable. In the high-
mN, limit, Fig. 2 shows the quadratic mN dependence
for all branching ratios, except for B(7 ~ e u). In the
't Hooft —Feynman gauge, this behavior originates mainly
IIrom the Z-boson amplitudes F&

At this stage, some important comments are in order.
For fixed (sl') values, Nx and N2 do not decouple from
our theory as their masses become large as compared to
Mvv [7, 9]. As has been mentioned in the Introduction,
sL' oc mD/mM oc mD/m~, , and this nondecoupling fea-
ture can be traced to the large SU(2)L, Dirac components
mxx present in our model [9]. Obviously, if we fix mLx and
take the limit m~ —+ oo, the heavy neutrinos will decou-
ple &om our low-energy processes, leading to vanishing
effects [29]. This will be illustrated in greater detail in
Figs. 4 and 5, below. However, for heavy neutrinos, with
masses in the 1—10 TeV range, there will be an inter-
esting nondecoupling "window" arising &om potentially
large Dirac mass terms mD. It is precisely this nonde-
coupling "window" which we are exploiting here to make
our eKects sizable.

In the case of B(7 ~ e 7r /rl/Ko), we recover the
expressions of Ref. [8] for the Dirac-neutrino scenario if
we omit the nondecoupling terms proportional to m~ in
Eq. (A2) and in the Z-boson-mediated amplitudes. The
results of Ref. [8] are coxnparable to ours for mdiv of order
M~, but they fall short of our results by up to factor
of 50 for m~ in the TeV region. In the case of ~ pro-
duction, there is a destructive eKect between logarithmic
and quadratic m~-dependent nondecoupling terms com-
ing from photon and Z-boson-mediated amplitudes, re-
spectively, and meson-mixing efFects, which show up as
a minimum of the branching ratio for m~, 1.6 TeV.
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In Fig. 6, we plot B(r -+ e rl/rl') versus mN
m~, = m~, , assuming in turn the unmixed case (Hp = 0)
and Hp = —10'. We see that, for H p decreasing, B(r
e il') increases considerably, while B(r ~ e rI) grows
just slightly. This illustrates that it is important to al-
low for nonvanishing 0~ in realistic calculations. It is
also interesting to observe that, if tanH& ——1j(~2c2~),
the dominant nondecoupling terms proportional to m~
are quenched in B(r ~ l u).

IV. CONCLUSIONS
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FIG. 6. B(r —+ e g/rl') versus m~ = m~, = m~, ,
assuming (s~ ) = 0.01 and (s~ ) = 0.04: B(r —+ e q)
(solid line) and B(r —+ e rl ) (dashed line) for the unmixed
case H„= 0; B(r ~ e q) (dotted line) and B(r —+ e g )
(dot-dashed line) for the mixed case with H„= —10'.

We now turn to genuine Majorana-neutrino quantum
efFects. Figure 3 displays the dependence of the branch-
ing fractions on the ratio m~, /m~, for the fixed values
m~, ——1 TeV and 0.5 TeV. We emphasize that, just like
in the lepton case [7], B(r -+ e vr /q/rl'/p /p) assume
their maximum values for m~, jm~, = 2—4 rather than
in the Dirac scenario, m~, ——m~, . The only exception
is the decay ~ ~ e u, where the maximum value is
shifted to larger values of m~, jm~, , of order 20, due to
the accidental cancellations mentioned above.

Figures 4 and 5 illustrate the dependence of the
branching ratios on (s& ) and (sl ) in the heavy-Dirac-
neutrino scenario with mN, ——mN, ——4 TeV. As may
be seen in Fig. 4, the (sl ) dependence of B(r
e m /il/rI'/p /P/~) is quadratic over the most part of
the (sL ) range and for any of the (s&')2 values consid-
ered. From Fig. 5 we see that the (sL ) dependence
of B(r ~ e vr /rI/rl'/p /P/~) is approximately lin-
ear for (s& )2 ( (s& )2, while it becomes quadratic for
(s&')2 ) (s& )2. The (s& ) and (sz')2 dependences stud-
ied above are closely related to the decoupling behavior of
the isosinglet scale mM . As we have emphasized above, in
the limit m~ —+ oo for constant mD, or, equivalently, for
constant m~ and vanishing mD, i.e. , for (sL') + 0, we
should recover the decoupling limit, where the branch-
ing ratios vanish as the isosinglet mass terms m~ are
sent to infinity [29]. It is then evident that the afore-
mentioned (non)decoupling "window" is directly related
to the SU(2)L, Dirac terms m~ [9] and is reflected in the
actual (sl ) and (s&')2 dependences seen in Figs. 4 and
5.

Motivated by the recent experimental search for
lepton-number and/or lepton-flavor-violating sernilep-
tonic r-lepton decays [1],which are strictly prohibited in
the SM, we have explored the potential of extensions of
the SM by heavy Dirac and/or Majorana neutrinos to ac-
count for 7 ~ l' M decays, where l' = e, p and M is
a neutral pseudoscalar or vector meson, with branching
ratios which are comparable to the current experimen-
tal upper bounds. Since such models predict apprecia-
ble branching &actions for lepton-flavor and/or lepton-
number-violating leptonic decays of the r lepton [7], they
are also expected to be promising candidates for accom-
modating semileptonic 7-lepton decays with branching
&actions close to the present experimental sensitivity. In
fact, imposing the bounds on the heavy-light neutrino
mixings obtained in Ref. [12], we have found branch-
ing fractions of order 10 for the channels r —

& e
e p, and w ~ e 7r . If we use the some-

what tighter bounds coming from a more recent anal-
ysis [13], these branching fractions are approximately re-
duced by a factor of 2. Our value for B(r -+ e p) falls
short of the present experimental sensitivity [1] by be-
tween one-half and one order of magnitude, depending
on the assumptions concerning the heavy-light neutrino
mixings. Unfortunately, the experimental upper limit on
B(7 -+ e vr ) still exceeds our result by two orders of
magnitude [27]. For some reason, the decays r -+ e
and r ~ p P, which prevail in our numerical estimates,
have not yet been studied experimentally. At this point,
we should like to encourage our experimental colleagues
to undertake a search for this decay channel.

An important feature of our model is that the w —+
l' M decay amplitudes exhibit a quadratic dependence
on the heavy-neutrino masses m~, and m~, . This non-
decoupling dependence is closely related to the large
SU(2)L, -breaking Dirac terms mD that are allowed to be
present in our minimal three-generation seesaw-type sce-
nario [7, 9]. These m2~ terms are negligible for neutrino
masses below 200 GeV, but they are dominant in the
TeV region, where they may lead to an enhancement
by a factor of 50 of the respective analysis with these
terms omitted [8]. The saine nondecoupling terms give
rise to a m~, /m~, dependence of the r ~ I' M de-
cay amplitudes which is similar to the one encountered
for the decays r ~ e+e e, etc. [7]. In particular,
semileptonic branching ratios take their maximum values
for m~, /m~, 2—4. The r -+ I' u decay rate is unob-
servably small due to a destructive meson-mixing efFect,
which considerably screens the dominant Z-exchange in-
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teraction.
The extension of the vector-meson dominance hypoth-

esis to general vector currents has enabled us to calculate
the d.ecays with vector mesons in the final state. The
quark content of meson wave functions, which, for in-
stance, is re8ected in the mixing angles, 0~ and Ov, is
also important. We have illustrated this for the produc-
tion of g, q', and P mesons.
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which also appear explicitly in Sec. II, may in turn be
decomposed into elementary vertex and box functions
F~, G~, Fz, Fbox, and IIbox. The form factors Fz, F
and G together with the elementary loop functions F~,
G~, Fz, and Fb „may be found in Ref. [7]. Here, we list
Frl'dods d Frl'uu
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where A~ = m~/M~. To our knowledge, the box func-
tion Hb may not be found elsewhere in the literature.
After a straightforward calculation, we obtain
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In the limit where N1 and N2 are mass degenerate and
much heavier than the R' boson, the expressions for the
form factors simplify considerably. Keeping the full mq
dependence, one 6nds [7]
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