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We examine the applicability of perturbative QCD to B meson decays into D mesons. We find
that the perturbative QCD formalism, which includes Sudakov effects at intermediate energy scales,
is applicable to the semileptonic decay B ~ Dlv, when the D meson recoils fast. Following this
conclusion, we analyze the two-body nonleptonic decays B —+ Der and B ~ DD, . By comparing
our predictions with experimental data, we extract the matrix element iV qi = 0.044.

PACS number(s): 13.20.He, 12.15.Hh, 12.38.Bx

I. INTRODUCTION

Recently, perturbative QCD (PQCD) has been pro-
posed to be an alternative theory for the study of B me-
son decays [1—3], which complements the approach based
on the heavy-quark effective theory (HQET) [4] and the
Bauer-Stech-Wirbel method [5]. The point is to include
Sudakov effects [6], which arise &om the all-order summa-
tion of large radiative corrections in the processes. It has
been shown that these efFects, suppressing contributions
due to soft-gluon exchange, improve the applicability of
PQCD to exclusive processes around the energy scale of
few GeV [7). The heavy b quark possesses a large mass
scale located in the range of applicability [8]. The Su-
dakov factor for the heavy-to-light transition B ~ vrlv

has been derived in [2], and the perturbative evaluation
of the associated difFerential decay rate is found to be
reliable for the pion energy &action above 0.3.

In this paper we shall investigate the applicability of
the above PQCD formalism to heavy-to-heavy transi-
tions, concentrating on the semileptonic decay B + Dtv.
Heavy-quark symxnetry [9] has been employed in the
analysis of this decay [10], whose amplitude is written
as

Gp
A(Px, P2) = V qvp„(1 —p5)l(D(P2) icy"biB(Px)),

2

where G~ ——10 GeV is the Fermi coupling con-
stant, and Px (P2) is the B (D) meson momentum. The
transition-xnatrix element M" = (Dicp„biB) can be ex-
pressed in terms of a universal Form Factor ( in the heavy-
meson limit [9]:

M" = gmxxmD((vx . v2) (vx + v2)" (2)

with mxx (mD) the B (D) meson xnass. The velocities
vi and v2 are defined by the relations Pi ——m~vi and
Pz ——mLxv2, respectively. The form Factor (, called the
Isgur-Wise (IW) function, depends only on the velocity
transfer vi ~ v2 and is normalized to unity at zero recoil
vx . v2 ——1 in the limits mxx, mD ~ oo [9].

The IW function has been usually regarded as sensitive

to long-distance efFects, and cannot be calculated in per-
turbation theory. For the behavior of ( above zero recoil,
there is only the model estimation from the overlap in-
tegrals of heavy-meson wave Functions [11]. In this work
we shall show that PQCD can give reliable predictions to
( in the region with large vx . v2, where the heavy quark
symmetry cannot provide any information of (. We argue
that the IW function is dominated by a soft contribution
in the slow D meson limit, at which the heavy-meson
wave functions strongly overlap, and factorization theo-
rems do not hold. However, when the D meson recoils
fast, carrying energy much greater than mD, the case is
then similar to the B ~ vr decays, and PQCD is expected
to be applicable [12].

The above conclusion then indicates that two-body
nonleptonic decays such as B ~ Der and B ~ DD,
can be analyzed reliably in the PQCD formalism. The
B ~ D decays have been studied [12,13] based on the ex-
clusive PQCD theory developed by I epage and Brodsky
[14]. However, these analyses lack quantitatively justi-
fication for the perturbative calculation and are highly
sensitive to the variation of the heavy-meson wave func-
tions. Our predictions for the branching ratios of these
decay processes are comparable with those &om the stan-
dard PQCD in [12,13] and lead to the value 0.044 for
the Cabibbo-Kobayashi-Maskawa matrix element iV,ai by
combining with experimental data [15]. On one hand, we
derive the behavior of the IW function near the high end
of vi v~. On the other hand, the consistency of the ex-
tracted iV,bi with its currently accepted value justifies the
application of our PQCD Formalism to the semileptonic
decays B + vrlv [2] and B ~ 7rvr [3].

A model-independent extraction of the matrix ele-
ment iV,bi has been obtained From the semileptonic decay
B ~ D'lv in the Framework of HQET [10]. The value
of iV,gi was read ofF by extrapolating the experimental
data to the zero-recoi1. point, at which the IW function
is known to be equal to unity. In the present work, how-
ever, we must extract iV,si by studying the behavior of
the IW function at the opposite end of the velocity trans-
fer, for which the PQCD analysis is reliable. Hence, the
two-body decays are good candidates. Another possible
method of extracting iV,qi has been proposed in [16], in
which a sum rule for the relevant structure function of
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the inclusive semileptonic decay 6 —+ c was considered.
In Sec. II we derive the factorization formulas for the

form factors involved in the B ~ Dlv decay, including
the resummation of large radiative corrections to this
transition. Numerical analysis is shown in Sec. III, along
with the behavior of the IW function at large velocity
transfer. The comparison of our predictions for the de-
cays B ~ D7t and B + DD, with experimental data is
also made. Section IV contains the conclusions.

II. FACTORIZATION

In this section we develop the factorization formula for
the B —+ DIv decay. The lowest-order factorization for
the transition-matrix element M" is shown in Fig. 1, in
which the bubbles represent the B and D mesons, and
the symbol x represents the electroweak vertex where
the lepton pair emerges. The b quark, denoted by a
bold line, and its accompanying light quark carry the
momenta Pq —kq and kq, respectively, which satisfy the
on-shell conditions (Pq —kq) = m& and kz —0, ms being
the b quark mass. We shall work in the rest &arne of the
B meson such that the nonvanishing components of Pq
are P~+ = P~ = m~/v 2. kq contains a small number
of transverse components %AT, and its minus component
defines the momentum &action xq ——kz /Pz . The as-
signment of the momenta for the D meson is similar, but
with kq, ms, and xq replaced by k2, m, and x2 ——k2 /P2+,
respectively, m being the c quark mass.

The expressions for the components of P2 are more
complicated. At zero recoil the D meson sits at rest with
the B meson, and we have P2 oc Pq. When the D meson
takes the maximum energy, it moves fast, and P2+ is much
greater than P2 . To show the relation between P2+ and
P2, it is most convenient to express them in terms of
the velocity transfer g = v~ v2. Solving the equations
Pq P2 ——gm~mD and P2 ——mD, we obtain

P -k

D

k2

(a)

q —Qg2 —1
P2 mD ~

2

The upper bound of g, corresponding to the maximum
recoil of the D meson, is equal to q „= (m~/mD +
mD/m~)/2. It is easy to check &om Eq. (3) that P2+ ——

P2 ——m~/y 2, as rI takes the minimum value 1, and
P2+/P2 ——m~/m~ )) 1 at g = g

We then consider higher-order corrections to the basic
factorization picture. As analyzed before [2,6,7], these
corrections produce large collinear logarithms, when the
loop momentum is parallel to that of a light quark,
or large soft logarithms, when the loop momentum is
much smaller than the mass scale involved in the pro-
cesses. The two types of large corrections may combine
to give double logarithms. It has been shown that the
double logarithms come &om two-particle reducible di-
agrams in physical (axial) gauge, whose contributions
are dominated by collinear enhancements for fast light
mesons, and are dominated by soft enhancements for
heavy mesons at rest [2]. Therefore, they can be ab-
sorbed into the corresponding wave functions, which in-
volve similar dynamics. The all-order summation of the
double logarithms in light-meson wave functions, such as
a pion, has been performed in [7]. The resummation tech-
nique [17] has been extended to the case of heavy mesons
in [2]. Combining the above results, we have derived the
Sudakov factor for the heavy-to-light transition B ~ mlv

[2].
The analysis of the Sudakov corrections to Fig. 1 is

more complicated compared to that of the decay B -+
mdiv. Because of the dominance of soft contributions near
the low end of g, we concentrate only on the large-g re-
gion. In this region radiative corrections on the D meson
side involve three scales, P2+ )) mD )) k2~. Note that
all the previous studies of resummation involve only two
scales, for example, P+ and kT in the pion case and m~
and kT in the B meson case [2]. The three scales pro-
duce various large logarithms of P2+/k2z, P2+/m~ and
m~/k2T, which complicate their organization. As a naive
approximation, we keep only the largest one proportional
to ln(P2+/k2T ). The neglect of those logarithms contain-
ing mD is equivalent to the neglect of P2 « P2+ in the
analysis of radiative corrections to the D meson wave
function. The D meson is then regarded as being light in
the large g region, and the corresponding Sudakov factor
for the decay B + D/v can be approximated by that for
the heavy-to-light transitions.

The factorization formula for M~ in the transverse con-
6guration space, with radiative corrections taken into ac-
count, is written as

d2bg d2b2M" = dxgdx2 'PD(x2) bg, P2, p)
0 27r 2 2' 2

FIG. 1. Lowest-order diagrams of the decay B —+ D/v.

xH" (z], $2, by, b2, mg, m(7, y)'PJ3($], b], Py, p),
(4)
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1 —1

(kl k2) + 'LE 2k~ k2 + (k]T k2T)
(5)

where kT serves as the infrared cutofF of the Sudakov
corrections. Once the approximation is made, the kz+

and k2 dependences, appearing only in the B and D
meson wave functions, respectively, are integrated to give
Eq. (4).

As stated above, near the high end of g the Sudakov
factor e ~ for the decay B ~ D/v, which groups the
large logarithmic corrections in P~, PD, and H", can be
approximated by that for the heavy-to-light transition
derived in [2], with the exponent 8 given by

S(z;, b;) m~, mD) = s(zg, bg, P, )

) .(*,b„P2+)
X2)1%2

1 ln(t/A) ln(t/A)

Pg „—ln(bgA) —ln(b2A)

(6)

where t is the largest mass scale associated with the

in which both the B and D meson wave functions, 7 ~
and P~, contain the evolution &om the resummation of
double logarithms performed in axial gauge. We have
introduced the conjugate variable bq (b2) to denote the
separation between the two valence quarks of the B (D)
meson. We shall employ the approximation m~ = m~ ——

5.28 GeV and rn, —mD = 1.87 GeV in Eq. (4). H"
is the Fourier transform of the hard scattering amplitude
H" to b space. p is the renormalization and factorization
scale.

Note that in the evaluation of H~ we neglect those
terms proportional to A:& and k2 in the hard scattering
amplitude following the kinematic ordering kz k2 (&
k& k2, which is valid in the large g region. For exam-
ple, the gluon propagator in the lowest-order diagram is
written as

hard gluon and will be specified later. The first term
in Eq. (6) comes from the resummation of reducible cor-
rections to the heavy-meson. wave function [2]. The value
of A:—AqcD will be set to 100 MeV below. The com-
plete expression for the factor s(z, b, Q), including the
leading and next-to-leading logarithms, is exhibited in
the Appendix. It is observed that e decreases quickly
in the large b, region and vanishes as b; ) 1/A. There-
fore, long-distance contributions are suppressed, and the
perturbative calculation becomes relatively reliable.

One may wonder whether the resummation of large
radiative corrections can improve the applicability of
PQCD near the low end of q. If we recognize that the
D meson is regarded as a heavy meson in this region,
and is dominated by similar dynamics to that of the B
meson, the Sudakov factor for the decay B ~ Dlv can
be taken as the combination of the expressions for heavy
mesons [2] at two different mass scales, m~ and m~. The
Sudakov exponent S is then written as

~(z, , b, , ~&, m~) = 8(z&, b&, P, ) + s(z2, b2, P2+)

1 ln(t/A) ln(t/A)
Pq —ln(b~ A) —ln(b2A)

(7)

Obviously, it is not expected that our perturbative anal-
ysis with the above Sudakov suppression becomes self-
consistent. The virtuality of the hard gluon in Fig. 1 di-
minishes as xq and x2 are both small, leading to a large
running coupling constant o, However, this nonpertur-
bative region is not strongly suppressed by the Sudakov
factor in Eq. (7). It is the extra exponent s(1—z2, b2, P2+)
in Eq. (6) that can provide the necessary suppression in
the small x2, or large 1 —x2, region.

Having factored all the large logarithms into the Su-
dakov factor, we can then compute the hard scattering
amplitude H" of the B + Dlv decay to the lowest order
of n, . From Fig. 1(a) we have

( )„ps(I/+mD) „g,—$2+m~ (g, +mI3)p5 —g X,C~H "=tr
+2%, (R —k2) m~ Q2~, (kl k2)

167m, cg [mgmD —z2(ymD]
[zqz2(mmmm~ + (kqT —k27 ) ][z2(mgmg + kz&]

16mn, Cp [m~ + z2(2mgmD]
[z]z2(m /m)) + (kyT —k27 ) ][z2(mgmD + k2y]

with

The factors (gz + m~)p5//2X, and ps($2 + mD)/+2%, come &om the matrix structures of the B and D meson
wave functions, respectively. C~ = 4/3 is the color factor, and % the number of colors. Similarly, from Fig. 1(b) we
get
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K~'» =t. &.»(f2+ D) . f2 —fx + D „(fx+ mB)» —a'N Cs

+2N, (P2 ~1)' —mD /2N. (&1 —4)
167ra,Cg [mD + zx(2mBmD]

[xxz2(mBmD + (kxT —k2T) ][zx(mBmD + klan]

i@ra.C~ [mBmD —zx(xmB]
[zxz2(mBmD + (kxT —k2T ) ][zx(mBmD + kx&]

(10)

Note that K~ & can be obtained &om K~ ~ by exchanging the variables associated with the B and D mesons. This
permutation symmetry has been displayed manifestly in Fig. 1.

Performing the Fourier transform of Eqs. (8) and (10) to get H" and substituting them into (4), we obtain the
factorization formula for M" = flP1" + f2P2", where the form factors fl and f2 are given by

1 OO

fl ——16vrCz dxl dx2 bl dblb2 db2 QB(xx) bl)QD(z2, b2)
0 0

x [(mBmD —x2(xmD) h(zx, z2, bl, b2) + (mD + zxt,'2mBmD) h(z2, zl, b2, bl)] exp[—S(z;, b;, mB, mD)]

1 OO

f2 ——16vrCz dxl dx2 bl dblb2 db2 QB(xx, bx)QD(x2, b2)
0 0

x [(mB + z2xs2mBmD)h(zxy x2 bl b2) + (mBmD xx'sxmB)~(z2) xll b2 bl)] exp[ ~(z' b' mBI mD)] I (12)

respectively, with

h'(xx) z21 bit b2) as (t)I10(/zlx2(mBmDbx) [~(bl b2)I10(gz2(mBmDbl)IO (Q z(2Bm Dmb2)

+8(b2 —bl)E0(gz2(mBmDb2)I0(gz2(mBmDbx)] . (13)

t = max(gzxz2(mBmD, I/bx, 1jb2) . (14)

III. NUMERICAL RESULTS

Before evaluating f;, we compare our formulas with
those derived in the framework of standard P@CD
[12,13], where the kT dependence in the hard scatter-
ing amplitude is neglected and the heavy meson wave
functions, with kT integrated, take the simple form of
the b function (the so-called peaking approximation):

4B(z) = b(x —xB) &D(z) = b(x —xD)23 ' 23
(15)

Here fB = 0.12 GeV and fD = 0.14 GeV are the de-
cay constants of the B and D mesons [19], respectively.
Equations (ll) and (12) are then reduced to the standard

The wave function PB (PD) comes from 'PB ('PD) in
Eq. (4) with the evolution in Pl (P2 ), which is the re-
sult of the resummation of reducible corrections, grouped
into the Sudakov factor. The arguxnent b in PB and PD
denotes the intrinsic transverse momentum dependence
of the wave functions [18],which is a nonperturbative ob-
ject and cannot be handled in perturbation theory. Ã0
and I0 are the modified Bessel functions of order zero.
We choose t as the largest scale associated with the hard
gluon:

factorization formulas without b integrations, which lead
to

24
C f f m Bm D —zD(1m D

zBzD( mBmD

mD + XBrs2mBmD+
zBzD( mBmD

4 mB + zDt,'2mBmD
2 = Ir Fas B D 2 2 2 23 zBzD( mBmD

mBmD —zB(xmB2+ 2 2 2 2zBzD( mBmD

(16)

It is apparent that the above expressions are very sen-
sitive to the values of z~ and x~, and the coupling con-
stant n, must be regarded as a &ee parameter. We con-
sider the nonleptonic decay B + Dm, which corresponds
to the case of maximum recoil here with g = g „=1.59.
Setting a, = 0.4, xB = 0.07, and zD = 0.2 as in [13], we
obtain fl + f2 ——1.3, which gives a branching ratio com-
parable with experimental data [15]. However, if slightly
diferent values such as ~~ ——0.07 and xD ——0.15 were
inserted, the branching ratio becomes three times larger.
On the other hand, simply setting n, to a constant makes
the justification of the perturbative calculation unavail-
able. Coxnpared to the standard PQCD approach, our
modified perturbative expressions are less sensitive to the
profile change of the wave functions because of the in-
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elusion of kT in the hard scattering amplitude, which
moderates the divergences &om small x~ and xD. Sub-
stituting Eq. (15) into (ll) and (12), and performing the
integrations over bq and bq, we Gnd that the latter set of
z~ and xD leads to a branching ratio only 50% larger
than that &om the former set.

We adopt the following model for the B meson wave
function [20]:

0 6

0.5

0.4

0 3

0.2

0.1

2 2

Ogy (z, kz ) = N~ Cgy + m~ k~
- —2

0.2 0.4 0.6
b A

0.8 1.2

The constants N~ and C~ are determined by the nor-
malizations 1 .6

2dx d kate~(z, kz) = fa
0 2 3'

1

dz d'kT[4~(z, kT)]~ = ~i,
0

(18)

1.2

0.4

which give N~ ——0.923 GeV and C~ ———27.877255
GeV~. P~ is then defined by

ya(x, b) = /(PENT e~(x, VT)e'" ~

vrNgybz~(1 —z) ~

Qm~~z + C~z(1 —x)

0.2 0.4 0.6 0.8
b A

1.2

FIG. 2. Dependence of (a) fi and (b) fq on the cutofF b,
for (1) g = 1.3, (2) ri = 1.39, and (3) rj = 1.59.

x K, ( m~~z + C~z(1 —x)b) . (19)

It is observed that P~ peaks at x = 0 and decreases
monotonically with x for axed 6, signifying the soft dy-
namics involved in the rest B meson.

If we assume a similar model for the D meson wave
function, with m~ in Eq. (17) replaced by mD, straight-
forwardly,

7rNDbz~(l —x) ~

D
Qm~Dz + Cadiz(1 —z)

xKi( mDz+ C~z(1 —z)b), (2o)

we obtain the constants %~ ——0.136 GeV and CD ——

—3.495345 Gev . The resulting wave function PLi also
peaks at small z 0.01 for fixed b. However, the QCD
sum-rule analysis in [21] has shown that the average mo-
mentum &action of the light valence quark in a fast D
meson is roughly 0.2. To be consistent with this obser-
vation, we employ Eq. (20) but with CD determined by
the requirement that PD takes the maximum value at
x = 0.2 for 6 m 0. We then have C~ ———2.9 GeV~,
along with N~ ——0.240 GeV &om the normalization

f dzrtp~(z, 0) = fLi/(2~3).
Results of fi and fq derived &om Eqs. (11) and (12),

respectively, with b~ and bq integrated up to the same
cutoK 6 are shown in Fig. 2. We find that at g = 1.30
approximately 55% of the contribution to f, comes &om
the region with o., (1/b, ) ( 1 or, equivalently, b, ( 0.5/A.
The percentage of perturbative contribution increases
with rl, and for rl above 1.39, inore than. 60% of the full

which is derived Rom the amplitude

V„dVr, (~~p„(1 —ps) ]0)(D~cp"b~B)2" (22)

with the PCAC (partial conservation of axial vector cur-

contribution is accumulated in this region. It implies that
our PQCD analysis of the decay B ~ Dlv in the range
of g & 1.39 is relatively reliable. It is also found that
the self-consistency of the perturbation theory becomes
worse quickly for g & 1.3, as expected. Compared to a
similar analysis of the decay B -+ 7rlv [2], in which about
80% of the whole contribution arises &om the above per-
turbative region, PQCD does not work as well for the
decay B ~ D/v as for the B ~ m decay. The reason is
that it is only a fair approximation to treat the D meson
as being light because the ratio P~+/m~ is only equal to
2 even in the maximum recoil region. However, it is still
sensible to compare our predictions with experimental
data, since perturbative contribution indeed dominates
[7].

Based on the above conclusion, we are led to consider
the two-body nonleptonic decays such as B —+ Der and
B + DD„which can be best described by our PQCD
formalism. The decay rate of the specific mode B —+
D+m is given by
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rent) relation {m(P)~p&(l —ps)~0) = i~2f P„ inserted,
f = 93 MeV being the pion decay constant. Equa-
tion (22) is achieved following the conclusion in [22] that
the nonfactorizable W-exchange contribution is negligi-
ble. The value of fq + f2 in this case can easily be read
of 6.om the curves corresponding to g = 1.59 in Fig. 2,
which is equal to 1.44. Substituting the matrix element

0.974 we obtain I' = 8.4 x 10 IV.bI GeV
or equivalently, the branching ratio B(B ~ D+m ) =
1.65~ V,b~ from the total width (0.51+0.02) x 10 MeV of
the B meson [23]. Comparing with experimental data
B(B +D-+7r ) = 3.2 x 10, we extract the matrix
element ~V,b~

= 0.044, consistent with the currently ac-
cepted value [23]. Similarly, the decay rate for the mode
B + D+D, is given by

5 I
-I'I -bl'fA.

x
1 (m& —m& + mD ) fq + (m& —mD —mD. )f

(23)

.80.

0.75
L

0 6
1.35

0.0045

0.004

0.0035
I

0.003

0.0025

s

1 ~ 4 1.45 1.5 1.55 1.6

with the matrix element ~V„~ = 1.0, the decay con-
stant of the D, meson fD. = 0.16 GeV [19], and the
D, meson mass mD —— 1.97 GeV. In this case we

have the maximum velocity transfer g' „= (m& +
m2~ —m2& )/(2m~mD) = 1.39, for which the corre-
sponding values fq

——0.47 and f2 —— 1.32 are read
off from Fig. 2. Equation (23) then gives the de-
cay rate I' = 2.7 x 10 ~V,b~2, or the branching ra-
tio B(B ~ D+D, ) = 5.3[V,b~z. Experimental data
show B(B +D+D, ) =-9.9 x 10, from which we ex-
tract ~V,b~

= 0.043, close to that obtained from the decay
Bo —+ D+x

Because of the consistency of our predictions with ex-
perimental data, we can explore the behavior of the IW
function near the high end of g reliably. For 6nite m~
and mD, Eq. (2) is modified to

M" = gmgm~[(+(vq v2)(vq + v2)"

+(-(» v2)(» —»)"]

where (+ +( and ( -+0 in the h-eavy-meson limit. A
simple manipulation gives the relations

4 =
2 (/ma/mo fx 4 /ma/ma/g) (25)

The dependence of (+ and ( on g is shown in Fig. 3,
which exhibits a fallofF and an increase with g, respec-
tively. The magnitude of ( indeed diminishes as stated
above.

Note that in the analysis based on the heavy-quark
symmetry only the single form factor ( is involved, as
shown in Eq. (2). HQET and PQCD are basically two
difFerent approaches to B ~ D decays, and which one
is more appropriate depends on the region we are con-
sidering. From Fig. 3 it is observed that the form factor
( becomes smaller, and thus only (+ is important in
the low-g region, as required by heavy-quark symmetry.
However, ( increases with g, indicating that this sym-

0 002 ~

1.35 1 4 1 45 1 5 1 55 1 6

FIG. 3. Dependence of (a) $+ and (b) ( on p derived
from our PQCD formalism. The dependence of ( on g from
the model calculation in [11] (dashed line) is also shown.

metry breaks down gradually when the D meson moves
fast, and then PQCD may serve as an alternative tool. In
fact, the heavy-quark symmetry also breaks down, when
1/m corrections are included in HQET [11]. These cor-
rections usually increase with q [ll], consistent with the
observation made here. This is the reason the matrix
element ~V,b~ is extracted from the behavior of the IW
function at zero recoil, ((1) = 1, in HQET [10] and at
maximum recoil in PQCD. Therefore, HQET and PQCD
are complementary to each other in the study of B meson
decays as stated in the Introduction.

A model calculation of the IW function in terms of the
overlap integrals of the heavy-meson wave functions has
been performed [11],which leads to

((n) = 2 2 9 —1
exp —(2p —1)g+1 g+1 (26)

dr = IV.bl'&(~)

= IVbl'4S .G'em~ma(~' —I)"'lf~ + f2I' (27)

with the parameter p = 1. The behavior of ( is also
shown in Fig. 3. It is observed that our predictions for

(+ are close to ( at large g and begin to deviate from

( as q ( 1.39. The match confirms the applicability of
PQCD to heavy meson decays in the large recoil region.

Finally, the difFerential decay rate for the speci6c mode
B —+ D+I v with vanishing lepton masses is given by
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relations among these form factors will provide further
justification for the PQCD analysis presented here.
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FIG. 4. Dependence of R(g) on q derived from the PQCD
analysis.

Substituting the results of f; into Eq. (27), we derive
the behavior of R(xl) for rl & 1.39 as in Fig. 4, which
shows an increase with g. Once experimental data for
the spectrum of the decay B ~ D+/ v are available,
the matrix element lV, t,

l
can also be extracted from the

curve in Fig. 4.

In this appendix we show the derivation of the expo-
nent (sz, b, Q) in Eq. (6). We start with Eq. (5.42) in
Ref. [6]:

s(»b Q) = »
l &(g(~)) + B(g(~))

*~ dp (xQI
xys lx ( V)

(Al)

in which the factors A(g) and B(g) are expanded as

IV. CONCLUSIONS

In this paper we have applied the PQCD formalisxn to
the semileptonic decay B ~ Dlv and found that the per-
turbative calculation is reliable for the velocity transfer
above 1.4. The point is to include the resummation of
large radiative corrections in the process, which improves
the applicability of PQCD. The intrinsic transverse mo-
mentum dependence also plays an essential role in the
calculation. We emphasize that our analysis does not
involve any phenomenological parameter and is insensi-
tive to the pro61e change of the wave functions. The
perturbative calculation is shown to be self-consistent by
considering the magnitude of the running coupling con-
stant, which defines the region where perturbation theory
is reliable.

Our predictions are satisfying in the sense that they
match the model estimation of the IW function at the
high end of the velocity transfer, and the values 0.044 and
0.043 for the matrix elexnent lV x, l

are extracted from the
decays B —+ Der and B ~ DD„respectively. The agree-
ment of perturbative predictions with experimental data
justi6es the approximation of regarding the D meson as
a light meson, which has been employed in this work.
We then confirm the perturbative analysis of the decay
B ~ mlv in [2], which is important for the extraction of
lV„x,[. On the other hand, it is also worthwhile to apply
the same formalism to B ~ D*,D" decays [24], in which
spin efFects introduce more form factors. To explore the

x(g) = x&'& —'+ x&*&
(—

'

2n, (e'& xl
B(g) = ——' ln

l37r ( 2 )

(A2)

in order to take into account the next-to-leading loga-
rithms. The running coupling constant n, is written as

n, (p) 1 P2 ln ln(p2/A2)
7r p, In(p'/A2) p,' ln2(p2/A2)

(A3)

The above coefficients P; and A~'& are

33 —2nf 153 —19ny
24

(A4)

a~xi = —, A~'1 = ———— nq+ —P ln—l—4 2 67 ~~ 10 8 (e& l
3' 9 3 27 3 i 2 y

q = 1n(xQ/A), b = ln(1/bA) (A5)

by [7]

where nf ——4 is the number of quark flavors and p is the
Euler constant. Perforxning the integration in Eq. (Al),
we obtain s, which is given in terms of the variables
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(q) A(') „- A(2) (qqlnI =
[
— (q —b)+

2P &4 2P 4P' &b )
A(i)P2 „ ln(2q) + 1 ln(2b) + 1 A( )P2

4 q b 8

g(2)

4p2
ln

( [
ln

(
=

[4P & 2 i. E4

A( )P le ~ ) ln(2q)+1
n[

ln(2b) + 1

b

A( )P2 2 ln(2q) + 3 2 ln(2b) + 3

16Pi q b

A( )P2 18 ln (2q) + 30 ln(2q) + 19
1728Ps 2

A(')P,' q —b+ [9 ln (2b) + 6 ln(2b) + 2] .
432 s

A()P "—b

16 [2 ln(2b) + 1]

18 ln (2b) + 30 ln(2b) + 19
g2

(A6)

The previous studies involving the Sudakov logarithms
pick up only the first six terms in Eq. (A6), which are
more important than the remaining ones in the large-Q
region. Note that the coeKcients of the fifth and sixth
terms are different &om those in Refs. [6,7]. It can be
easily checked that with these corrections the results for
the pion form factor in [7] are reduced only by a few per-
cent. An explicit examination on the form factors f, in

B —+ D decays shows that the partial expression, includ-
ing only the first six terms, gives predictions smaller than
those &om the full expression by less than 5%%uo. Hence,
for simplicity, this partial expression is substituted into
(ll) and (12). Note that s is defined for q ) b and is set
to zero for q & b. As a similar treatment, the complete
Sudakov factor exp( —S) is set to uiiity, if exp( —S) ) 1,
during the numerical analysis.
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