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Large-2V phase transition in lattice twe-dimensional principal chiral models
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We investigate the large-% critical behavior of two-dimensional lattice chiral models by Monte
Carlo simulations of U(N) and SU(N) groups at large N. Numerical results confirm strong-coupling
analyses, i.e., the existence of a large-N second-order phase transition at a finite P, .
PACS number(s): 11.15.Me, 11.10.Kk, 11.15.Ha, 11.15.Pg

I. INTRODUCTIQN

Strong-coupling studies of lat tice two-dimensional
principal chiral models, with the standard nearest-
neighbor interaction

SL, = 2NP)—ReTr U(x) Ut(x+p, )

In the continuum limit SU(N) and U(N) two-
dimensional lattice actions should describe the same the-
ory even at finite N, in that the additional U(l) degrees
of freedom of the U(N) models decouple. The U(N) lat-
tice action, when restricting ourselves to its SU(N) de-
grees of freedom, represents a different regularization of
the SU(N) x SU(N) chiral field theory. One-loop calcula-
tions in perturbation theory give the A-parameter ratios

have shown evidence of a large-N phase transition at a
finite P„separating the strong-coupling and the weak-
coupling regions [1,2]. An analysis of the 18th-order N =
oo strong-coupling series of the specific heat showed a
second-order critical behavior
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with the following estimates of P, and n: P, = 0.3058(3)
and n = 0.23(3) [2, 3]. This critical phenomenon is some-
how efFectively decoupled from the continuum limit (p -+
oa); indeed, dimensionless ratios of physical quantities
are reproduced with great accuracy even for p ( p, [4,
2].

Large-N critical behaviors are also present in single-
matrix systems and are in general related to the contin-
uurn limit of two-dimensional gravity models. In partic-
ular the Gross-Witten single-link model shows at N = oo
a third-order phase transition at P, = 1/2 with a specific-
heat critical exponent n = —1 [5]. We recall that the par-
tition function of one-dimensional lattice chiral models
[and also of two-dimensional QCD (QCD2) with a Wil-
son action] can be reduced to that of the Grass-Witten
single-link model, thus leading to the same critical prop-
erties.

In this paper we investigate the large-N critical phe-
nomenon of two-dimensional lattice principal chiral mod-
els by Monte Carlo simulations, that is, by extrapolat-
ing, possibly in a controlled manner, numerical results
at sufIiciently large N, in the same spirit of the double-
scaling limit technique developed in the studies of one-
dimensional matrix models. We performed Monte Carlo
simulations of SU(N) and U(N) models for several large
values of N, studying the approach to N = oo. Some
SU(N) Monte Carlo results at large N were already pre-
sented in Ref. [4]. Since SU(N) and U(N) madels are
expected ta have the same large-N limit, U(N) Monte
Carlo results provide further information and a check of
the N ~ oo behavior of lattice principal chiral models.

where A& and A& are, respectively, the A parameters of
the U(N) and SU(N) lattice actions (1) and MS denotes
the modified minimal subtraction scheme.

The fundamental group-invariant correlation function
of SU(N) models is

(T [Ut(x)U(O)]). (5)

Introducing its lattice momentum transform G(p), we

define the magnetic susceptibility g = G(0), and the
second-moment correlation length

1 G(0, 0)
4sin 7r/L G(0, 1)

In the U(N) case we consider two Green's functions.
One describes the propagation of SU(N) degrees of free-
dom:

G~*) = ~ (T )Ut(*)U(0)) ),
U(x)

[det U(x)]'~~

The other describes the propagation of the U(1) degrees
of freedom associated with the determinant of U(x):

Ug(T) = ( idet[U~(x)U(0))) ) .

Fram the Green's functians G(x) and G~(x) we can de-
fine the corresponding magnetic susceptibilities g, yg and
secand-moment correlation lengths g~, (d.
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At finite N, while SU(K) lattice models do not have
any singularity at finite P, U(%) lattice models should
undergo a phase transition, driven by the U(1) degrees
of freedom corresponding to the determinant of U(x),
and following a pattern similar to the two-dimensional
XY model [6). The mass propagating in the determi-
nant channel Mg should vanish at a finite value Pg and
stay zero for larger P. Then for P ) Pg this sector of the
theory decouples from the other [SU(K)] degrees of free-
dom, which are those determining the continuum limit
of principal chiral models for P -+ oo. We recall that the
two-dimensional XY model critical behavior is character-
ized by a sharp approach to the critical point Px.y (the
correlation length grows exponentially), a line of fixed
point for P ) Px.y, and a finite specific heat having a
peak for a P & Pxy. (see, e.g. , Ref. [7]).

II. NUMERICAL RESULTS

A. Monte Carlo algorithm

In our simulations we used local algorithms contain-
ing overrelaxation precedures. In the SU(K) case, we
employed the Cabibbo-Marinari algorithm [8] to upgrade
SU(N) matrices by updating their SU(2) subgroups, cho-

sen randomly among the 2 subgroups acting onN (N —].)

each 2 x 2 submatrix. At each site the SU(2) subgroup
identified by the indices i, j (1 & i &j & N) was updated
with a probability P =

N zp, so that the average number
of SU(2) updatings per SU(X) site variable was n = pN.
In our simulations we always chose p & 1, decreasing p
when increasing N. We used p 1 at N = 9, p 2j3
at K = 15 and p 1/2 at K = 21, 30. The extension
to the U(N) case is easily achieved by updating, beside
SU(2) subgroups, U(1) subgroups. In our simulations we
upgraded the U(1) subgroups identi6ed by the diagonal
elements of the U(K) matrix. The SU(2) and U(1) up-
datings were performed by a mixture of an overheat-bath
algorithm [9] (90%%uo) and a standard heat-bath algorithm
(10%%uo). At a fixed parameter p, the number of operations
per site increases as N at large ¹

The above algorithm experiences a critical slowing
down in ¹ that is, keeping the correlation length Axed
the autocorrelation time grows with increasing ¹ This
effect is partially compensated by a reduction of the fluc-
tuations of group-invariant quantities when N grows. In
the U(K) simulations the quantities related to the deter-
minant channel are subjected to large fluctuations, caus-
ing large errors in the measurements.

In Tables I and II we present Monte Carlo data, respec-
tively, for the U(N) and SU(N) simulations. Finite-size
systematic errors in evaluating infinite-volume quantities
should be smaller than the statistical errors of all numer-
ical results presented in this paper.

TABLE I. Numerical results for U(N).

9 0.30
0.31
0.313
0.315
0.318
0.3185
0.319
0.320
0.323
0.323

15 0.28
0.30
0.305
0.308
0.310
0.311
0.311
0.312
0.313
0.315
0.315

21 0.28
0.30
0.3025
0.305
0.308
0.309
0.3095
0.31

L Stat

24 100k
30 150k
30 300k
36 150k
36 300k
36 400k
42 300k
42 400k
48 330k
60 200k
18 150k
24 200k
24 180k
30 250k
30 300k
30 500k
36 300k
36 600k
36 500k
42 200k
48 300k
18 100k
24 200k
24 300k
30 300k
30 200k
30 300k
30 450k
36 300k

0.60374(8)
0.56706 (9)
0.55215(10)
0.54077(14)
0.52128 (10)
0 51799(11)
0.51482(11)
0.50816(10)
0.49172(9)
0.49166(11)
0.65373(4)
0.60276 (6)
0.58405(9)
0.56875(9)
0.55423(12)
0.54453(10)
0.54470(13)
0.53374(11)
0.52365(12)
0.50920(10)
0.50915(7)
0.65373(4)
0.60273(6)
0.59390(6)
0 58318(6)
0.56337(15)
0.5512(3)
0.5415(3)
0.5337(2)

0.284(6)
0;427(11)
0.541(11)
0.61(2)
0.66 (2)
0.69(2)
0.69(2)
0.66(2)
0.50(2)
0.52(2)
0.163(3)
0.300(10)
0.396(12)
0.57(2)
o.78(3)
0.97(4)
0.97(4)
1.05(4)
0.94(4)
0.50(3)
0.49 (2)
0.162(4)
0.303(9)
0.361(10)
0.446 (14)
0.88(6)
1.31(13)
1.98(15)
1.28 (10)

10.50(3)
15.43(4)
18.53(5)
21.80(10)
29.47(9)
31.17(11)
32.86(13)
37.2 (2)
51.6(3)
51.7(3)
6.924(7)

10.81(2)
13.09(3)
15.55 (3)
18.83(5)
21.58(4)
21.52(6)
25.57(10)
30.42(10)
40.0(2)
39.7(2)
6.972(8)

10.881(13)
11.869(14)
13.31(2)
16.79(5)
19.92(10)
23.11(13)
26.23(11)

(a
2.058(14)
2.649(17)
2.972(14)
3.36(3)
4.08 (3)
4.22(2)
4.38(3)
4.73(3)
5.83(4)
5.79(7)
1.519(4)
2.063(9)
2.346(9)
2.632(10)
2.996(11)
3.276(8)
3.276(14)
3.O7(2)
4.131(15)
4.95(4)
4.89(4)
1.526(5)
2.O69(6)
2.185(6)
2.364(9)
2.748(13)
3.09(2)
3.43(2)
3.75(2)

1.64(2)
2.82(4)
3.93(5)
5.59(9)

11.3(2)
12.8(2)
14.7(4)
20.5(5)
55(3)
57(3)
1.030(8)
1.29(2)
1.57(2)
2.14(2)
3.31(5)
4.87(6)
4.85(9)
8.42(15)

14.5(5)
42(5)
46(3)
0.991(8)
1.140(8)
1.22O(9)
1.394(11)
2.15(3)
3.60(9)
6.6(3)

11.1(5)

4
0.6(2)
1.0(2)
1.2(2)
1.9(2)
3.0(2)
3.2(2)
3.3(3)
4.3(3)
8.5(5)
7.7(7)

0.7(2)
1.2(2)
1.6(1)
1.5(2)
2.8(2)
3.7(3)
7.2(7)
8.1(7)

1.2(2)
2.4(2)
3.4(3)
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TABLE II. Numerical results for SU(N). When more than one lattice size appears, the corre-
sponding results were obtained collecting data of simulations at the reported lattice sizes (which
were, in all cases, in agreement within the errors).

Stat

15

30

0.290
0.294
0.295
0.2955
0.296
0.2965
0.300
0.310
0.295
0.299
0.300
0.300
0.300
0.300
0.3005
0.301
0.302
0.305
0.310
0.300
0.302
0.302
0.3025
0.3025
0.3025
0.303
0.305
0.310
0.300
0.3025
0.303
0.304
0.304
0.305

30
30)36

24,30,36,42
36

30,36
36

30,36,42
42,48,54

24
30
24
30
36
42
36
36
36
36
45
24
30
36
24
30
36
36
30
42
24
30
30
24
30
30

200k
600k
900k
500k
600k
600k
350k
500k
200k
300k
400k
400k
600k
500k
600k
500k
500k
500k
300k
300k
500k
600k
400k
400k
500k
500k
500k
240k
150k
200k
200k
500k
500k
200k

0.58774(8)
0.56788 (6)
0.56284(4)
0.56026(5)
0.55781(5)
0.55531(6)
0.53846(9)
0.50030(4)
0.60013(11)
0.57564(10)
0.56798(10)
0.56805(10)
0.56807(9)
0.56810(5)
0.56430(7)
0.56054(6)
0.55300(5)
0.53418(6)
0.51178(4)
0.58810(10)
0.57049(13)
0.57069(8)
0.56490(20)
0.56517(14)
0.56491(11)
0.55959(9)
0.54100(8)
0.51548(6)
0.59927(8)
0.58479(10)
0.58007(15)
0.5625(4)
0.5632(3)
0.5466(2)

0.412(7)
0.435(6)
0.443(5)
0.442(6)
0.438(6)
0.436(6)
0.413(11)
0.306(5)
0.47(2)
0.66 (2)
0.69(4)
0.70(3)
0.66(2)
0.70(2)
0.68(2)
0.68(2)
0.65(2)
0.516(13)
0.354(7)
0.65(3)
1.00(4)
0.95 (3)
1.14(6)
1.02(5)
1.04(5)
0.96(4)
0.72(2)
0.41(2)
0.38(2)
0.79(5)
1.00(8)
2.4(3)
2.3(2)
1.05(10)

13.32(3)
16.89(3)
18.00(2)
18.58 (4)
19.20(3)
19.86(4)
25.27(7)
47.25(12)
11.47(2)
15.07(3)
16.55(3)
16.57(3)
16.58(2)
16.57(3)
17.41(3)
18.31(3)
20.26 (3)
26.86(6)
39.06(10)
12.90(2)
15.91(3)
15.87(2)
17.09(6)
17.02(4)
17.11(4)
18.38(3)
24.14(5)
36.66(12)
11.35(2)
13.24(3)
13.99(4)
17.55(7)
17.40(7)
22.13(5)

2.353(11)
2.793(14)
2.910(9)
2.95(2)
3.03(2)
3.08(2)
3.66(2)
5.43(3)
2.149(9)
2.577(11)
2.738(6)
2.746(9)
2.745(8)
2.752(12)
2.833(11)
2.940(10)
3.131(9)
3.786(11)
4.80(2)
2.310(6)
2.665(7)
2.659(8)
2.787(8)
2.784(8)
2.800(10)
2.936(9)
3.526(8)
4.61(2)
2.114(7)
2.338(7)
2.433(10)
2.85?(10)
2.829(8)
3.320(12)

Pp, g(N) P, + cN (10)

B. Numerical evidence of a large-N phase transition

Lattice chiral models have a peak in the specific heat

1 dE
N dT'

which becomes sharper and sharper with increasing ¹

In Figs. 1 and 2 we plot the specific heat, respectively,
for the U(N) and SU(N) models. Such a behavior of
the specific heat should be an indication of a phase tran-
sition for N = oo at a ffnite P, . The positions of the
peaks P~, g in SU(N) and U(N) converge from oppo-
site directions, restricting the possible values of P to
0.304 + P, & 0.309. Notice that Monte Carlo data for
P + P, 0.306 approach, for growing N, the resummed
18th-order large-N strong-coupling series of the specific
heat [3]; in this region, as expected by strong-coupling
considerations, the convergence of U(N) models is faster.

A more accurate estimate of the critical coupling P,
can be obtained by using a finite-% scaling ansatz

in order to extrapolate Pp, ~(N) to N ~ oo. The above
ansatz is suggested by the idea that the parameter N may
play a role quite analogous to the volume in ordinary
systems close to the criticality. This idea was already
exploited in the study of one-dimensional matrix mod-
els [10—12], where the double-scaling limit turned out to
be very similar to finite-size scaling in a two-dimensional
critical phenomenon. Substituting L ~ N and I/v -+ e,
Eq. (10) becomes the well-known finite-size scaling rela-
tionship derived in the context of renormalization group
theory. Furthermore, the exponent e should be the same
in the U(N) and SU(N) models, in that it should be a
critical exponent associated with the N = oo phase tran-
sition. Notice that the function P~, y(N) in Eq. (10) is
considered at infinite space volume.

In the study of ordinary critical phenomena the
reweighting technique [13], turns out to be very effi-
cient to determine quantities such as the position of the
specific-heat peak. In our work we could use this tech-
nique only for N = 9, since for larger N the reweighting
range around the point where the simulation is performed
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2.5

2.0

~ N=9
o N=15
o N=21

0.325

0.320

0.315

1.5
0.310

0.305

o u(N)
o su(x)

1.0 0.300—

0.5
f 0.295

0.290
0.00 0.02 0.04 0.06

1/N

I

0.08 0.10 0.12

I I I I I I

0.280 0.285 0.290 0.295 0.300 0.305 0.310 0.315 0.320
0.0

FIG. 1. Specific heat vs P for SU(N) models. The solid
line represents the strong-coupling determination, whose esti-
mate of the critical P is indicated by the vertical dashed lines.
The thick solid lines above the peaks represent our estimates
of Ppemt ~

turned out to be much smaller than the typical P inter-
val of our simulations. For N & 15, P~, q(N) data and
their errors were estimated from the specific-heat data
reported in Tables I and II, supported by the direct mea-
surements of the specific-heat derivatives at each P.

Our estimates of Pz, g at N = 9, 15, 21 for U(N) and
N = 9, 15, 21, 30 for SU(N) fit very well formula (10). By
a fit with four free parameters p„e, CU{~), and csU(~),
we found

2.5

2.0

~ N=9
o N=15
o N=21
o N=30

1.5

1.0

0.5

0.0
0.280 0.285 0.290 0.295

I

0.300 0.305

FIG. 2. Specific heat vs P for U(N) models. The solid line
represents the strong-coupling determination, whose estimate
of the critical P is indicated by the vertical dashed lines. The
large solid lines above the peaks represent our estimates of

peak ~

P, = 0.3057(3),
e = 1.45(8).

In Fig. 3 the fit result is compared with the P~, k(N)
data. A fit with two independent e exponents OUI~) and

esU~~~ gave compatible results, but larger errors. No-
tice that this Monte Carlo estimate of p, is in agreement

FIG. 3. P~, q(N) vs 1/N The d.ashed lines show the fit
result.

with the determination (2) coming from strong-coupling
computations.

We checked the finite-N scaling ansatz (10) in the sim-
ilar context of the large-N Gross-Witten phase transition
of one-dimensional lattice U(N) chiral models with free
boundary conditions, where the critical point P, and the
critical exponents v and n are known: P = 1/2, v = 3/2,
and o. = —1. We computed the position of the specific-
heat peak at finite N finding the asymptotic behavior
(10) with e = 2/3. Details of these calculations are given
in the Appendix. Therefore we have e = 1/v, as expected
from the analogy with the finite-size scaling phenomenon
of an ordinary critical system. Notice that the critical ex-
ponents v and o. satisfy a two-dimensional hyperscaling
relation 2v = 2 —o.. In one-dimensional lattice chiral
models the number d, = 2 of effective dimensions of the
large-N critical phenomenon is related to the fact that
the double limit N -+ oo and p ~ p, is equivalent to the
continuum limit of a two-dimensional gravity model with
central charge c = —2.

Since the large-N phase transition of the two-
dimensional lattice chiral models is of the second-order
type, its behavior cannot be found in the classifica-
tion of double-scaling limits of Refs. [14, 15], which are
parametrized by a central charge c ( 1 implying o. ( 0.
Moreover, unlike one-dimensional lattice chiral models,
the interpretation of the large-N phase transition of two-
dimensional lattice chiral models as an effective d, = 2
ordinary critical phenomenon does not seem to be valid:
In fact, if e = 1/v, by substituting our estimates of n
and e in the hyperscaling relation d = (2 —n)e we would
obtain d, = 2.6(2). A more general thermodynamic in-
equality would give d, ) (2 —n)e [16].

Monte Carlo data of g and (& for P & P, compare very
well with the large-N strong-coupling series of y (up to
15th order) and (~ (up to 14th order) [2]. Figure 4, where
(~ is plotted versus P, shows that data approach, with
growing N, the curve obtained by resumming the strong-
coupling series of (G. [3], and in particular the U(N) data,
whose convergence is faster, are in quantitative agree-
ment.

I arge-N numerical results seem to indicate that all
physical quantities, such as y and (~, are well-behaved
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o SU(9)
~ SU(15)
+ SU{21)
4 SU(30)
o U{9)
o u(~5)
o u(2~)

o

1 I I I I I I

0.275 0.280 0.285 0.290 0.295 0.300 0.305 0.310

FIG. 4. (o vs P. The solid line represents the strong-
coupling determination, whose estimate of the critical P is
indicated by the vertical dashed lines.

o N=9
o N=)5

50 —
z M=21

40

Xd 30—

20

10

0
0.295 0.300

I

I

I

I

I

I

I

I

I

I

I

I

0.305

A

B
0.310

1

0.315
I

0.320 0.325

FIG. 5. yq vs P. The vertical dashed line indicates the
estimate of P, . The solid symbols indicate the positions of
the peak of C at N = 9, 15, 21.

functions of the internal energy E even at N = oo [4].
Therefore as a consequence of the specific-heat divergence
at P„ the N = oo P function Pl. (T)—: adT/da —should
have a nonanalytical zero at P„ that is, Pg(P) IP —P, I

in the neighborhood of P, . By defining a new tempera-
ture proportional to the energy [17], this singularity dis-
appears, and one can find good agreement between the
measured mass scale and the asymptotic scaling predic-
tions in the "energy" scheme even for P & P„where
strong-coupling expansion is expected to converge [4]. In
fact strong-coupling computations show asymptotic scal-
ing with a surprising accuracy of few percent [2].

In the U(N) case, a Kosterlitz-Thouless phase transi-
tion driven by the determinant is expected at Pg ) P~, g
for each finite N. Our data seem to support this picture;
indeed, after the peak of C, the magnetic susceptibility
yg and the second-moment correlation length (g defined
from the determinant correlation function (8) begin to
grow very fast. In Fig. 5 we plot yg versus P. Green and

Samuel argued (using strong-coupling and weak-coupling
arguments) that the large-N phase transition is nothing
but the large-% limit of the determinant phase transi-
tion present in the U(N) lattice models [6, 18]. Accord-
ing to this conjecture, in the large-N limit Pd and P&,~g
should both converge to P„and the order of the deter-
minant phase transition would change from an infinite
order of the Kosterlitz- Thouless mechanism to a second
order with divergent specific heat. The large-N phase
transition of the SU(N) models could then be explained
by the fact that the large-N limit of the SU(N) theory
should be the same as the large-N limit of the U(N) the-
ory. Our numerical results give only a partial con6rm of
this scenario; we can just get a hint from the behavior
of g~ and (g with growing N that the expected phase
transition is moving toward P, . The large-N strong-
coupling series of the mass Mg propagating in the de-
terminant channel has been calculated up to 6th order,
indicating a critical point, determined by the zero of the
M~ series, slightly larger than our determination of P, :
Pg(N = oo) 0.324 [6]. This discrepancy could be ex-
plained either by the shortness of the strong-coupling se-
ries of Mg or by the fact that such a determination of
P, relies on the absence of nonanalyticity points before
the strong-coupling series of Mg vanishes, and therefore a
nonanalyticity at P, 0.306 would invalidate all strong-
coupling predictions for P ) P, .

C. Phase distribution of the link operator

In one-dimensional principal chiral models the large-N
third-order phase transition is a consequence of a com-
pactification of the eigenvalues of the link operator

I = U(2:)Ut(x+ p),

which are of the form A = e' . In the weak-coupling
region (P ) P, ) the phase distribution of the eigenval-
ues of the link operator I, p(P, 0) with 0 E (—n, n], is
nonvanishing only in the region I0I & 0, (P) & vr. The
third-order critical point P, is determined by the limit
condition 0,(P) = vr, separating the weak-coupling region
from the strong-coupling region where p(P, vr) ) 0 [5].

In order to see if a similar phenomenon character-
izes the large-N phase transition also in two dimensions,
we have extracted from our simulations the phase dis-
tribution p(P, 0) of the eigenvalues of I. Notice that
p(P, 0) = p(P, —0) by symmetry; therefore, in the follow-
ing we will show p(P, 0) only in the range 0 & 0 & 7r.

I arge-N numerical results seems to support the com-
pactification of the phase distribution at P„ indeed, we
found p(P, vr) 0 for P ) P~, & [p(P, m) can be strictly
zero only for N = oo]. This fact is illustrated in Fig. 6,
where we compare the distributions p(P, 0) at P = 0.300
and P = 0.305 for N = 21, whose P~ k 0.3025: The
distribution values at 0 = n (p(0.300, vr) 0.010 and
p(0.305, vr) 0.0007) decrease by about a factor of 15,
becoming very small. Similar behaviors are observed at
the other values of ¹

In the SU(N) models p(P, 0) presents N maxima, as
Fig. 6 shows. This structure is absent in the U(N) models
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0.30

D. Critical slowing down around the
large-% singularity

0.25

p(P, B)
0.20
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0.00
0.0 1.0 2.0 3.0

FIG. 6. p(P, H) for the SU(21) model at P = 0.300 and

P = 0.305.

and should disappear in the large-N limit, in that the
height of the peaks with respect to the background curve
should vanish. For example, the U(N) and SU(N) phase
distributions at P = 0 are, respectively,

1
p(0, 0) =-

27'
(i3)

p(0, 8) = —1 + (—1) + —cos (No)
2K N (i4)

In our SU(N) simulations we found the peak heights to
decrease approximately as 1/N.

It is also interesting to see how the distributions
p(n, P, 0) of the generalized link operators

The large-N critical behavior causes a phenomenon of
critical slowing down in the Monte Carlo simulations. At
sufficiently large N (N & 15) and for both U(N) and
SU(N) models, the autocorrelation times of the internal
energy 7@ and the magnetical susceptibility rx (estimated
by a blocking procedure) showed a maximum around the
peak of the specific heat, and a sharper and sharper be-
havior with growing ¹ The increase of the autocorrela-
tion times, with growing N, was much larger around the
specific-heat peak than elsewhere. In the SU(N) simula-
tions, 7@ (wx) went from 600 (400) at P = 0.3025 and
N = 21 to 3000 (2500) at P = 0.304 and N = 30 (the
uncertainty in these numbers is large; they are just in-
dicative). After the peak of C, r~ and wx decreased,
for example, at N = 30 and P = 0.305, w~ 700
and v~ 300. A similar behavior was observed in the
U(N) simulations. The above critical slowing-down phe-
nomenon represents the most serious difFiculty in getting
numerical results around P, at larger N by the Monte
Carlo algorithm used in this work. At large correlation
length w~ increases again due the critical slowing down
associated with the continuum limit, while w~ tends to
be stable.

We want to mention an attempt for a better algorithm
in the U(N) case, by constructing a microcanonical up-
dating involving globally the U(N) matrix instead of us-

ing its subgroups. A microcanonical updating of U ac-
cording to the action

A(U) = Re Tr [UI"]

can be achieved by performing the reflection with respect
to the U(N) matrix U „which maximizes A(U):

L(n) = U(z) Ut(x + np) Unew —Umax U~ig Umaxq

0.30

0.25

p(n, B)
0.20

0, 15

0.10

[p(l, P, 0) = p(P, O)] evolve as function of the distance n.
In Fig. 7 we plot p(n, P, g) for N = 15, at P = 0.305 ((~
3.79), and for various values of n. When d = n/( ~ oo,
p(n, P, 0) appears to tend to the P = 0 distribution (14).

Umax =

Notice that the determination of U requires the diag-
onalization of the complex matrix F The updat. e (17)
does not change the action, and it must be combined
with ergodic algorithms (e.g. , heat bath). We found that,
at large N and in the region of P values we considered,
the algorithm based on the SU(2) and U(1) subgroups
performs better than those based on the updating (17).
The latter may become convenient at relatively small N
and/or for larger correlation lengths. On the other hand,
at large space correlation lengths multigrid algorithms
should eventually become more efFicient, in that they
should have smaller dynamical exponents (see Refs. [19,
20] for some implementations of multigrid algorithms in
the context of lattice chiral models).

0.05

0.00
0.0 1.0 2.0 3.0

APPENDIX

FIG. 7. p(n, P, H) for the SU(15) model at P = 0.305 for
various value of n.

The partition function of the one-dimensional U(N)
chiral model can be reduced to that of a single unitary
matrix model, i.e., the Gross-Witten model
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TABLE III. Pp, q(N) and C(N, Pp, q) versus N for
one-dimensional U(N) lattice chiral models.

0.80

P, +aN +b N

2
3

6
7
8
9
10
11

peak

0.930889
0.818356
0.758001
0.719664
0.692846
0.672876
0.657337
0.644848
0.634554
0.625899

&(Ppeak)

0.29461215
0.27992604
0.27269388
0 ' 26839003
0.26553250
0.26349442
0.26196545
0.26077452
0.25981956
0.25903594

0.75

0.65

0.70

0.60

0.55

/
/

0.50
0.0 0.1

1/N
0.2 0.3

z(lv, s) = /dU exp(lvsTrjU+ Ut]). (Al)

FIG. 8. Pp q(N) vs 1/N in one-dimensional U(N) lattice
chiral models.

1 dE 1 2d2F
C(N, P) = — = —P (A3)

shows the existence of a third-order phase transition at
P, = 1/2; indeed, we have

C(oo, P) =P

C(oo, P) =—1
for P(P„

for P) P, . (A4)

The singularity at P, can be characterized by a negative
critical exponent o. = —1. It is worth noting that an

The &ee energy density can then be written in terms
of a determinant of modified Bessel functions

F(N, P) = lnZ(N, P) = 1ndetI~;(2NP).
1 1

(A2)

The large-N limit of the specific heat,

Pp, ~k(N) = P, + aN ' + bN (A5)

with e = 2/3, and therefore v = I/e = 3/2 (a 0.595
and b 0.13). The result v = 3/2 was also found in the
finite-N scaling of the partition function zeros [12].

analysis of the double scaling N -+ oo and P -+ P, al-
lows the determination of the correlation length exponent
v = 3/2 [21], and that n and v satisfy a hyperscaling re-
lationship associated with a two-dimensional critical phe-
nomenon: 2v = 2 —o..

One-dimensional U(N) lattice chiral models present
a peak in the specific heat, whose position Pp, k(N)
should approach P, with increasing N. The finite-N
scaling arguments already mentioned in this paper lead
to the ansatz (10) for the positions of the specific heat
peaks. In Table III we report the values of Pp, k(N) and
C(N, Pp, k) as function of N up to N = 11. As shown in
Fig. 8, the large Nbehavior -of Pp, k(N) is well fitted by
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