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We present a determination of ~V, i,
~

from semileptonic B decays that includes resummation of
supposedly large perturbative corrections, originating from the running of the strong coupling. We

argue that the low value of the BLM scale found previously for inclusive decays is a manifestation
of the renormalon divergence of the perturbative series starting already in third order. A reliable
determination of ~V,z

~

from inclusive decays is possible if one either uses a short-distance b quark mass
or eliminates all unphysical mass parameters in terms of measured observables, such that all infrared
contributions of order 1/mi, cancel explicitly. We find that using the MS running mass significantly
reduces the perturbative coefBcients already in low orders. For a semileptonic branching ratio of
10.9%%uo we obtain ~V,i, ~(rxx/1. 50 ps) ~ = 0.041 +0.002 from inclusive decays, in good agreement with

the value extracted from exclusive decays.

PACS number(s): 12.15.Hh, 12.39.Hg, 13.20.He

I. INTRODUCTION

The physics of heavy flavors has experienced a rapid
development within the past few years, driven by new
data that aim to test the standard model and to deter-
mine its fundamental parameters. In particular, semilep-
tonic B decays for the moment provide the best pos-
sibility to determine the Cabibbo-Kobayashi-Maskawa
(CKM) xnatrix element [Vb~. Two competing strategies,
which both have received considerable attention, are the
determination of [V,b[ booxn the total inclusive semilep-
tonic decay rate [1] and from the exclusive B ~ D'Lv
decays at the point of zero recoil [2]. In both cases the
absence of 1/mb corrections allows an accurate theoreti-
cal description. The decay rates can be calculated within
perturbation theory up to terms of order 1/m&2. More-
over, the 1/m2bcorrections are estimated to be rather
small ( 5%). Thus, at present, the theoretical accuracy
of the determination of [V,b[ is to a large extent limited
by a poor control over perturbative radiative corrections,
which are only known to one-loop accuracy. An explicit
calculation of the second-order correction is a very hard
enterprise already for b ~ u transitions and even more so
for b —+ c transitions because of the c quark mass, whose
numerical effect is very important, see [3, 4].

A process of major phenomenological interest is the
total inclusive B meson decay rate with a c quark in the
final state, which is calculable in perturbation theory as

On leave of absence from St. Petersburg Nuclear Physics
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fi(a) = 1 —8a+ 8a —a —12a lna, (1 2)

and the function go(a) is known in analytic form [5]. Here
and below mg and m, denote pole masses. The pertur-
bative expression in (1.1) should be complemented by
nonperturbative corrections suppressed by powers of the
heavy-quark masses [6], and we will take these correc-
tions into account in the final analysis. In the major
part of the paper, however, we restrict ourselves to per-
turbation theory and estimate higher-order perturbative
corrections to (1.1).

For the realistic value m /mb = 0.3, Luke, Savage, and
Wise [7] have given an estimate for the n2 correction in
(1.1) as

2
1 —1.67 ' —15.1 (—' (1.3)

where a, is the modified minimal subtraction scheme
(MS) coupling. For m, /mb ~ 0, i.e. , for b ~ u de-
cays, the estimated size of the second-order correction is
even more striking [7]:

I'(B ~ X ev) = I o(a) 1 —Cz —'go(a) + O(a, )
7r

(1.1)

where C~ = 4/3 and a = (m, /mb)2.
The tree-level decay rate, including the phase space

factor fi(a), reads
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1 —2.41 —28.7
n, (mb) n, (1.4)

The coeKcients in &ont of o;, were in both cases obtained
by an explicit calculation of the diagrams correspond-
ing to the insertion of a fermion loop into the gluon line
in the leading-order virtual correction, as in Fig. 1(b),
or the splitting of an emitted gluon into a light-quark—
antiquark pair, for the real emission. These contribu-
tions are proportional to the number of light fermion fla-
vors and the above numerical estimates are obtained by
restoring the full one-loop @CD P function by the sub-
stitution Ny -+ Ny —33/2.

This replacement assumes the hypothesis of Brodsky,
Lepage, and Mackenzie (BLM) [8] that the dominating
radiative corrections originate &om the running of the
strong coupling. The result of this procedure is usually
expressed as a redefinition of the scale of the coupling in
the leading-order correction that completely absorbs the
second-order correction. The magnitude of these cor-
rections leads to very low BLM scales for semileptonic
decays [7]:

pq
"——0.07m', pq ——0.13m', (1 5)

with numerical values of order (350—650) MeV that are
hardly acceptable. The authors of Ref. [7] interpreted
their result as an indication that an accurate determi-
nation of ~Vb~ &om inclusive decays requires knowledge
of the exact second-order correction and even those of
higher order. In Ref. [9] the large two-loop correction was
interpreted as a breakdown of perturbation theory which
disfavors the inclusive approach to ~Vcb~ m comparison to
the exclusive one, for which large radiative corrections do
not appear in the same approximation [9]. On the other
hand, as noted in [10], the difference in the size of the n,
correction for inclusive and exclusive decays largely dis-
appears, when the scale of the leading-order correction is
chosen equally as gm mb in both cases. Still, the very
fact of low BLM scales suggests the investigation of yet
higher-order radiative corrections.

It is this question we address in this paper. Our anal-
ysis extends the results of Ref. [7] for inclusive decays
and repeats that of [11] for exclusive ones in that we re-
sum the effects due to one-loop running of the strong
coupling, but to all orders in perturbation theory. Thus,
our investigation of higher-order corrections assumes the
dominance of vacuum polarization effects also in higher
orders and we do not address the question whether knowl-
edge of the exact two- (and higher) loop corrections as
compared to the BLM approximation is important. The
idea is that if higher-order corrections are large at a cer-

tain scale, they are presumably dominated by running
coupling effects and can thus be taken into account ex-
actly, at least within the restriction to one-loop running.
The remaining corrections are then small and therefore
can only be accounted for by an exact calculation. For-
mally, we resum terms of the type n, (Pon, ), of which
the correction found in [7, 9] is the erst term with n = 1.
These can be traced by a calculation of contributions pro-
portional to N" given by a chain of fermion loops as inf
Fig. 1(c). The leading-order BLM scales calculated in [7,
9] correspond to using the @CD coupling at some char-
acteristic virtuality obtained by averaging ln k, where A:

is the gluon momentum, over the leading-order diagram.
The resummation that we perform in this paper amounts
to averaging with the one-loop running coupling n, (k2)
itself, rather than ink . We have developed a technique
to implement this resummation in Refs. [12, 13] and refer
the reader to these articles for all conceptual and techni-
cal issues that we do not repeat in the present application
to semileptonic B decays.

We find that the large second-order radiative correc-
tion to 5 m uev transitions calculated in [7] is in fact
already close to the regime, where the series starts to di-
verge because of factorially growing coefBcients. In our
approximation (called "naive non-abeliaruzation" in [12,
13]) the series in (1.4) is continued as

1 —2.41—1 + 11.12 —+ 149.3

+ 2319 —' + 42751 —' +, 1.6

and with n, (mb) = 0.21 one gets a non-convergent series
of corrections to the decay rate already in low orders:

I'(B -+ X„ev) = I'p(0) 1 —2.41 ' [1+0.75+ 0.67
n, (mb)

+0.70+ 0.87+ 1.27+ . ]

=r.(o)(& —o.44
' '

[o.o44:o.oo])
= (0.63 6 0.10) I'o(0). (1.7)

In attributing a numerical value to this divergent series
we assume that it is asymptotic. Then one must truncate
it at the minimal term and its value gives an estimate of
the intrinsic limitation of the perturbative calculation,
which cannot be reduced by computing higher orders.

For 6 ~ uev transitions the minimal term occurs at
third order in o., and its size is comparable to the second-

(b) (c)

FIG. 1. Generic radiative corrections for heavy-particle
decays: (a) leading order, (b) with a fermion bubble insertion,
and (c) with a chain of fermion bubbles. The dashed lines
represent the lepton pair produced in the decay.

In practice, we adopt a similar procedure based on the Borel
integral, and give the principal value of the Borel integral as
the central value, and the imaginary part (divided by vr) as
an estimate of the uncertainty, see Sec. II for details.
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order correction. Numerically, it gives a 15'%%up uncertainty
for the total decay rate, not taking into account the
uncertainty in the input parameters o., and the quark
masses. For b ~ cev transitions, in the same approxima-
tion of vacuum polarization dominance, we obtain

I'(B m X,ev) = (0.77 + 0.05) I'p(0. 3) (1.8)

with a 7% uncertainty. We also note that the uncertain-
ties associated with the fixed-sign factorial divergence of
perturbative expansions cannot be reduced by the use of
a different renormalization scheme, or a change of scale
in the coupling [14]. Thus, the change of scale suggested
in Ref. [10), whicl, decreases the second-order coefficient,
is ineffective already at the next order, because the re-
duction of coefficients is compensated by an increase of
ns.

However, it would be premature to draw a pessimistic
conclusion from the apparently bad behavior of pertur-
bative corrections. The large corrections displayed above
originate from infrared regions in the integration over
loop momenta and produce an uncertainty parametri-
cally of order AQcD/mi, . As it turns out, the importance
of infrared regions is solely due to the choice of an input
parameter, the pole mass as renormalized mass parame-
ter, which is incompatible with the short-distance prop-
erties of the decay process. The series that relates the
pole to the bare mass contains large finite renormaliza-
tions of infrared origin. If these are made explicit, for
example, using the MS renormalized mass, they cancel
with the large corrections of infrared origin present in
the perturbative series for the decay width [15, 16].

The preference of the MS (or another "short-distance" )
mass might seem surprising and even counterintuitive.
After all, it is the pole mass that governs the (partonic)
decay kinematics and it is the visualization of an almost
on-shell (up to effects of order AQCD) b quark inside the
meson that motivated the approximation of the meson
decay by a free quark decay in the first place. But this
picture also implies the existence of a static field (in the
rest &arne of the quark) around the heavy quark, which
behaves as 1/r at short distances. Thus a contribution
of order Agco to the self-energy of the quark is stored
at large distances, r 1/AgcD, of the order of the ra-
dius of the heavy-light meson. However, because of the
Kinoshita-I ee-Nauenberg cancellations, in an inclusive
decay of a heavy quark the decay vertex is localized to
within a distance 1/m[, and the energy stored in the field
at large distances r & 1/p (where mi, ) p & AqcD is a
factorization scale) cannot participate in the hard pro-
cess, but is absorbed into a rearrangement of the color
field of the hadronizing spectator quark. This explains,
loosely spoken, why a short-distance mass is more ap-
propriate in the description of inclusive decays as a hard
process. This reasoning assumes that the quark produced
by the weak current is fast and does not apply to a mas-
sive quark produced with zero recoil (cf. Sec. III8).

Since ultimately any quark mass parameter is unphys-
ical, the most transparent way to exhibit the infrared
cancellations would be to eliminate any mass parameter
in terms of a suitable physical quantity, provided it is
determined by short distances and does not import 1/mb

corrections (which rules out meson masses). However, as
with the strong coupling constant, it is convenient to use
a mass parameter for bookkeeping purposes and as a nu-
merica/ input parameter. It is only at this point that the
MS mass (or any other mass defined at short distances)
is favored over the pole mass, because it does not import
infrared effects.

In fact, the divergence of the series of radiative correc-
tions to the decay rates is only one aspect of the problem
with using the pole mass. Another aspect is that it can-
not be accurately extracted from measurable quantities
through perturbative expansions [15, 17].

To reinforce this point we imagine that we used pole
masses as numerical input parameters, determined from
another measurement. Then one would always find that
the size of perturbative corrections does not allow a de-
termination of the masses to an accuracy better than
+100MeV (we quote the estimate &om [13]). Treat-
ing the uncertainty in the input parameters as uncor-
related with the uncertainty in the theoretical prediction
for the radiative corrections to the B decay width, we ob-
tain a +21%%up and +10%%up uncertainty for B —+ X„ev and
B ~ X ev decays, respectively. This translates into an
irreducible theoretical uncertainty of +10'%%uo in ~V s[ and
+5% in [V s~. The 10% uncertainty in I'(B + X ev) is to
be compared with the present experimental uncertainty
of 12% of the branching ratio.

The calculation of decay rates with running masses
has already been considered in [18] at the level of one-
loop perturbative corrections. After resummation, we
find that apart &om the cancellation of in&ared contri-
butions the perturbative coefficients are strongly reduced
already in low orders. In particular, if the MS running
mass is used in the tree-level decay rate, the series of
radiative corrections for b ~ uev decays becomes

A1+4.25—1+8.99 —+ 35.15
7r 7r 7r

+ 241.1 — + 1547 — + . - - 1.9

Although the leading-order correction has increased (and
changed sign), the higher-order coefficients are signifi-
cantly reduced, so that with the same value of n, as
above we get the well convergent series

I'(B-+X„ev) =I' (0) 1+4.25 ' [1+0.604

= I'o(0) (1 4.25 ' [1.92 6 0.01])

(1.10)

with an uncertainty that is negligible compared to the
uncertainty inherent in the restriction to vacuum polar-
ization corrections.

It should be noted that anticipating the eventual can-
cellation of infrared regions we can define the numerical
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value of the sum of radiative corrections even when it
diverges, with soine (ad hoc) prescription. Provided we
use the same prescription to define the pole mass, and
provided we know that the cancellation occurs, we can
then simply delete nearly all large uncertainties. Thus,
the calculation in the on-shell scheme (using pole masses)
can be saved at the cost of introducing consistent non-
perturbatiee prescriptions to define the pole mass and to
sum the series of radiative corrections. We shall consider
this (conceptually less appealing) possibility as well, and
shall see that after resummation of Pp n, +i corrections
the decay rates calculated in the on-shell and MS schemes
are close to each other, provided the same short-distance
mass is used as an input parameter. This supports a po8-
teriori the assumption that the dominant higher-order
corrections are taken into account by vacuum polariza-
tion effects.

We conclude that the large corrections found in [7] do
not endanger the accuracy of the theoretical treatment
of inclusive decays. We do find, however, large correc-
tions beyond second order in o,„ in particular in the
on-shell (OS) scheme, defined in the sense of the pre-
vious paragraph. We suggest that these corrections are
more important than the n, corrections left out by the
restriction to the eKects of running coupling. Although
the accuracy of this restriction is not known and is cer-
tainly the main deficiency of our analysis, we believe that
resummation of one-loop running efFects provides a fair
estimate of higher-order perturbative corrections and the
corresponding "M factors" (defined below) should be in-
corporated into any phenomenological analysis.

As already emphasized above, an appropriate treat-
ment of quark masses as input parameters is of equal im-
portance as the size of radiative corrections to the width
itself. Most previous determinations of ~Vs[ from inclu-
sive decays have used the OS scheme and pole masses
as numerical input. Instead, we choose the MS masses
as numerical input parameters. Thus, when we use the
OS scheme in the above sense, the pole masses are calcu-
lated &om the MS masses. This procedure is not without
its own difhculties, since we must rely on direct determi-
nations of MS masses, as &om QCD sum rules, which
have been obtained without the resummation which we
implement for the decay width.

We use our results for a new determination of [V,i,
~

kom both inclusive and exclusive decays. We find a good
agreement between the determination in the MS and OS
scheme, and obtain, as our final value,

[V,i, ~( gy/1. 50p ) ~ = 0.041 + 0.002,

where the combined error comes &om several sources that
will be detailed below.

The presentation is organized as follows. In Sec. II we
review the necessary formulas for resummation. Section
III contains our main results for the BLM-improved per-
turbative series in R meson semileptonic decays. These
two sections are more technical and those readers in-
terested only in results may continue with Sec. IV di-
rectly. The updated analysis of [Vi, [

obtained with the
resummed formula along with its major uncertainties is

given in Sec. IV, while Sec. V is reserved for a sum-
mary and conclusions. Some technical discussion and
especially long formulas are given in the appendices. As
a new analytic result, we derive an expression for the to-
tal b ~ u semileptonic decay width with a nonzero gluon
mass, which provides the input necessary for resumma-
tion of running coupling effects [12, 13].

II. GENERAL FORMULAS

We now formulate the resummation in precise terms.
We are interested in the eGect of radiative corrections to
the total semileptonic width, which we define as

I'(B m X,ev) = I'p 1 —Cy
'

gp(a)
a. (mb)

'W QG

x 1+) d„(a)n", (ms)
n=1

(2.1)

The functions d (a) depend on the ratio of the charm
and bottom quark masses, and are polynomials in the
number of light Havors Nf.

d (a) =d p+d i'+. +. d N~. (2.2)

The coefficient d „(a) comes from the insertion of n
fermion loops in the gluon lines in the leading-order cor-
rection; this is the quantity we calculate explicitly. Sub-
stituting Ny -+ Ny —33/2 in the highest power of Nf,
we rewrite (2.2) as

d-(a) = ~-(a) + (-Pp)"d-(a) (2.3)

where the (uncalculated) b„ is by construction at most of
order Nf We use the definition of the first coeKcient
Pp of the QCD P function including the factor —1/(47r):

1 2
Po = ——(11 ——ltd) (2.4)

with Nf ——4 for the case of interest. The standard BLM
prescription [8] uses di to fix the scale in the coupling in
the leading-order correction. In the generalization devel-
oped in [12,11,13] all terms b in (2.3) are neglected, but
all d are kept as an estimate of radiative corrections for
arbitrary n. Then we get

We neglect the charm quark mass in quark loops. Its effect
is small [13].

I'(B -+ X,eP) = I'p 1 —Cy
'

gp(a)
n. (ms)

OO

x 1+) (—Pp)"d„(a)o.", (ms)
n=1

(2.5)

Note that because of the factor 1/(4vr) in Pp the expan-
sion parameter is effectively n, /(4vr). To quantify the
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effect of partial summation of N orders, we introduce
the "M factors"

N

M~ '[a, —Ppn, (ms)] = 1+) (—Pp) d„(a)n, (mg),
n=1

M '[a, —Pon, (ms)] = M& ' [a, —Pon, (mi, )], (2.6)

n, (piv ) = n, (mg)Miv '[a, —Pon, (ms)],
b—+c 6—+c (2.7)

The scale p~ is just the leading-order BLM scale stud-
ied in [7] and the p„with n ) 1 correspond to a more
accurate treatment of the distribution in the gluon vir-
tuality, reBected by the size of higher-order corrections
with up to n fermion loops. The uncertainty in the sum-
mation of the series is translated to the uncertainty in
the ultimate BLM scale p [12].

The calculation of the coefficents d„(a) requires the
evaluation of diagrams such as those in Fig. 1, with the
insertion of n fermion loops in the gluon lines. This prob-
lem is solved in a most economical way by applying a dis-
persion technique, and reduces to the calculation of the
leading-order diagrams with Gnite gluon mass A. Denote
by

—I'o(a)C~n, /ir gp(a)do(a, A )

the sum of the diagrams in Fig. 2 calculated with a 6nite
gluon mass A, so that do(a, A = 0) = 1.

For the contribution &om the one-fermion-loop inser-
tion, Smith and Voloshin [19] have derived a useful rep-
resentation (in the V scheme of [8])

that measure the modification of the leading-order radia-
tive correction by integrating with the running coupling
at the vertex. The limit N -+ oo in Eq. (2.6) does not ex-
ist in a rigorous sense, re8ecting the factorial divergence
of the coefBcients d in high orders. Assuming that the
perturbative series is asymptotic, one is led to the con-
clusion that the uncertainty in the summation is in fact
power suppressed in mg, and can be estimated numeri-
cally. Thus, in the following, numerical values of M will
always be given with an uncertainty, re8ecting this prob-
lem. This uncertainty cannot be eliminated without a
rigorous factorization of the corresponding in&ared con-
tributions into the matrix elements of higher-dimensional
operators.

An equivalent way to present the results is to absorb
the M factors into a rede6nition of the scale in the lowest-
order correction

IV

FIG. 2. Leading-order radiative corrections to the tran-
sition operator, whose imaginary part gives the inclusive
semileptonic decay width. Double line, b quark; solid line,
c quark; dashed lines, leptons.

involves precisely the same function do(a, A ), and can
thus be done at little additional calculational expense.
In particular, the fixed-order coefficients d„(a) are ob-
tained as [12, 13]

d"" ( ) =
d „&[D]( ) i.=.

sin(au) d A (A

vr o A2 (p2 )
x dp(a, A ) —1

&[D](a u) =—

OO A~
dA

~

—e
~

d'(u A)

(—Pon, )M [a, —Ppn, ] = dA 4(A ) do(a, A )
0

+[do(a, A21 ) —1], (2.10)

where n, = n, (p),

(2.11)

(2.9)

where do(a, A ) = (d/dA2)do(a, A2) and C is a scheme-
dependent 6nite renormalization constant. In the MS
scheme one has C = —5/3, in the V scheme C = 0.
It is easy to check that for n = 1 the above expression
reproduces Eq. (2.8).

A closed expression can be derived for the sum of all
diagrams with an arbitrary number of fermion bubble
insertions [12, 13]:

dA2 ( 2 ms2
di (o) =—,

i
do(~ A') —,',

i
(2.8)

o A2 q
' A2+ m~2) AL ———p exp[1/(Pon, ) —C] (2.12)

which has been used in the analysis of Ref. [7]. The calcu-
lation of diagrams with multiple-fermion-loop insertions

For finite N one must expand (2.7) in n, and truncate the
expansion at the desired order.

is the position of the Landau pole in the strong coupling.
Note that the term with the 0 function exactly cancels
the jump of the arctan at A2 = —A&~, so that 4 (A2) is a
continuous function of A .

In this paper we cannot give a detailed discussion of the
assumptions underlying the derivation of Eqs. (2.9) and
(2.10), and refer the reader to the corresponding sections
in [12, 13]. Still, two short comments are appropriate.
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First, note that the product n, (p)M [a, —Pon, (p)] is
explicitly scale invariant, provided the running of the
coupling is implemented to leading logarithmic accuracy:
n (pg) = n (p2)/[1 Pon (p2) ln(pz/pz)l. This result is
also scheme invariant, and in particular independent of
the renormalization constant C, provided the couplings
are consistently related in the same BLM approximation,
that is by keeping only the terms with highest power in
Nf. This is in contrast to the finite order summation co-
efficients M~, which are scheme and scale dependent. In
the following we assume the MS scheme for the coupling
o.„and the normalization point p = m~.

Second, notice that the second term in (2.10) involves
the radiative correction to the decay rate with a finite
gluon mass, analytically continued to the Landau pole
%&2 ( Q. The renormalon divergence of the perturbation
theory is refiected [16] by nonanalytic terms in the expan-
sion of do(a, A2) at small A2 and leads to an imaginary
part in this continuation. The size of the imaginary part
(divided by vr), bM~ = Im do(o, , Ar )/(vr ~Po ~a, ), yields an
estimate of the ultimate accuracy of perturbation theory,
beyond which it has to be complemented by nonpertur-
bative corrections. The real part of (2.10) coincides with
the sum of the perturbative series defined by the prin-
cipal value of the Borel integral [13], and the imaginary
part of do(a, A&) coincides with the imaginary part of the
Borel integral.

The calculation of the diagrams in Fig. 2 with a finite
gluon mass is straightforward, albeit tedious, and has
been undertaken in [7]. Since no formulas were given
there, we had to redo this calculation. For b ~ uev
decays, that is for a massless quark in the anal state,
we have succeeded in obtaining an analytic expression
for the decay rate. For 6 ~ cev decays, we leave the
answer in form of at most two-dimensional integrals and
evaluate them numerically. The corresponding formulas
are collected in Appendix A.

III. RESUMMATION OF BLM-TVPE
RADIATIVE CORRECTIONS

Our results are summarized in Table I. For several
representative values of ~a = m, /mb we give calculated
values of the Gxed-order coefficients d, the partial sums

M and the BLM scales p . For n = 1, the Poa2 correc-
tion, our results coincide with the ones obtained in [7].
We now discuss the numbers in Table I in detail.

A. Hierarchy of BLM scales

The BLM scale p can be larger than the leading-
order scale pq. This may come unexpectedly.

The (leading-order) BLM prescription uses the average
of ln A:, the average virtuality of the gluon, as the scale in
the coupling. In high orders, this substitution generates
a series of radiative corrections with a geometric growth
of coefficients d (dq) to be compared with the fac-
torial growth of the exact coefficients. Resummation to
all orders corrects for this discrepancy by adjusting p
so that the expansion of n, (p ) gives the correct d for
all n. Since for this reason for large n the true d will
always outgrow (dq)" and since the series is with fixed
sign, one might suspect that the usual BLM scale setting
rather underestimates higher-order corrections.

For small c quark masses the eÃect is opposite, and the
very small leading BLM scale p, q is simply an artefact of
truncating the perturbative expansion at low order. The
scales pq and p are given by

pg ——mb exp[—dg/2]
1= mb exp (Mg —1)

2Ppa,
(

p,~ =ms exp j
1—

2 pal~ ( ~) (3.1)

Although bM = M —Mq is positive in all cases we con-
sider, the expression in parentheses in the first equation
in (3.1) is numerically larger than the similar expression
in the second equation, provided bM ( (Mz —1) /(2—
Mt). This is satisfied for small mass ratios, see Table I,
and results in p, ) pq (recall that Po is negative with
our definition).

Note that the scale p is bounded &om be-
low: as long as M is positive, p is larger than
mb exp(1/[Poo. , (mb)]), the position of the infrared Lan-
dau pole in the running coupling. There is no such re-
striction for p~, which can take values below the pole.
Again, this is an artefact of the truncation at fixed or-
der.

TABLE I. Resummation of Poo.,+ corrections for semileptonic H decay widths, see text. The
values of M„and p are given for —Po n, (mb) = 0.14.(4)

~a
go
Gp

Mp
Mg
M2
M

p, g/mb
p~/mb

0
1.81
1
5.34
34.4
1
1.75
2.42
2.31

+0.62
0.07
0.13

0.1
1.63
1
5.00
30.9
1
1.70
2.31
2.35

+0.52
0.08
0.13

0.2
1.42
1
4.55
27.3
1
1.64
2.17
2.24

+0.44
0.10
0.14

0.3
1.25
1
4.09
23.9
1
1.57
2.04
2.10

+0.37
0.13
0.15

0.4
1.12
1
3.59
20.5
1
1.50
1.90
1.96

+0.32
0.17
0.17

0.5
1.01
1
3.10
17.4
1
1.43
1.77
1.82

+0.26
0.21
0.20

0.6
0.92
1
2.62
14.3
1
1.37
1.65
1.69

+0.21
Q.27
0.23

0.7
0.85
1
2.16
11.4
1
1.30
1.53
1.57

+0.15
0.34
0.27

0.99
0.75
1
1.18
5.24
1
1.17
1.27
1.38

+0.03
0.55
0.37



52 RESUMMATION OF RUNNING COUPLING EFFECTS IN. . . 3935

B. Suppression of infrared contributions
for Bnite c quark mass

With a massive quark in the Gnal state the radiative
corrections apparently are reduced: The M factors M
are smaller, and the BLM scales p are larger. This has
been observed in [7] for the BLM scale in leading order,
and it continues to all orders, although the difference
between m /mb = 0 (relevant to 6 ~ uev transitions)
and m, /ms = 0.3 is less pronounced after resummation.
The ambiguities related to the summation of a divergent
series are also reduced and almost vanish in the limit
of zero recoil m ~ mb. One can understand this by
continuing the argument given in the Introduction. As
explained, these ambiguities arise, because the use of the
pole mass parameter implies a static picture, while the
energy stored in the Geld at large distances cannot be
converted into hard radiation in the weak decay process.
This assumed that the produced quark is fast in the rest
frame of the initial b quark. When m —+ mb, the c quark
is slow. Then, since the long-range part of the Geld of
the b quark is universal, it can be smoothly transferred
to the c quark and is simply irrelevant for the description
of the decay. Therefore these long-distance contributions
cannot be seen in the form of ambiguities in the zero-
velocity limit.

To see this more explicitly, we recall that contributions
of small momenta to decay rates can be traced by nonan-
alytic terms in the expansion at small values of the gluon
mass [16]. For the leading-order radiative correction to
the B decay width this expansion takes the form4

-2
h1

—3

-4

5 1 I I 1 I I 1 1 1 I 1 I I I I I I I I I I 1 I

0.2 0.4 Oo6 Oos 1
m, /mg

FIG. 3. Coulombic contributions to the B decay rate,
Eq. (3.3), expressed in terms of pole masses, as a function
of the mass ratio m, /m(, .

sum of the perturbative series. Within our approach, this
ambiguity is related to the imaginary part of dp(a, A ),
continued analytically to the position of the Landau pole
(2.10), (2.12), and equals

(-Pp~, )SM = h, (~)
' + O(X', /mss).

mb
(3.4)

mo = mo(mo) 1+ Ca oo(A ) + ~ ~

a, (ms) (35)

The decrease of the value for M at ~a = 0.3 (b ~ cev
decays) compared to a = 0 (b ~ uev decays) roughly
equals the decrease of the uncertainty.

In fact, these in&ared contributions are spurious, and
can be removed by reexpressing the decay widths in terms
of the short-distance (say, MS) b and c quark masses in-
stead of the pole masses [15, 16]. To trace this cancella-
tion we write, e.g. , the 6 quark pole mass mb as related to
the running MS mass mb by the perturbative expansion

A2 A2
dp(a, A ) = 1+ hg(a) + h2(a)

+[h»(n)»(&'/mb) + h»(&)]
l

&ms)
+O(A lnA ) (3.2)

mA
rp(A ) =1-

2mb
(3 6)

where we keep a Gnite gluon mass A as for the decay
width. The expansion of rp(A2) at small gluon masses
reads [15, 16]

with

h) (a) = — [5 —16a —24a —24a ~ + 24a
»~(~)gp(a)

+48a / —8a3 —8avj + Sa4

—48a ~ lna —12a lna]. (3.3

Note that the tree-level phase space factor fq(a) and
the leading-order radiative correction gp(a) are extracted.
The function hq(a) is plotted as a function of the mass
ratio ~a = m, /mb in Fig. 3.

For the realistic value m, /ms = 0.3 it is reduced by
approximately a factor 2 compared to the massless case.

These long-range contributions to the static Geld are
responsible for the major part of the ambiguity in the

Note that terms O(A lnA ) are absent [16]. This is ex-
plained by the absence of a renormalon ambiguity in the ki-
netic energy of the heavy quark inside the B meson, at least
in the approximation considered here.

I' = I'p(a, A) 1 —Cg —'gp(a)dp(a, A ) y

o., mA d= I'p(a) 1 —Cp.—' 5/2+ (~a —a) —ln fg(a)
7l mb dQ

1+ —go(a)Io, (a)) + (3.8)

with the function hq(a) defined as above. The terms in
curly brackets add to zero, so that the total decay rate is

Using Eqs. (3.5) and (3.6) and similar expressions for the
c quark, we Gnd that, when calculated with a small gluon
mass, the tree-level decay rate is modiGed to

o., mA
I'o(a, A) = I'o(a) [I —Ca —'

mb

d
x 5/2+ (Qa —a) —I f (a)o+a. .

) . (3.7)
dG

It is easy to see that the correction linear in A exactly
cancels with a similar term in the radiative correction to
the decay width,
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free from infrared contributions to this accuracy [15, 16].
It is only the use of a pole mass as an input parameter
which introduces infrared 1/mb effects in the tree-level
decay rate and in the radiative corrections, which cancel
in the product. For a massless quark in the 6nal state
several terms in the small-A expansion can easily be ob-
tained analytically, with the result

n, 65 sr 2 (27 4vr2 i A2r=r, (0) 1~C~—' ————
~

—+
8 2 q4 3 gamb'

(13~ As
+ 4~in(A'/mb)

~

g 8 b) m,' (3.9)

The in&ared contributions now start at order
O(As/mblnA2) and are numerically negligible. If so,
it is natural to formulate the perturbative calculation in
terms of a mass parameter de6ned at short distances,
so that large in&ared contributions do not appear. We
address this task now.

C. Elimination of the pole mass: 6 ~ ueO decays

The 6 quark pole mass is related to the MS mass by
the perturbative series

mb = mb(mb) 1+Cp
™1+) r„n, (m)
n, (mb)

n=1

(3.10)

As above, we approximate

= (-po)"r, (3.11)

M [—P n, (mb)] = M~ [—Pon, (mb)]. (3.12)

The coefficients r„were calculated in Ref. [12] and are
given together with the partial sums MN in the second
and third columns in Table II. The perturbative series
defining the pole mass is divergent [15, 17], which is re-
Bected by the uncertainty in the factors M . The crucial
point is that these uncertainties in de6ning resummed
pole masses are correlated with uncertainties in the re-
summed radiative correction to the decay rate, and cancel
against each other, when the pole mass is defined by its
relation to the short-distance mass as in (3.10) or elimi-
nated in favor of the MS mass [15, 16].

In what follows we shall consider both possibilities.
The 6rst one, which we refer to as calculation in the
on-shell (OS) scheme is to define the resummed inclusive
decay rate as

I' (B m X„ev) = I'o 1 —Cy —'go(0)M

(3.13)

where r corresponds to contributions of n fermion loops
to the leading-order diagram for the fermion self-energy
and can be calculated using a representation similar to
(2.9) and (2.10) in terms of the leading-order diagram
with a finite gluon mass ro(A2), see [12, 13] for details.
The partial sums for the perturbative series truncated at
order N are de6ned as

N

Miv[ p—p n, (m )b]
= 1+) (—pp)"r„n", (mb),

TABLE II. ER'ect of the elimination of the b quark pole mass on the radiative corrections to
b m uev decays, see text. The given values of M„correspond to Po n, (mb)—= 0.14.

d-(0) d„(0)

1 4.6861511

2 17.622650

3 109.85885

4 873.92393

5 8839.6860

6 105814.28

7 1484968.4

8 23740736

1.656

2.001

2.303

2.638

3.114

3.911

5.476

8.978

2.066 + 0.231

5.3381702

34.409913

256.48081

2269.4131

23679.005

289417.40

4081180.2

65496131

1.747

2.422

3.126

3.997

5.271

7.450

11.75

21.42

2.314 + 0.615

4.3163

8.0992

26.680

82.262

421.33

1656.1

12135

1.604

1.763

1.836

1.868

1.890

1.903

1.916

1.924

1.925 + 0.012

The remaining (small) uncertainty is related to contributions of dimension-six operators to the decay rate, which produce
nonperturbative corrections of order 1jm . They can be relevant for D decays, see [20, 21]. The terms proportional to A in
(3.9) produce an uncertainty of order 10% in the decay rate D -+ XeP, which can be taken as an indication of the minimal
size of 1/m corrections.
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where it is understood that the b quark pole mass ap-
pearing in the tree-level decay rate is substituted by

I =I, i+C+—'5M' —g, OM' " (3.17)

s
ms = ms(ms) 1+C~—'M

7t
(3.14)

with the factors M " and M given in Table II and
the uncertainties deleted.

The second possibility is to use the MS scheme &om
the very beginning. Using (3.10) we can write the decay
rate as

The difference between (3.13) and (3.17) is an effect of
order (Czn, iver)2, which is beyond our accuracy. It is
a pure scheme dependence, resulting &om our incom-
plete perturbative calculation. Numerically, the difFer-
ence amounts to about 6%, which is significantly smaller
than the +15% uncertainty for the radiative corrections
noted in the Introduction.

I'(B -+ X„ev) = I'p(0) 1+Cp
'

gp(0) D. Elimination of the pole mass: b ~ cev decays

where

x 1+) (—pp)"d„(0)n". (m, ) J'
(3.i5)

Expressing the b ~ cev decay rate in terms of the
running masses is slightly more cumbersome. As above,
we st;art with the resummed decay rate in the OS scheme:

I' (B -+ A eP) = I'p 1 —C~ 'gp(a)—M

(3.18)
g, (0) = 5 —g, (o)

)
gp(0)d„(0) —5r„

gp(o)
(3.i6)

and the tree-level decay rate I'0 is expressed in terms of
ms(mb). Note that the leading-order radiative correction
changes sign and becomes somewhat; larger.—6-+u

The coeKcients d„and partial sums M~ de6ned in
an obvious way in analogy to (2.6) are given in Table II in
comparison to d and MN ", respectively. It is seen that
the coefBcients are drastically reduced, and the series has
become well convergent. The remaining in&ared efFects,
relevant to the divergence of the perturbative series, are
suppressed by three powers of the b quark mass [16] and
have become tiny. Most importantly, this improvement
is effective already at n = 2. We conclude that per-
turbative coefBcients in the MS scheme are likely to be
much smaller than in the OS scheme without restriction
to vacuum polarization corrections, too.

In the &amework of a purely perturbative calculation
the use of the OS scheme can only be justi6ed up to the
order where perturbative series diverge. In all-order re-
summations such as the one considered in this paper, one
must make sure that the prescription de6ning the pole
mass in terms of a short-distance mass or any physical
quantity is consistent with the prescription to sum the
perturbative series of radiative corrections to the decay
width. Even in this case, the OS scheme is somewhat un-
natural since it involves large cancellations between ra-
diative corrections to decay rates and to the pole masses
already in low orders.

The resummed decay rate in the MS scheme is readily
obtained by inserting (3.14) into (3.13) and expanding
up to O(n, ):

where now both the c and b quark masses have to be ex-
pressed in terms of the running masses. Here we want to
be somewhat more general, and introduce running masses
at arbitrary scale p as

n. (p) —,i
m, s=m s()M) 1+C~ ' M' (p)

7r
(3.i9)

The factors M (p) and M (p) can most easily be cal-
culated by observing that the pole mass on the left-
hand side of (3.19) is scheme invariant, and using the
renormalization-group expression for the running mass,

m(p, ) = m(m) exp —— p (a)
a. (m) + j

(3.2o)

5 35
~-( .) = —' 1- -(P. .) ——(&. .) + (3»)

6 36

Thus, we obtain, e.g. , for the c quark,

C "(")M ( ) -C "(-.) M.

1 .(") da+ , ~-(~)
p a, (m, ) + (3.22)

where M is a factor relating the c quark pole mass to
the running mass m (m, ), defined as in (3.14).

Collecting everything, we 6nd

where to our accuracy we have to expand the exponential
to first order, but keep the mass anomalous dimension to
all orders in Pp a, +i, which is known from [22, 13] (see
Eq. (4.19) in [13]):

(3.23)I'(B -e x', ep) = re(e, pj 1+ ce 5M (p) —ge(5)M + 2~ M (p) —M (p) ~5—»f (5) ), e
n (p) —b ~, (—c —~ l d

m ( ) da
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where a = [m, (p)/mb(p)] . It is worthwhile to note that
the factor that appears in front of the logarithmic deriva-
tive of the phase space function fi is scale independent:

a.(Ie) (M (Ie) —M (Ie))

c(., (mb)
g~~ ——1+CF ro' (z)

7r
OO

x 1+ ) (—p())"d„' n", (mb)
n=1

with [24, 23]

(3.29)

= n, (m, )M' —n, (mb)M
a, (mf, )

+ , ~-(~)
0 I" a(m)

(3.24)

3 31+z
Tp Z ln z,

2 4 1 —z
3 1+z

ro (z) = -2 —— ln z.
4 1 —z

(3.30)

The expression in (3.23) is to be compared with the
leading-order (Lo) decay rate [18]:

—LO ~.(p)F (II -a W, ev) =Fe(a, p, ) I+Ca '
ye(6, Ie)),

15 m
go(a, p) = 5 —g ((i) ——ln

4 p2

The resummation of P() a, + terms for the g's was dis-
cussed in some detail in [9, 11] and can equally easily
be implemented within our dispersion technique. For
completeness, we collect the necessary formulas in Ap-
pendix B.The results are summarized in Table III, where
we give the leading-order coefBcients d1' and the re-
summed enhancement factors

3 d——a ln a—ln fi (a) .
2 dG

(3.25)

To quantify the efFect of resummation, we introduce
the corresponding M factor by rewriting the resummed
result in (3.23) as

M ' [a, —Pun, (mb)] = 1+) (—Po)"d„n", (mb) .
n=1

I'(B —+ X,ev)

= I'e(a, Ie) [I+Ca '
g„(a, Ie)M (Ie)) . (626)

We give the corresponding values in Table VII for p =
mb. Tracing the scale dependence of M (p) is mislead-
ing in this case because go(a, p, ) is strongly scale depen-
dent.

E. The SV lixnit and exclusive H decays

(3.27)

where g~ and g~ are the short-distance matching coef-
ficients of the @CD heavy-heavy currents to the corre-
sponding currents in the effective theory (at zero recoil):

cp„b = qv h, p„h,b + O(l/m ),
cp„psb =q~h, ,p„pshb+ O(l/m ). (3.28)

They are given by a perturbative series, in which, as
above, we only keep the BLM-type P(7o.,+ terms (z =
m mb):

The inclusive decay rate in the Shifman-Voloshin (SV)
limit mb, m, )) mb —m, )& AQGD [23] is dominated
by two exclusive decay channels, B —+ Dev and B ~
D*ev. Since the final state meson is produced almost
at rest (in leading order in the heavy-quark expansion),
the techniques of the heavy quark efFective theory are
applicable, yielding the decay rate

TABLE III. The lowest-order coefBcients di ' and the re-
summed series M ' for g~, A in the MS scheme as functions
of the ratio of pole masses m, /mb. Note that the expressions
diverge for m, -+ 0. For m = mq, g~ = 1 due to charge
conservation. Input parameter: —Poa, (mb) = 0.14.

m, /mb di Mv

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2.47 1.63 2.07 + 0.05 2.69 + 1.09

1.78 3.32 1.50 + 0.07 2.37 + 0.42

1.36 2.56 1.30 + 0.06 1.96 + 0.16

1.08 2.17 1.20 + 0.05 1.76 + 0.09

0.86 1.90 1.14 + 0.04 1.64 + 0.06

0.68 1.70 1.09 + 0.03 1.56 + 0.05

0.52 1.53 1.06 + 0.03 1.50 + 0.04

0.39 1.39 1.04 + 0.03 1.45 + 0.03

0.27 1.27 1.02 + 0.02 1.41 + 0.03

0.17 1.17 1.00 1.37 + 0.03

(3.31)

To make an explicit comparison to inclusive decays
possible, we have presented the results in the form of an
expansion in a, (mb) rather than in c2., (gmbm, ) which
is more natural in exclusive decays. Because of this, our
coefficients are related to the ones given in Ref. [9] by
di' (p, = i/mbm, ) = di' (p, = mb) + lnm, /mb. Since
the product of o., and M is scale independent, when a
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one-loop running coupling is used, we have

Mv "[., P—,~.(gmbm. )]

g~ ——0.943 + 0.005 + 0.010 + 0.001, (3.33)

where the 6rst error gives the estimated renormalon
uncertainty, the second one the uncertainty coming &om
a, (mz), and the third one the uncertainty in the input
quark masses.

In the limit m —+ mp the inclusive decay rate thus
equals (in perturbation theory)

a~ Iv.bl'(~b —~.)'
15as

i —c
(3.34)

which implies the relation

M '(a = 1) = M (a = 1) (3.35)

and provides a nontrivial check of our calculation. Com-
paring the corresponding entries in Tables I and III we
indeed find agreement.

IV. DETERMINATION OF ] V b [

A. Theoretical input parameters

The main parameters we need in order to determine
~Vb~ are the b and the c quark masses. At present there
seems to be no general consensus on their values, and the
existing estimates are often controversial. The masses
extracted &om the spectroscopy of bb and cc mesons are
usually given with very small errors, see, e.g. , Ref. [25].
However, the actual uncertainty is in this case hidden
in their relation to the running masses at a certain hard
scale, which we need in this paper. Thus, we prefer to
rely on a less accurate (as far as numbers are concerned)
direct determination of the MS b quark mass from @CD
sum rules for lowest moments of e+e annihilation to

We note that this uncertainty, although of order A&on/m,
is numerically smaller than the estimate of explicit 1/m cor-
rections, see Sec. IV B, which justifies the addition of these ex-
plicit corrections, disregarding their potential ambiguity con-
nected with renormalons.

M [,—P .( b)]. (3 32)n, mbm

Thus, for example, with n, (mb)/cr, (gmbm, ) = 0.82
and M+ [0.3, —Pon, (mb)] = 1.96 from Table III, we get
M [0.3, —Pocr, (gmbm~)] = 1.59. Note that this num-
ber is rather large and indicates that the higher-order
corrections are important in the axial channel.

Where a comparison is possible, our results agree with
the values obtained in [11].We obtain

heavy quarks [26, 27]. Because of the smaller scales in-
volved, such estimates are less reliable for the c quark
mass, so that we prefer to fix m by a different method,
see below. In this paper we use the following value for
the MS b quark mass [28, 29]:

mb(mb) = (4.23 + 0.05) GeV. (4 1)

We point out that mg was chosen as renormalization
point mainly in order to conform to the standard choice
in the literature, in the same way as o., is usually nor-
malized by its value at the Z boson mass. Actually in
our approach the question of the "natural" scale does not
appear, at least to the extent that the approximation of
summing higher-order corrections due to vacuum polar-
ization is good: all results are explicitly scale invariant
for a one-loop running coupling. In finite order perturba-
tive calculations it may be more appropriate to choose a
lower renormalization scale in order to minimize the size
of uncalculated higher-order terms. From (4.1) we get
the pole mass

mb ——(5.05 6 0.06) GeV, (4.2)

where all radiative corrections of type Pen", +~ are re-
summed. Very similar values for the 6 quark pole mass
were proposed in Refs. [30, 20] and are also indicated by
lattice calculations [31].

In order to 6x the c quark mass, we make use of the
fact that the difference between the pole masses of two
heavy quarks is &ee &om many ambiguities intrinsic in
the mass parameters themselves and can be determined
to a good accuracy &om the expansion

1(1 1i
mb —m, = m~ —mD + —

~

—
~

[Ag + 3A2]
2 (mb mc)

+O(n, /m, 1/m2), (4.3)

where m~ and mD are the B and D meson masses, re-
spectively; A2 is given by

A2 ——(m~. —m~) 0.12 GeV
1 2 2 2 (4.4)

and —Aq/(2mb) is the kinetic energy of a heavy quark in-
side a B meson. For Aq an estimate is available from @CD
sum rules [32], Aq

———(0.6 6 0.1) GeV2, which is however
strongly correlated with the value of A = m~ —mp and

The number given in [28, 29] literally corresponds to the
Euclidean mass mb(p = —mb), but to the one-loop accuracy
used in Refs. [26, 27] the difference between the Euclidean and
the MS mass is negligible.

Recall that any numerical value of the pole quark mass
implies its proper definition. Our central value corresponds
to the principal value prescription to sum the perturbative
series that relates the pole to the short-distance MS mass, the
error comes from the 50MeV uncertainty in m&(mb). The
freedom in choosing the summation prescription results in
an additional uncertainty of m& of order 100MeV, which is
exactly cancelled by a corresponding uncertainty in the decay
rate, see the discussion in Sec. III C.
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mb —m, = (3.43 + 0.04) GeV, (4 5)

assuming that o.,/m and 1/m2 corrections in (4.3) are
negligible. Combining this result with the 6 quark pole
mass in (4.2) we get the c quark pole mass

m, = (1.62 6 0.07) GeV (4.6)

and the running mass

m, (m, ) = (1.29 + 0.06) GeV . (4.7)

This value is consistent with deterxninations &om QCD
sum rules [26, 27].

For completeness, we also give the corresponding val-
ues of the "one-loop pole masses" defined as

mb. ——mb, .(mb, .) 1+Cy(i) u, (mb, ) (4.8)

m( ) = (1.50 + 0.06) GeV,

m,"' = (4.63+ 0.05) Gev. (4 9)

Our values are in agreement with those quoted in
Ref. [30].

Using; our technique it is possible to estimate the uncer-
tainty of the relation (4.5) that is due to infrared contribu-
tions suppressed by three powers of the quark mass (as men-
tioned above, the 1/m renormalon uncertainty is absent,
at least to our approximation). A simple calculation yields
6(mb —rn ) Yn, /(47r[PO[) exp(5/2 —3/[2]PO[n, (m )]), which
is of order (5—8) MeV.

thus with the value of the 6 quark pole mass. The es-
timate quoted in [32] is the average of Ax ———0.5 GeV
and —0.7 GeV obtained for A = 400 MeV and 500 MeV,
respectively. The resummation of Po n, + radiative cor-
rections leads to a significant increase of the value of the
6 quark pole mass, and thus to a much lower value of A
of order (200—300) MeV. Thus in principle the value for
Ai to be used in our analysis should be obtained from
a QCD sum rule using a small value of A and includ-
ing the resummation of running coupling effects, which
is not available. We have calculated the BLM-type o.,
correction to the simpler sum rule for the leptonic decay
constant flax in the static limit [33], which also enters the
sum rule for Ai as normalization factor, and found that
this correction is very small (in other words: the BLM
scale coincides with the "naive" hard scale). This may
be accidental, however, and rather indicate that other
corrections are important. We have also checked that
the sum rule for Ax derived in [32] becomes much less
sensitive to the value of A if it is small, and even with
arbitrary A it is not possible to push —Ax below (0.25—
0.30) GeV . Lacking a BLM-improved sum rule for Ax,
we consider —(0.5+ 0.2) GeV as a fair estimate. With
this value, one obtains, from (4.3),

B. Extraction of ]V,b~

Our discussion was so far restricted to the perturbative
corrections to the 6 quark decay rate. In order to extract
~V,b~ from the experimental data, we now have to specify
the nonperturbative corrections, which are suppressed by
two powers of the heavy-quark masses. Summarizing the
results of Refs. [6, 32, 34] we write

gNP )I'(B m A, ex ) = I'(B m X,ev)p„~ ~

1+ m2bj
(4.10)

with 8 P = —(1.05 6 0.10) GeV, where the error comes
from the uncertainty in Ai, cf. Sec. IV A.

As for the exclusive decays, the experimentally inter-
esting quantity is the difFerential decay rate at zero recoil
of the final state meson, which depends on the form fac-
tor

X(1) = q~(1+ bx/ 2). (4.11)

An earlier estimate [35] was —(8.5 + 3)%%uo for Ax = —0.54
Gev .

The short-distance correction g~ was already discussed
in Sec. IIIE; numerical values are given there and in
Table VI below. The nonperturbative correction big
was estimated in Ref. [2] as —(5.5+ 2.5)% using Ax ——

—0.4 GeV2.
As experimental input we use the world average B

lifetime wJso = 1.5 ps [36], the most recent xneasurement
of the Bo semileptonic branching ratio B,x

= (10.9 6
1.3)'%%uo [37], and ~V,b&(1)

~

= 0.0354 4 0.0027 [38], where
we have rescaled the latter value to be compatible with
7 ~0 = 1.5 ps.

Our results are summarized in Fig. 4 and in Tables IV
and V, where we give ~V,b~ as function of the running b

quark mass. The determination with one-loop radiative
corrections is plotted in Fig. 4(a) and using resummation
in Fig. 4(b). The solid line represents the result from the
MS, the long dashes &om the OS calculation. The short
dashes give ~V b~ &om exclusive decays. The shaded areas
illustrate the range of b quark mass values from Eq. (4.1).
The curves in Fig. 4(b) are obtained for Ax ———0.5 GeV,
which corresponds roughly to a fixed difference of the
pole masses of mb —m, = 3.43GeV.

The two sets of curves in Fig. 4(a) are obtained with
two different ways to specify the c quark mass. The first
way is to use exactly the same short-distance c quark
mass as in Fig. 4(b): the curves labeled (i) and (ii) are
obtained using the constraint (4.3) with resummed pole
masses, i.e., fixing mb —m = 3.43GeV, and calculat-
ing m, and m, (m, ), respectively, for a given value of
mb(mb). Thus, since all short-distance input parameters
are chosen in precisely the saxne way as in Fig. 4(b), the
difFerence between the predictions for ~V,b~ is entirely the
effect of resummation.

Although this choice is presumably the most clear way
to show the efFect of resummation of running coupling
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FIG. 4. The value of ~V,b~ extracted from the inclusive B
meson semileptonic decay rate to one-loop accuracy (a) and
after resumming Po n, + radiative corrections (b) as a func-
tion of the MS b quark mass for 6xed Az ———0.5GeV . The
solid and long-dashed curves show the predictions obtained
by using the MS and OS scheme, respectively. The central
value coming from exclusive decays is shown by short dashes
and the shaded area gives the interval of b quark mass values
suggested by QCD sum rules, Eq. (4.1). Experimental input:
'r~o = 1.5 ps, B,&

= 10.9%, n, (mz) = 0.117.

efFects, it also may be slightly misleading. Indeed, the
large difference in values of ~Vb~ between the one-loop
and resummed formulas is mainly due to the fact that
the one-loop pole masses de6ned in this way do not sat-
isfy Eq. (4.3): mb —m = 3.13 GeV. Thus we also try(x) (x)

another choice, calculating the c quark mass by enforcing
the constraint (4.3) expressed in terms of one loop pole-
masses, so that mb —m = 3.43GeV. The results are(1) (1)

shown in the form of curves (iii) and (iv). This choice is
less instructive as far as the comparison between one-loop
and resummed results is concerned, but is probably more
attractive phenomenologically. On the other hand, we
note that with this choice the value of the short-distance
c quark mass becomes very low, m, (m ) = 0.98GeV
(m = 1.18GeV) for mb(mb) = 4.23GeV, which is
hardly consistent with the @CD sum rules for the char-
monium system. The large difFerence in the resulting val-
ues for ~V,b~ shows the dilemma all strict one-loop calcu-
lations are inevitably con&onted with: it is impossible to
relate the three independently determined input param-
eters mb(mb), m, (m, ), and Aq to each other within the
errors by one-loop equations, although all of them pro-
vide valid phenomenological input. It is only after inclu-
sion of higher-order perturbative corrections in Eq. (4.3)
in form of the resummed pole masses that the three val-
ues appear to be consistent with each other, and it may
be considered as a serious argument in favor of BLM-
improved perturbation theory in semileptonic inclusive
decays that the central value (but not the error bars, see
below) of ~V,b~ is independent of the choice of a particular
subset.

The effect of resummation is clearly visible in Fig. 4(b).
First, we find a considerably reduced scheme dependence,
i.e., the difFerence between the solid and the long-dashed
curves is much smaller in Fig. 4(b) than in Fig. 4(a).
Second, we observe good agreement between ~V,b~ from
exclusive and inclusive decays obtained with resumma-
tion, which otherwise is only achieved for either an un-
reasonably large b quark mass or a very small c quark
mass.

It has been proposed in Ref. [35] that in inclusive de-
cays the dependence on the quark masses is signifIcantly
reduced, if the charm and bottom masses are not varied
independently, but related to each other by Eq. (4.3). To
study this question, we give tables of numerical values for
~V,b~, choosing as independent input parameters either
the running 6 and c quark masses (Table IV), or the run-
ning 6 quark mass and Aq, which specifies the difFerence
between the pole masses (Table V). It is clearly seen that,

TABLE IV. ~V, b~ calculated in the MS scheme for a wide range of quark masses. The central
value is obtained for n, (mz) = 0.117, the upper (lower) number in parentheses gives the shift of
the last digit if n, is put to 0.123 (0.111). The masses are given in GeV. Experimental input:
B,) ——10.9+0, r~o = 1.5ps.

m, (m, )

1.18

1.22

1.26

1.30

1.34

mb(mb)

mb

-(6)1a47+(y)
-(5)1 o 52+ (p)

-(4)1.58 (0)
-{4)1 o 63+(p)
—(3)1.68 (i)

4.0

4.80+'"
(9)

-(3)0.045
( )

-(3)0.046 (3)
-{3)0.047 (3)
-(3)0.048 (3)
—(3)0.049 (3)

4.1

4 91+( )
(9)

-(3)0.042 (2)
-(3)0.043 (2)
-(3)0.044

( )

-(3)0.045
( )

-(3)0.046
( )

4.2

5.02+(')
-(9)

-(2)0.039 (2)
—(2)0 040 (2)
-(2)0.041 (2)
-(3)0.041 (2)
-(3)0.042

( )

4.3

5.13+'"-(9)

-(2)0.037
( )

-(2)0.037 (2)
-(2)0.038 (2)
-(2)0.039 (2)
-(2)0.039+(2)

4.4

5.24+'"-(9)

-(2)0.034 (2)
-(2)0.035 (2)
-(2)0.035 (2)
—(2)0.036 (2)
-(2)0.037 (2)
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TABLE V. ~V,b~ calculated in the MS scheme in dependence on the b quark mass and Ai.
Notations and experimental input as in the previous table.

mb(mb) 4.0
+(9)

mb 4.80

Ai (GeV ) mb —m,

4.91+'"-(9) 5.02+"'-(9)

4.3 4.4

5.24 -(9)

—0.4

—0.5

—0.6

—0.7

3.39

3.41

3.43

3.46

3.48

0.0441 (7)

0.0438 (7)

0.0434 (7)

0.0431
( )

0.0427
( )

0.0426 (7)

0.0423 (7)

0.0420+(6)

0.0417+(6)

0.0414+( )

0.0414 (7)

0.0411 (7)

0.0408 (6)

0.0405
( )

0.0402 (6)

0.0402 (7)

0.0399 (6)

0.0397
( )

0.0394 (6)

0.0391 (6)

0.0392 (6)

0.0389 (6)

0.0387 (6)

0.0384 (6)

0 0382
( )

although the central values for ~V,b~ are nearly the same,
the latter choice is preferable, since the inclusive decay
rate is very sensitive to the mass difFerence mb —m, and
already a very modest accuracy in Aq in fact constrains
mb —m more precisely than any direct determination.
We conclude that Ai (or equivalently mb —m, ) is a better
theoretical input parameter than the c quark mass itself,
in agreement with the discussion in Ref. [35]. In addi-
tion we find that the dependence on n, (mz) is strongly
reduced, too. We emphasize, however, that our choice of
input parameters only serves to reduce the sensitivity of
~V,b~ on uncertainties in the input parameters and that
the central value is independent of that choice.

It might also be useful to compare the results obtained
&om the resummed formulas with those obtained in the
usual BLM approximation, where of the whole series of
corrections generated by the running of the coupling only
the n, Po term is taken into account. Again, the major
subtlety comes Rom the necessity to specify the c quark
mass. It turns out that the perturbative series that re-
lates the c. quark pole mass to the MS mass starts to
diverge already in second order [12]. Because of the di-
vergence, it is not justified to cut the series at that order,
although in this case the BLM correction gives an ex-
cellent approximation to the exact two-loop result. For
example, starting from m, (m, ) = 1.26 GeV one gets for
the BLM pole mass m = 1.75 GeV, which is sig-
nificantly larger than the resummed result m = 1.58
GeV. In other words, the BLM approximation under-
estimates the scale of the coupling and thus overesti-
mates the radiative correction. A comparison between
the BLM and the resummed results is however possible
if one starts &om the MS b quark mass, calculates the
6 quark pole mass in the BLM approximation, and then
6xes the c quark pole mass Rom the heavy-quark expan-
sion (4.3). Taking for definiteness mb(mb) = 4.23GeV

Even if we abandoned the deterinination of Ai in Ref. [32]
completely and only put the constraint —0.7GeV & Az

0 GeV, which corresponds to 3.34 GeV & mg —m~
3.48 GeV, ~V, b~ would change by at most 0.0014.

~
v.b~"' = (o.o4o4 + o.ooo6 + o.ooo6 + o.ooo6)

P a., &'~2 r15ps~"
(10.9%%uo j ( 'r/o j

~V,b~
= (0.0424+ 0.0004 6 0.0007 6 0.0005)

( a., i" r1.5psi"
(10.9%j & 7gyo j

(4.12)

(4.13)

where the first error comes &om the uncertainty in
n, (mz) = 0.117 6 0.006, the second one &om the un-
certainty of the b quark mass, Eq. (4.1), and the third
one from the uncertainty in Ai ———(0.5+ 0.2) GeV . For
the reader's convenience, we collect all other parameters
in Tables VI and VII.

Comparing Eqs. (4.12) and (4.13), it is clear that the
uncertainty of our calculation is dominated by scheme
dependence, which is simply the eÃect of higher-order
radiative corrections not related to the running of the
@CD coupling and which we miss in our approximation.
A diferent way to estimate unknown higher-order cor-
rections is to consider the scale dependence of the results
in the MS scheme. This scale dependence is d.ue to two-
loop running effects in n, and terms of order (n, C~)
which are beyond the accuracy of our approach. We have
checked that after renormalization-group improvement of

and Ai ———0.5GeV, we find in this way in the BLM
approximation ~V,b~

= 0.0381 (~V,b~
= 0.0424) in the MS

(OS) scheme, respectively, compared with ~V,b~
= 0.0404

(~V,b~
= 0.0424) with resummed formulas. The perfect

agreement between the BLM and resummed formulas in
the OS scheme is probably accidental. In the MS (OS)
scheme the BLM result is very close to the one-loop cal-
culation, see Fig. 4. In both cases, the numerical effect of
higher-order corrections is small and of the order of 5%.
We wish to emphasize once more, however, that this com-
parison is only possible if the c quark mass is obtained
in a very particular way and it is only after resummation
that we are able to get a self-consistent description in
terms of short-distance parameters.

Prom the combined evidence of Fig. 4 and Tables IV
and V we extract the results
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TABLE VI. Input parameters in the calculation of the resummed B decay rate in the OS scheme
and values of g& entering the exclusive decay rate.

n, (mz) A (MeV) ms (GeV) m (GeV) n, (ms) n, (m, ) M '[a, —Po n, (mq)]
0.111 223 4.96 1.52 0.190 0.291 2.07 0.954
0.117 308 5.05 1.62 0.208 0.333 2.07 0.943
0.123 411 5.15 1.72 0.228 0.384 2.02 0.938

ln(p2/ms2) corrections [i.e. , using the exponentiated form
of the b quark mass scale dependence as in Eq. (3.20)) the
variation of

~
V~b] with the renormalization scale p within

ms/2 ( p ( 2m' is of order +0.001, i.e. , of the same
order as the difFerence between the OS and MS calcula-
tions. This may be taken as an estimate of the accuracy
of the resummation, beyond which an explicit calculation
of higher-order corrections is necessary. Combining the
errors, we get

(Tycho/1. 5 ps) ]Vs];„,i = 0.041 + 0.002 6 0.002, (4.14)

which is our final result. The first error shows the theo-
retical uncertainty and the second error comes from the
experimental semileptonic branching ratio. The theoret-
ical error is dominated by the uncalculated exact o.2 cor-
rection to the decay rate. All large corrections coming
&om the running of the strong coupling either cancel af-
ter proper treatment of the in&ared regions or are cast
into the redefinition of the scale in the coupling or, equiv-
alently, into the M factors. The numerical significance
of these M factors depends on how the input parameters
are chosen, and can be minimized by using the constraint
(4.3) following &om the heavy-quark expansion.

ln turn, we get &om the exclusive decays

(~~o/1. 5ps) ]V,s],„,i = 0.040 + 0.001 + 0.003, (4.15)

where the first error is the theoretical uncertainty and
the second one the experimental error of the decay rate.

At present the experimental errors are roughly the
same for both the exclusive and the inclusive determi-
nations. Actually the two approaches are complemen-
tary to each other: the inclusive decays ofFer a better op-
portunity to reduce the experimental errors, whereas the
exclusive decay rates are inevitably plagued with large
statistical errors &om a measurement near the edge of
phase space. On the other hand, in inclusive decays,
the theoretical predictions are more sensitive to errors

in the quark masses. It is encouraging that even now,
with moderate experimental accuracy and an improvable
accuracy of the theoretical input, both methods lead to
very similar results.

V. CONCLUSIONS

We have carried out a detailed analysis of the radia-
tive corrections to inclusive semileptonic B decays that
originate from the running of the strong coupling. In-
dependent of the actual accuracy of this approximation,
our results clearly indicate that the series of radiative
corrections in the OS scheme diverges, starting already
in low orders. Thus determinations of

~
V,s~ &om inclusive

decays using the pole masses of b and c quarks as input
parameters are plagued with a numerically large uncer-
tainty. The accuracy cannot be improved by choosing a
difFerent scheme or a lower scale in the running coupling.

However, the problem is spurious and entirely due to
the use of a bad input parameter, the pole mass, which
imports in&ared contributions at the level of O(1/mg)
corrections. It can be shown [15, 16] that these correc-
tions are absent in the inclusive decay rates, and there-
fore using pole masses in the tree-level decay rate induces
large radiative corrections of in&ared origin simply in or-
der to cancel in&ared efFects hidden in the definition of
the mass parameter.

We demonstrate that the behavior of the perturbative
series is indeed drastically improved by using the MS
mass instead. The calculation in the OS scheme can be
saved, if the pole mass is defined by a certain nonpertur-
bative prescription in its relation to the short-distance
mass (or some physical quantity &om which it is deter-
mined), and if the same prescription is used to sum the
series of radiative corrections to the decay widths. This
essentially implies a rearrangement of radiative correc-
tions in two pieces, hiding part of them in the tree-level

TABLE VII. Input parameters in the calculation of the resummed B decay rate in the MS
scheme.

n, (mz) ~a n, (ms) n, (m, ) M (mb)
0.111 0.287 0.199 0.326 2.04
0.117 0.306 0.220 0.383 2.08
0.123 0.329 0.244 0.451 2.09

1.55
1.22

1.97
1.82

M (m, ) Ms [a, —Pol ln, (mg)]
1.82 2.06

—6—+cM
2.18
2.40
2.68

The theoretical error indicated in (4.15) does not include either possible perturbative corrections, not related to running of
the coupling, or the uncertainty in Az which contributes to the overall 1/m, correction.
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TABLE VIII. ~V, b~ from inclusive decays obtained in previous analyses. If necessary, the quoted
numbers are rescaled to be compatible with 7~0 ——1.5 ps, Bsz, ——10.9%. The quark masses are the
central values used in the papers.

Scheme
m [GeV]
mb [GeV]

MS
1.26'
4.23'
0.040(1)

This paper
OS
1.62
5.05'
0.042(1)

Ref. [39]
OS

0.046(8)

Ref. [40]
OS
1.57
4.96
—0.042

Ref. [18]
MS
1.35
4.6'
0.036(3)

Ref. [35]
OS
1.3d

4.8
0.042

mb from +CD sum rules, m, from Eq. (4.3).
m, from B(D -+ Xev), mb from Eq. (4.3).
Running mass normalized at m.
Pole mass.

phase space, and in practice involves considerable can-
cellations already in low orders.

We carry out a detailed analysis of inclusive decay
rates with resummation of corrections induced by one-
loop running of the coupling and find a good agreement
between values of ]V,b~ extracted from inclusive and ex-
clusive decays. The comparison of our results with ear-
lier calculations is presented in Table VIII. In general,
we find agreement within the errors. It should be empha-
sized, however, that predictions for inclusive decays de-
pend rather strongly on the quark masses, and effects of
the resummation can be masked by using different input
values. We believe that one advantage of our approach
lies in using well-defined mass parameters, which can (in
principle) be extracted from experimental data with high
accuracy.

The accuracy of our predictions is limited by the un-
known accuracy of the resummation of BI M-type radia-
tive corrections. The incompleteness of this procedure
is at least partially indicated by the scheme dependence
of the result for ~V,b~, which is of order 5'%%uo. To reduce
this remaining error it will be necessary to incorporate
exact o., corrections to the decay rates. One could try
to reduce radiative corrections by expressing the decay
widths in terms of masses renormalized at smaller scales,
and adjust their values in order to reproduce the bulk of
available data on heavy hadrons in the framework of one-
loop calculations. This approach can be phenomenologi-
cally successful inasmuch as the structure of higher-order
radiative corrections is similar in various processes, which
is natural to assume, but diKcult to control theoretically.

On the other hand, with a restriction to the level of
accuracy of order 5'%%uo for ]V,b], we find that the theo-
retical calculation can be justified, and only a moderate
precision is required for input parameters such as quark
masses. In particular, it is suKcient to know the run-
ning 6 quark mass to an accuracy of order (50—100) MeV,
and the difference in pole masses of 6 and c quarks to

50MeV, which corresponds to the uncertainty of the
kinetic energy of the b quark inside the B meson of or-
der 0.2 GeV . We think that it is possible to achieve this
kind of accuracy, and in fact even to improve it.

To summarize, we conclude that inclusive decays of
B mesons provide a valid source of information on ~V,b~

with a present theoretical accuracy of order 5%%uo, which
presumably can be improved in the future.
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APPENDIX A: RADIATIVE CORRECTIONS
TO INCLUSIVE DECAYS

In this appendix we give an explicit expression for the
one-loop radiative correction to the total inclusive de-
cay width. We use the on-shell renormalization scheme,
where for finite gluon mass the wave-function renormal-
ization constant is given by (in dimensional regulariza-
tion in D dimensions)

A~ 2
Z2~ ——1+C~ — + p@ —ln4vr4' D —4

mb iB,+ ln —4 —By +
~

—y —2
~

ln y
p

ln
B(y2 —2y —4) 1+ Ql —4/y

(A1)
2Jl —4/y 1 —gl —4/y

For a massive quark's self-energy Z we impose the renor-
t

malization condition Z+(m )
=' 0. Throughout the ap-

pendix, we use the notation y = A /mb2 and a = m, /mb.
The function do(a, A2) can be written as the sum of

contributions of real and virtual gluon emission, corre-
sponding to different imaginary parts of the diagrams in
Flg. 1:

fi(a)go(a)do(a, A ) = —[D"" (a, y)

+ 8(mb —m, —A)D " '(a, y)
(A2)

[recall that fi is the tree-level phase space factor defined
in (1.2) and go(a) the one-loop correction for zero-gluon
mass]. The subscripts accompanying the D's specify the
diagrams in Fig. 2, &om which they are obtained, so that

D —DI + DII + DIII + DIII + DIV.
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1. The decay 6 —+ ceP

For a massive quark in the final state, we did not suc-
ceed in obtaining an analytic expression. Below we give

the renormalized contributions of the single diagrams,
in Feynman gauge, expressed in terms of at most two-
dimensional integrals:

3y 3(4+ 2y —y2) 1+ gl —4/y (3 2 11D?=fr a —1 — + 1n + !
—y —— 1ny4 8+1 —4/y 1 —Ql —4/y k8 2)

lna
Dgg"' = Dn + fi(a) )

v~ul~

u' + x2 —6ax —y(a + x)D~b™= dx fg(x) ur(a, x, y)
(v ~+~~)' 4x (x —a) (A6)

(~—v )'
Dvirt + Dt virt

0

1

dx dzm(l, a, x) —2xy+ (—4a+2y+2a +y +2a +2ax
lna 2 2 3

0 2a

+2ay + 2xy —4a x —4a y + 2ax —ay —3xy —4x y + 2axy)

1+ gl —4a/(1+ u —x)2 y 4+m(1, a, x)(3x+ 2y) 1n + — 1 ——
1 —gl —4a/(1+ a —x)» y

1+ Ql —4/y y 4ax(—2 —y+ 2a —4x + 2ax+ ay —3xy) 1n + — ]-
] —gl —4/y 2a y

1+ Ql —4u/yx(2+ 2x+ y —2a —4x —ay —-3xy) 1n
1 —gl —4a/y

+ (—2 + 2a —2x —y + 2a —2a + 4x —4ax + 2ay —2a x —a y + 4ax + 3xy + 3uxy)
ylny 2 3 2 2 2 2

2a

1——(1 —a —a + a —3x +2x + y+4ax —3ax —2ay+ a y —2xy
2 3 2 3 2 2

A

( 1+ gl —4A/yl+2xy + 4x y —2axy)! 1nA —1ny+
!1n

1 —4A/y 1 — 1 —4A/y ) (A7)

Dbrems+Dt&ems d ( & & ) ( ) )y)(2+u x+y+2z+x2 4z2
x a —x

—3ax + az —xy —xz —3yz) + (1 —x + y + x —3z + 2z —2ax
2 2 2 3

—ay+4az —xy —2yz+a x —a z —az —2xz +4yz —2y z+axy2 2 2 2 2 2

m(1, x, z) to(u, x, y) + (1 —z + x) (a —x —y) + 2 x y+axz —2xyz) 1n
-zv(1, x, z) va(a, x, y) + (1 —z + x) (a —x —y) + 2 x y

(X8)

(1—~y)

41 —x2
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where we have used

~(~, y, z) = (~' + y' + z —2xy —2xz —2yz) i ~,

A = 1 —z + az —x(l —z)z. (Alo)

The integrals have been further evaluated numerically.
In doing so it is convenient to use the following expansion
for large y:

with the coeKcient functions

fg(g ————(1+.55a —55a —a
2 2 3 5

5
+30a lna+ 30a lna),

3

D " "= ) IK„(a) + („(a)lny] + O(lny/y )
n=1

(All)

fzgq ———(a —1)(97 —648 a + 1042 a —648 a + 97 a )36
5a+ (9 —16a+ 9a ) lna,

3

fi(s ——— (1 —a) (1349 —8731 a —3817a + 5598 a
105

—3817a —8731 a + 1349a )
+40 a (1 + a) (3 —4 a + 3 a ) ln a,

fi Ki ————(1 —a) (—41 + 284 a + 3834 a
1 2

50
+284 a —41 a )

+ lna( —80 —135a —a + 30a lna) . (A12)
2a 3

5

The coeKcients +2, K3 were calculated numerically and
are given in Table IX for several values of a.

2. The decay b —+ ueP

In the limit a ~ 0, the integrals in Eqs. (A6)—(A9) can
be done analytically, yielding

7r2D"'" = (144y + 180y —2540y —513) ——(y —18y + 16y+ 6)432 36

+ (4y —lly —62y+ 132) ln
24/1 —4/y

——(y —18y + 16y+ 6) ln —+ ln
I
1+4 2 y (

6 2

y (y +2y —12) 4 1 (+ I,, -I 1+
6

1+ gl —4/y
1 —gl —4/y

4i y1 ——
I

ln —+lnI 1 — 1 ——
Iy) y)

4) 1(
1 ——

i

—Lr —
i

1 — 1 ——
i )yi. y).

Dbrems

+—(12y + 45y —172y —120) lny,
72

(259y + 43y + 133y —1863) — (36y + 477y —172y —120)432 72
4

+—ln y+ —(y —18y + 16y+ 6) 3ln y —2' —12arctan ——1
g 2 1 4 2 2 4
12 72 u

(A13)

+ 24 arctan

1(
+Lq —

I
2 —y —iy

2 i

( yx 2 arctan
(2 —y

+—(19y + 26y
36

( y 4
x arctaa

/

——1
/
+ 12 (La(2 —y y )

——1
I

+ y'(y'+ 2y —12)
y ) i 6

4 (1 —y 4——1
I
+ 2arctan

I

——1
y ) i, 3 —y y )

4
234y + 72) ——1 arctan ——1—

g

1(—
I

2 —y+iy
2
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I

y

( yarctan
Ii2 —

Q

+ arctan ——1 —vr
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I
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I
.
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TABLE IX. Coefficient-functions in Eq. (All).

~a 0 O.l 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.99
4321 5m
432 9

667133 Sm
14700 3

4.53 4.57 4.62 4.71 4.89 5.25 5.89 6.96 8.64 10.83
19.1 19.2 19.4 19.6 19.9 20.6 22.1
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APPENDIX B:RADIATIVE CORRECTIONS TO EXCLUSIVE DECAYS

The Pano. ,+ corrections to exclusive decays at zero recoil were considered in Ref. [11],using a somewhat different
approach. To convert to our technique, it sufBces to observe that for ultraviolet convergent quantities the invariant
distribution function to introduced in [11] is related to the discontinuity of the one-loop radiative correction ro with
finite gluon mass A [in the normalization of Eq. (3.29)]:

ro(A ) = ds stv(~ = s/p ).
4C~ 8+ A'

Using ls2 = m, mb and the explicit expressionsis given in [11), we find (with y = A /m~&and z = m, /mq):

—3y + 2yz —4z2 —3yz~ y (1 —z) (3y + 4yz —2zz + 3yzz)

3y —5y z —2yz + 6yz + 6z + 6z
lnz

8z4(1 —z)
3ys —5y z —8y2z + 16y2zs + 4yz4 + 4yz —32z 1 + gl —4z2/y

ln
16yz4(1 —z) gl —4z2/y 1 —QI —4z'/y

—4y —16y2 + 5y + 32z —4yz + 8y2z —3y z 1 + gl —4/y
ln

16y(l —z) gl —4/y 1 —
V 1 —4/y

9y+ 2yz+ 24z + 9yz2 9y —7y z —6yz —6yz + 18z + 18z
lnz

24(1 —z}z4

y (Qy + 2yz —6z2 + 2yz2 —12zs + 2yz —6z + 9yz )

9ys —7ysz —24y2z2 + 8y zs + 12yz4 + 44yz —96z 1 + Ql —4zz/y
ln

48yz4 (1 —z) gl —4z2/y 1 —Ql —4z2/y

—44y —8y2 + 7ys + 96z —12yz + 24yzz —9y z 1 + gl —4/y
ln

48y(l —z) Ql —4/y 1 —gl —4/y

Note that in Eq. (63) of Ref. [11] (1+r/2) must be replaced by (1+r/z).
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