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We present complete analytical expressions for the amplitudes of the process ee —+ Hp. The
calculation is performed using nonlinear gauges, which significantly simpli6es both the actual ana-
lytical calculation and the check of its gauge invariance. After comparing our results with a previous
numerical calculation, we extend the range of Higgs boson masses and center of mass energies to
those appropriate to CERN LEP 200 and a future linear collider.

PACS number(s): 14.80.Bn, 12.15.Ji, 13.10.+q

I. INTRODUCTION

The search for the Higgs boson (H) at ee colliders usu-
ally focuses on the channel ee ~ Z —+ Z*H at the Z pole
[1]. Some years ago, Barroso, Pulido, and Romao [2]
pointed out that the channel ee ~ Hp could be impor-
tant in Higgs boson searches, if for no other reason than
that the range of accessible m~ is larger. These authors
presented numerical results for relatively low Higgs boson
masses (mls & 60 GeV) and a top quark mass mt of 40
GeV. They concluded that the signal was observable and
also drew attention to some interesting theoretical as-
pects of the calculation related to gauge invariance with
respect to the photon Geld.

Given the prospect of the CERN e+e collider LEP
200 in the near term, the discussion of a higher energy
ee collider [Next Linear Collider (NLC)], and an indi-
cation that mt 175 GeV [3], it seemed appropriate
to reexamine this calculation with the intention of ex-
tending the range of mH and the center of mass energy
~s. Accordingly, we have computed the amplitudes for
ee ~ Hp using two nonlinear gauges [4,5] for the W's.
Our motivation for choosing nonlinear gauges was the
reduction in the number of diagrams due to the elimina-
tion of W-neutral gauge-boson —charged-Goldstone-boson
couplings. We discovered that these gauges have the ad-
ditional advantage of greatly simplifying the photon field
gauge structure of the various classes of diagrams.

In the next section, the choice of gauge-fixing terms
is presented and we outline the strategy of our calcula-
tion. We then present numerical results for a range of
m~ and ee center of mass energies. The complete an-
alytical expressions for the amplitudes are given in the
Appendixes.

&GF = —
2 (fA) —

2 (fz) — ff
A 2 z

where, for either choice of nonlinear gauge,

f~ = B„A„,

fz = BgZg+ (zmzG

(2)

For the nonlinear gauges, we choose

f = B„W„—igW„W„gi(grm~G (4)

or

f = B„W„—ig'B„W„+i(~m~G, (5)

with

gauge bosons, Goldstone bosons (G+, Go), and ghosts
(0+, 8+, rl~, rlz). Since the Born diagrams for this pro-
cess are proportional to the electron mass m„ the one-
loop corrections actually determine the amplitude in the
m, —+ 0 limit. For the purposes of this calculation we
generally set m = 0, although, as discussed below, some
care must be exercised when doing so in one of the dia-
grams.

The precise number of diagrams encountered when
computing the one-loop corrections is inQuenced by the
choice of the gauge for the W+ and Z . It has been shown
that a carefully chosen nonlinear gauge [4] can eliminate
the mixed W-G-p vertices, reduce the number of dia-
grams, and simplify the Feynman rules. More recently, a
related nonlinear gauge has been introduced which also
eliminates the W-G-Z vertices [5] and thereby further
reduces the number of diagrams.

In this paper, we utilize nonlinear Bg gauges specified
by gauge-Gxing terms of the form

II. NONLINEAR GAUGE FIXING AND
CALCULATIONAL APPROACH

W = cosO~Z„+ sing~A„
B~ = —sin O~Z~ + cos 0~A~,

(6)
(7)

In the standard model, the lowest order corrections
to the amplitudes for ee -+ Hp come &om one-loop
diagrams containing various combinations of fermions,

and 0~ denoting the weak mixing angle. The gauge pa-
rameters (A, $z, and (~ are all chosen to be unity, which
corresponds to nonlinear 't Hooft —Feynman gauges. We
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obtain the ghost couplings for a particular nonlinear
gauge by examining the revelant gauge-fixing terms.

The diagrams encountered in the calculation of the
ee -+ Hp amplitudes fall into three catagories (illustrated
in Fig. 1): those with two poles at mz, those with a sin-
gle Z or p pole, and triangle or box diagrams with gauge
bosons and fermions in the loops. Apart &om a reduc-
tion in the number of diagrams to be calculated, the use
of nonlinear gauges has the additional feature that these
catagories are separately gauge invariant with respect to
the photon field. This is not the case with linear gauges,
where the replacement of the photon polarization vector
e„(k) by the momentum vector k„mixes contributions
&om various catagories to produce the expected zero re-
sult.

It is worth mentioning that the separation of the dia-
grams into gauge-invariant subsets can be traced to the
simplified %lard identity satisfied by the W-TV-p vertex
in either nonlinear gauge. Specifically, if I'„„~(p+ k, p)
denotes the vertex function for an incoming W with mo-
mentum p and polarization e (p), an outgoing W of mo-
mentum p+ k and polarization e„(p+k), and a photon of
momentum k and polarization ep(k), the Ward identity
1S

k~1',-~(p+ k p) = e4-[&z'(p+ k) —&z'(p)] (8)

where

b, ~ (p)= p +mw.
The simplicity of the right-hand side of Eq. (8) means
that the replacement of the photon polarization vector
e(k) by the momentum k merely eliminates one or the
other of the propagators adjacent to the vertex. There
are no extra contributions which serve to connect one
catagory of diagrams to another.

(c)
FIG. 1. Typical diagrams for the double pole (a), single

pole (c), and box (c) corrections are shown. An external
soild line represents an electron, a wavy line a gauge boson, a
dashed line a Higgs boson, and an internal solid line a fermion,
gauge boson, Goldsone boson, or ghost.

Ao and Bo depend on the number of dimensions n, they
satisfy the relation

( n 2mwBp2)
The contributions of the nonvanishing diagrams are listed
in Table I. These consist of tadpole and bubble diagrams
with W's, charged Goldstone bosons, or ghosts in the
loops. Notice that for each particle the sum of the one-
point and two-point contributions results in the combina-
tion Eq. (11) . Consequently, the double pole diagrams
all vanish.

A. Double pole diagrams

One consequence of the separation mentioned above
is that the double pole diagrams illustrated in Fig. 1(a)
vanish when the photon is on the mass shell. There is no
need to perform a renormalization, unlike the situation
found in Ref. [2].

On the photon mass shell, any given double pole dia-
gram makes a contribution of the general form

M„„=(eg /mz)(n+Ptan Ow)b„„.

The coefficients n and P are expressible in terms of
the scalar loop integrals Ap(m2w) = Ap and Bp(k
0, m2w, mw) = Bp of 't Hooft and Veltman [6]. Although

B. Single pole diagrams

The single pole diagrams of Fig. 1(b) involve Z or

p poles, with the virtual gauge boson of momentum p
decaying into H p (momenta k' and k). Our result for
the p* ~ Hp amplitude is gauge invariant, in agreement
with Ref. [2]. Unlike Ref. [2], we also ffnd the Z' ~ Hp
amplitude to be gauge invariant. In the nonlinear gauges
there is no need to combine this contribution with box
contributions to achieve a gauge-invariant result.

The relevant diagrams consist of quark, TV, Goldstone
boson, and ghost loops, which we evaluate using the
Passarino-Veltman decomposition [7]. The complete con-
tribution &om the photon pole is

TABLE I. Contributions to the Z double pole corrections.

Loop
TV

G
8

One point

2nAo
Ao

—4Ao

0
—Ao

0

Loop
WW
GG
88

—4(Ap —mwBp)
—(2/n) (Ap —mw Bp)
(8/n) (Ap —mw Bp)

M„„=(eg /mz)(o'+ P tan Hw)b„„
Two point

0
(2/n)(Ap —m'w Bp)

0
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p) {p)"{ksin w 8

x 4
~

6+ 2 ~
C23(s) m~) mw) —16Cp(a, mH, mw)

( m~2) 2 2

mw)
2

4C„(s,m~, m, ) —Cp(a, m~, m, )
8 m~

3 m@7
(12)

where s = —(pq + p2) and Cp(a, m~, m ) and C2s(a, m~, m ) are scalar functions given in Appendix A.
For the Z pole contribution, we find

Z
( ) ( ) ( ) (k) l

m2~ 1 —2sin'8w, , (x
I

6 —
28 I+ 2 2 C2s(» ma mw)+

Icos2 8w r 2mw2 cos2 8w q cos2 8w
1 m~ 1 —(8j3) sin 8w

4C23 (s, mH, mt ) —Cp (s, m~, m~ )4 m~ cos2 Ogr

—4
~
Cp(s, m&, mw)

Here, v = 1 —4 sin 8~ and Fz denotes the Z width.

C. Box and associated triangle diagrams

The remaining diagrams [Fig. 1(c)] have no gauge boson poles. They consist of box diagrams where the photon
emerges &om one of the box vertices together with associated triangle diagrams with the photon being radiated by
one of the incoming leptons. There are two such combinations of boxes and triangles: one with Z's in the loops and
one with W''s in the loops.

The contribution to the matrix element &om the box and triangles with internal Z's is given by

Z&b „—— 6(p2)p„(v, + ps) u(p~)e„(k)
4 sin 8~ cos 0~

X bg k'111 kp(pl) A(s, t, u) + bg k'p2 kp(P2) A(s, u, t) j (14)

with t = —(pq —k)2 and u = —(p2 —k)2. The scalar function A(a, t, )uis given in Appendix B. In the evaluation of
the loop integrals for this contribution, we encountered jn(m, ) terms in the box diagram. These were shown to cancel
in the final result and we then set m, = 0 in the remaining expressions. Notice, too, that Eq. (14) is explicitly gauge
invariant.

The contribution from the diagrams with internal W's is also gauge invariant and given by

WMb „—— -(p.)~.(1+~.)' (p )'-(k)
2 sin 0~
x h»k. pq —k„(pq)„Aq(s, &, u) + A2(s, u, &) + S„~k.p2 —k„(p2)„A2(s, &, u) + Aq(s, u, &) (15)

with expressions for Aq (s, t, u) and A2 (s, t, u) given in Appendix C.
All expressions for the scalar functions given in the Appendixes have been checked numerically using Veltman's

program FQRMF [8] and Vermaseren's program FF [9]. The results presented below were obtained using the formulas
in Appendixes A—C.

III. DISCUSSION

The differential cross section d(T(ee -+ Hp)/dO~ is given by

d(T(ee -+ Hp) 1 s —m~ ~.
dQ 256m 2 s2

y spin
(16)

where the invariant amplitude M is the sum of Eqs. (12)—(15). Explicitly, we have
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TABLE II. A comparison of linear and nonlinear gauge contributions to Ir(ee
For any contribution, the result of Ref. [1] is given in the left column and.
calculation in the right. The contributions are in femtobarns.

-+ Hp) is presented.
that of the present

60 0.0069 0.0072
80 0.21 0.26

mz 51 52
100 3.3 3.2
120 0.61 0.57
150 0.53 0.45

0.012 0.017
0.0038 0.024
0.062 0.066
0.087 0.085
0.15 0.14
0.31 0.26

2Re(M;, M~ „)
—0.0014 —0.0034
—0.0044 —0.025

0.11 0.10
0.083 0.17
0.047 0.088
0.064 0.11

l~b-I'
0.00027 0.00019
0.0022 0.0015
0.0055 0.0039
0.0084 0.006
0.025 0.018
0.14 0.099

2Re(JH*oI Mbo~)
-0.00029 —0.00036

0.031 0.025
0.097 0.026
—0.29 -0.25
-0.28 -0.24
—0.74 —0.57

):l~l' =
spin

(t'+ u')[lA l'+ 2v, Re(A A~) + (1+v,')lA~l']
16sin 0~ cos 0~

+t [2(1 + v, )Re(A A*) + 4Re(A AI2) + 2(v, + Bv, )Re(AzA*)

+4(1+ v, )Re(AzA]e)+ (I + 6v, + v, )]A] + 4(1+v, ) Re(AA]e) +8]~Ave]~ ]+u (t etu]) . (17)

Here, A, A~, A, and AI2 are

A=

4 slIl l9gr cos 0~ —X (' ' ')~ 2 4 1

4cos 0~ 2 . x ( )
1

8 —m2~ + imzl z
—A(s, t, u) [Eq. (B2)],
2 cos ggr [z4y(s, tt XL) + 42z(s, v, , t)] [Eqs. (C3) and (C4)],

(20)

(»)

and the curly brackets in Eqs. (18) and (19) denote the
contents of the curly brackets in Eqs. (12) and (13), re-
spectively.

For purposes of comparison with Table 4 of Ref. [2],
Eq. (16) was used to compute Ir(ee —+ Hp) when m~ =
mq ——40 GeV and 60 GeV ( ~s ( 150 GeV. The
two sets of results are given in Table II. Prom these data,
it is evident that there are difFerences between the two
calculations on a contribution-by-contribution basis. We

I

attribute this variation to the fact that the M j and

Mb are not separately gauge invariant for the linear
't Hooft —Feynman gauge of Ref. [2]. These amplitudes
are separately gauge invariant for the nonlinear 't Hooft-
Feynman gauges used in the present calculation. The
total cross section for the two cases is plotted in Fig. 2.
The results are in good agreement, although the cross
section of Ref. [2] is slightly lower than ours both below
and above the Z peak.
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1OO =
1oo =
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10—1

10 2
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50

I

100
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50
I I I I I I I I I I I I I I

100 150 200

~s (GeV)

FIG. 2. The cross section from the present calculation
(solid line) is compared with the result from Ref. [2] (dashed
line).

v s (GeV)

FIG. 3. o(ee ~ pH) is plotted for m~ = 60 GeV (solid
line), 80 GeV (dashed line), 100 GeV (long dashed line), 120
GeV (dot-dashed line), and 150 GeV (dot-dot-dashed line).
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I

400 FIG. 5. The numbering schemes used for the computation
of Da(1, 2, 3, 4) in the case of the Z box (a) and the W box
(b) are shown.

FIG. 4. o(ee ~ pH) is plotted for mH = 60 GeV (solid
line), 80 GeV (dashed line), 100 GeV (long dashed line), 120
GeV (dot-dashed line), 150 GeV (dot-dot-dashed line), 2mz
GeV (dotted line), and 250 GeV (short dashed line).

In Fig. 3, the cross sections corresponding to m~ ——

60, 80, 100, 120, and 150 GeV are plotted for the LEP 200
raxige V s ( 200 GeV using a top quark mass of 174 GeV.
Apart Rom mH ——150 GeV, the cross sections rise to a
level greater than 0.1 fb as ~s ~ 200 GeV. The only
discernible feature above the Z peak is the 2W threshold
at ~s 160 GeV.

The extension to the range ~s & 500 GeV is shown
in Fig. 4. All curves clearly show the eEect of the top
threshold. In addition, the m~ ——2Mz curve forms a
new upper envelope for the cross sections corresponding
to the region m~ & 2mz.

The cross sections are, of course, quite small. At ex-
pected LEP 200 luminosities (0.5—1.0 fb 1) no events of
this type should be seen. Thus, any observed H p events

would be a signal of new physics. For proposed NI C lu-
minosities (50 fb /yr), Hp events should be seen. At
other energies or masses, our analytic results allow the
cross section to be determined easily.
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APPENDIX A: SINGLE POLE DIAGRAM INTEGRALS

When evaluating the gauge boson pole contributions, we encounter the functions Co(s, m&, m ) and C22 (s, m&, m ) .
These functions are defined in terms of loop integrals as

C.(., m2~, m2) =

C„„(p,k) =

1 1
i7r2 (q2+m2)[(q —p)2+m2][(q —k)2+m2] '

g~Vv
iver (q2 + m )[(q —p) + m ][(q —k)2 + m ]

C21(s m~ m )ppp + C22(™~m )krak

+ C22(s, m&, m ) (p„k + k„p„)+ C24(s, m&, m )b„„,
where we have used p = —s and the mass shell conditions k' = —m~, k = 0. The latter enables us to eliminate
reference to the A: dependence of the C's. It should be noted that numerous other C's appear in the course of the
calculation, but only Co and C23 survive in the final result.

The evaluation of Co(s, m2~, m2) is straightforward, yielding
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where

(m~~l ( s l
Co(s, m~, m ) = ')

&
')

'dx
C(P) = —ln 1 —Px(l —x) —ie.

0 X (A4)

—2 are sin,

2 arccosh

0(P(4,

p)4.
(A5)

By analyzing Eq. (A2), it can be shown that Czs(s, m~, m ) is expressible as

Czs(s, m~, m ) =
2(s —mz~)

2 —— Bo(k, m ) + 2m Co(s, m~, m )
/2 2 2 2 2

2)

[Bo(k', m ) —Bo(p, m )]s —mH
(A6)

The two-point scalar function Bo(pz, mz) is defined by

Bop, m)= . d"q
ivrz (qz + mz)[(q+ p)~ + mz]'

This integral can be evaluated to give

~~"~'-'lr(2 —P) (
(A8)

1

B(P) = dx in[1 —Px(1 —x) —is] (A9)

. (
p

arcsin

arccosh
—4 —1 —~iver p —4

0(P(4,

p)4.
(A10)

Czs(s, m~, m ) then takes the form

( s

(m )

s —m2 m2 m2 (A11)

APPENDIX B: Z BOX

The diagrams with Z's in the loop consist of the crossed box illustrated in the first part of Fig. 1(c) and two triangle
diagrams of the type shown in the last part of Fig. 1(c). In the nonlinear gauges, the triangle contributions serve
to cancel a non-gauge-invariant term in the crossed box. The entire contribution is given by the function A(s, t, u),
which appears in Eq. (14). In terms of the decomposition of Ref. [7], this function is given by
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A(s, t, u) = Do(8 t, u, mH, m„mz) + Dyy(s& t, u, mH, m„mz)

When the D p in Eq. (Bl) are expanded in terms of scalar integrals, the expression for A(s, t, u) takes the form

A(s t u) = (t z)[mz(t+ u) tu]Do(1, 2, 3, 4) —(t —mz)CO(1 2 3)
111 2 2 2

(& —mz)(s —&) —2mz Co(1, 2, 4) + (t —m—z)(s + u)Ce(1, 3, 4)
1 2

t (a+t)) ' ' t

(t ——m—z)C (2, 3, 4) + [B (1,4) —B (2, 4)]t ' ' (s+t) (B2)

where we have used the compact notation of Ref. [7] with mq ——m4 ——mz and mq ——ms ——m . This labeling is
illustrated in Fig. 5(a).

Explicit evaluation of Dq(l, 2, 3, 4) gives

+ Lip

—Lip

( (Do(1234) =
z z ln

~

1
tu —m~zt —m~zu

( m', & ( m',
+1n] — + 1n] 1—

( m',
f (

+2Lip

J

t—Lip

2mZ

t
2mz1—

tu & ( m& l
ln ~+21n 1—

mz) (m&m~) l t )
—ln P+ — —ln P

mZ mZ

t —Lip
~ t

2

+Lip

2mZ

t
2
Z

)
+ Li~

2
Z

t
2mz

t

7r2
+ [t++ u] (B3)

where L4(z) is the dilogarithm or Spence function [10] defined by

1dt
Liq(z) = — —ln(1 —zt) .

p

Notice that Do(1, 2, 3, 4) has a ln(m, ) dependence, which eventually cancels as shown below. The roots p~ are

(B4)

The various Cp functions are

P~= — 1+ 4m' &1—
mp )

(B5)

1
Cp(1, 2, 3) = — Liz 2mz

1, ( t ~ f' t l fm.'l'
~ I+»11—

2 q m~z) g m~z) gmzz
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Cp(1, 2, 4) =
m~ —tL2 I+~

Eo'1 —zs) E~& P + zs) (~g P—+ z 8) ko!g P+ xE')

(o., —P+ —is) (n, —1+ is)
0!3

2mz
—Li2

0!3 —1
2mz —is)-

(87)

C, (1,3, 4) = 1 —Li2
m~ t "EV-'8) "&p-P +i.)

(88)

7 —1 y+ Li2

(p —1+ +is j (p —I+ +as j

P +-' )-&~ P+-—r &7 P+--' )

1
C, (2, 3, 4) = — Li, 2

f m'. i, I+in) 1—
m~z) ( mz) (m~z)

(89)

The roots o;q, o;2, n3, and p are

—m~'ll + mzmH2 2 2 2

(m~~ —u) ~

2 2mz mH

tk mH —tk

) 0!2 =
2mz

(m~~ —u)
'

mz

(mH —t)
'

(81O)

and the roots P~ are those of Eq. (85). Note that Cp(1, 2, 4) can also be obtained directly f'rom Cp(1, 3, 4) by replacing
t with u.

Finally, the required Bo functions are

(P+ —1+is) (P —1 —is)
Bp(1,4) = 4+ P+ ln +P ln +2, (811)

m', & & mz
Bp(2, 4) = 4 ~

~

1 —
~

ln + 2,
u ) (m~z —u)

(812)

where 4 is

(813)

and, again, P~ are given in Eq. (85).
The cancellation of the ln(m, ) dependence of Eqs. (83), (86), and (89) can be checked by substituting the explicit

expressions into Eq. (82).

APPENDIX C: R' BOX

The diagrams with W's in the loop are the box diagram shown in the second part of Fig. 1(c) and the triangle
diagram given in the last part of Fig. 1(c), together with their counterparts having the Higgs boson and photon
interchanged. The non-gauge-invariant part of each box diagram is canceled by the corresponding triangle diagram.
The W contribution is determined by two scalar functions Aq(s, t, u) and Aq(s, t, u), which appear in Eq. (15). These
functions can. be related to the D p of Ref. I7] as

Aq(s, t, u) = Dp(s, t, u, m&, m„m~) + Dqq(s, t, u, m&, m„m~)

AQ (8, t, u) = —D]Q(8, t, u, m+, m, mph) + DJ 8 (8) t, u, mQ, m, m~) + DQQ(8, t, u) mH ) m, mph)'
(C1)
(c2)
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The decomposition into scalar functions takes the form

1 1 ((8+ t —mzz, )-
Ag(a, t, u) =

2st i t )mzz

(t + u) —au —2m~ 8
~
Dp (1,2, 3, 4)

+(s+ t —mzz, ) ——Cp(1, 2, 3) + Cp(1, 2, 4) + Cp(1, 3, 4) ——Cp(2, 3, 4)
a (a~ + 2at —t~) (t+ u) u

(8+t)t ' ' t ' ' t

+ , [Bo(1,3) —B,(1,4)] + [B,(2, 4) —B,(1,4)] , (C3)

+Q(8, t, u) = —— au + m~(t + u) Dp(l, 2, 3, 4) + (u —m~) —Cp(1, 2, 3) — Cp(1, 2, 4)
1 1 (u —mzz)- - s (8+t)
2 8th Q 'll 'll

+ Cp(l, 3, 4) —Cp(2, 3, 4) + [Bp(1,4) —Bp(1, 3)]
(t+ u) 2s

t+u

In this case, mi ——ms ——m4 ——mzz and mq ——m„= 0 and we follow the labeling in Fig. 5(b).
The expression for Dp(1, 2, 3, 4) is

(C4)

Dp(1, 2, 3, 4) =
su(A+ —A ) i o! —A+ —zc ) E o.'—A+ —zc

( 1 —A+ ) . ( A+ ), . ( 1 A+ i .
,

( A+'
(p+ —4++ ic) '

(p+ —A++ zc) (p —A~ —zc) (p —A+ —zc)
( 1 —A+ i . ( -A+ i . ( 1 —A+ ) . ( -A+
ip+ —A+ + ic) ip+ —A+ +ic) ip —A+ —ic) ip —A~ —ic)

—A+ -+ A (c5)

and the roots n, P~, p~, and A~ are

P+= — 1+ )1—2

1 +
2

4 ' i
2

mH

4'i

(C6)

(C8)

2
1 m~(s —m~&) ( mzz (a —mH) ) 4mzz,1V H
2 —8'4 —8th 8

(c9)

The Co's in this case are

1 zr~ . ( 8 ) . ( m~~
Cp(l, 2, 3) = — ——Lip

I
1 — i ~

—Lip
~8 6 mdiv) i mw' —8&+ —'c)

m —8 m2 m~ —8

(mL —sp+ —zc) (m~ —8+ + zc) (m~ —8+ + zc)
(C10)

Cp(1, 3, 4) =
m —82

H ++ic) '
i& —ic) '

I,p++ic) '
&p —ic) (C11)

1 . ( u
Cp(2, 3, 4) = -Iig

~u (m~) (C12)
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and Cp(1, 2, 4) being given by Eq. (B7) with mz ~ mar.
Last, the Bo's are

Bp (1,3) = b. + p+ ln
~

(p+ —1+ ie)I+
&+

~+ )
&p(2, 4)= Zh, +(1— ~ /ln/

'a ) &mw

where Pg is given by Eq. (C7) and 6 by Eq. (B13).

(p —1 —isa
—1ni I+2

)
(P —1 —ie )

ln
)

/+2,u)

(C13)

(C14)

(C15)
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