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Gluon production at high transverse momentum in the McLerran-Venugopalan model
of nuclear structure functions
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We consider the production of high transverse momentum gluons in the McLerran-Venugopalan
model of nuclear structure functions. We explicitly compute the high momentum component in this
model. We compute the nuclear target size A dependence of the distribution of produced gluons.

PACS number(s): 12.38.Bx, 24.85.+p, 25.75.+r

I. INTRODUCTION (A, (k)A,*(k))p.

Understanding parton distributions formed at the ini-
tial stages of a collision between two heavy ions is a very
important open problem. In a previous paper we have
set up a formalism for the calculation of the gluon distri-
bution in the framework of the McLerran-Venugopalan
model of the nuclear structure functions [1,2]. In this ap-
proach the valence quarks in the nuclei are considered as
classical sources of color charge. This picture is similar to
that developed by Mueller for the gluon structure func-
tions for heavy quark systems [3]. The "initial values"
of the color distribution of the valence quarks in the two
colliding nuclei is given by

Jf2(z(x)) = b"+b(x+) g pi 2(x~).
As is apparent from the the light cone delta functions
8(x+), the quarks in the nuclei appear as infinitely thin
sheets of nuclear matter moving at the speed of light in
positive and negative z directions, respectively.

These color charge distributions generate a classical
glue field according to classical Yang-Mills equations

[D~ F" ]

) U[A](x, z (x)) J" (z (x)) U[A](z (x), x)
m= 1,2

(2)

Here zi 2(x) = x~ . e serves as a reference point used
to define the initial value of the charge distribution. Be-
cause of covariant current conservation [D,J (z)] = 0
this initial distribution evolves along the trajectory of a
particle via parallel transport. This is the origin of the
link operators

d~" A" ((u ) (3)
-(*)

Here A(k) is the Fourier transform of the classical solu-
tion. The averaging over the color charge distributions
is performed independently for each nucleus with equal
Gaussian weight:

(0)p
—— dpidp2 0

A+ =0,
A' = 0(z+)ni 2(z~). (6)

The functions o.; are implicitly determined by the "di-
mensionally reduced" version of the Yang-Mills equa-
tions:

n' = ——U (x~)B'Ut(x~),
Zg

0'n' = g p (x~). (7)

An obvious property of the solutions Eq. (6) is that
the "transverse" components of the field strength van-
ish E'~ = 0. The gauge potentials themselves vanish in
front of the moving charge and are a pure gauge behind it.
The only physical information is contained in the discon-
tinuity at the world line of the quarks which generate the

trip'(z )+ p'(z )]&
2p2 )

The purpose of this paper is to calculate this distribu-
tion function perturbatively, to lowest nontrivial order in
the inverse powers of the transverse momentum n, L'/k.

The basic input in our approach is the classical fields
generated by single nuclei. which have been derived ear-
lier in [1,4,5]. These solutions remain valid before the
collision and yield initial conditions for the field after the
collision. The solution in the one nucleus case is of the
form

connecting the initial point z (x) and the point x on the
trajectory ~, which appear on the right-hand side of
Eq. (2).

The gluon distribution function is defined in terms of
classical solutions of Eq. (2), and is related to the quan-
tity (for precise de6nition see Sec. IV)

On these classical solutions the link operators in Eq. (2)
drop out. They may, however, be important if one starts to
consider quantum corrections in powers of a .
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gluon fields. The field strength does not vanish only on
these world lines and is confined to infinitely thin sheets.

Let us now turn to nucleus-nucleus collisions. Obvi-
ously the single nucleus solutions are still valid every-
where except in those regions of space-time which are in
causal contact with the collision point, i.e. , in its forward
light cone (see Fig. 1). In the Abelian case even there
the solutions would be directly given in terms of the sin-
gle nucleus solutions as a sum of two pure gauge fields
which again constitutes a pure gauge field. Hence in this
case there would be no nontrivial effects on the classi-
cal field level. To generate photons and field strength
one would have to resort to quantum effects. This is
fundamentally different in the non-Abelian case. Obvi-
ously now the sum of two pure gauge fields is no longer
a pure gauge field due to nonlinear effects, and therefore
it does not solve the Yang-Mills equations for the two
nuclei problem. Nevertheless the one nucleus solutions
provide initial conditions for the evolution of the gauge
field in the forward light cone as discussed in [2].

In the remainder of this paper we will adopt the gauge
condition

In this gauge the fields in the forward light cone can be
cast in the form

homogeneous equations

[D„,E" ] = 0.

The initial conditions are determined by patching the
solutions in the three regions (see Fig. 1) together and
eliminating the discontinuities at v. = 0. This specifies
the forward light cone fields n& and nl z in terms
of the known single nucleus solutions outside the forward
light cone.

II. PERTURBATION THEORY

Using the form (9) of the gauge potential, the Yang-
Mills equations (10) in the forward light cone are

07 Bn+[D;, D', n ]=0,
1

D~, O~CX~ + 2gr [A, 07.Q!] = 0,
'1

—B~TB7-o!g —zgr [cl) D, cx ] —D, F = 0.
'1

Matching conditions on the solution lead to the initial
conditions for o.(r, x~) and n&(r, x~) in terms of the
single nucleus solutions o,':

A+ = +x+o.(~, x~),
A* = n~(r, xg), (9)

Zg

2
2

O.'g) 0!2

'e= Cki + O.'2)

(12)

where r = v 2x+x is the proper time. Note that this
representation does not introduce any physical assump-
tion not already present in the single nucleus solution.
The relation between A is a consequence of the gauge
condition. Further, the fact that the functions n(r, x~)
and. o.&(r, x~) do not depend on the space-time rapidity
q = 1/2 ln x+/x is a natural consequence of the absence
of a longitudinal length scale in our initial conditions with
its infinitely thin nuclei moving at the speed of light.

Since the valence color charge densities vanish inside
the light cone, the fields A„of Eq. (9) should solve the

i x

In this paper we construct solutions in the weak field
limit by expanding first the initial conditions and then
the fields within the forward light cone in powers of p.

Let us first concentrate on the initial conditions. To
determine the initial conditions perturbatively, we need
the single nucleus fields o.', i = 1, 2 to the appropriate
order.

Recall that for a single nucleus, the Yang-Mills equa-
tions reduce to the two equations (7). The first states
that o.' is a pure gauge field. The second equation de-
termines o.' in terms of the charge density p (x~) of
the individual nuclei via

1O' ——. U zi O'U = gp xi . 13
Zg

x
,'$, x+ To second order in p, the solution of (13) is

X (14)

where we have defined

g
2 Pm.

J

FIG. 1. Regions with diferent structures of the gauge po-
tential: In regions 1 and 2 we have the well known one nucleus
solutions o.q q. While the gauge potential in the backward
light cone is vanishing we have a nontrivial solution in the
forward lightcone, region 3.

Note that the first order term in (14) is longitudinal,
whereas all higher corrections are transverse. Their sole
purpose is to render n' a pure gauge field. Plugging (14)
into (12) gives us initial conditions up to second order in

P
To solve the equations of motion (11) in the forward
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light cone perturbatively, we also have to expand the
gauge fields there in powers of p

0!(n),
n=o

Qj Qj ( )
~

n=O

Eirst order

To first order the equations of motion are necessarily
linear

1 2B~v B~o.'(i) —V~ 0,'(y) = 0,

8 B~o.'j (~)
= 0)

—07.70~&g~il —(Vj 8 —0 8 ) o.'~~il = 0.

They are to be solved subject to the initial conditions

independent) gauge freedom, we can remove the inho-
mogeneous piece altogether.

We define e& by

1A„= V(z~) ~„——. B„V (z~),
'bg

where V(zg) = exp[ —igP~(z~)]. Pg(zi) is to be de-
termined such that it removes nonlinear terms from the
equations of motion for ~ at least to second order. In
fact, it turns out that it is possible to remove the inho-
mogeneous terms up to third order in p requiring

B*e'~ o
——0. (23)

p~ = pi + p2+ O(p ). (24)

With this choice of V the first order solution vanishes:

6(y) = 0

In higher orders it is no longer possible to linearize the
equations. Using Eqs. (22) and (23) we find, for P~,

n(, )(~, z~) ~. , = 0,

~g(, ) (~, zi) 1.=0 = —~* (0'+ 0') (zi).
The initial condition for the "4" components to this or-
der is trivial.

With these initial conditions, the first order solutions
are completely specified and essentially trivial. We ob-
tain vanishing o.(i),

o'(1) (T~ z L) = 0,

E(i): Oo

The second order equations become

8 87-E'(2) = 0,

—8~7'87-F(2) —(h V~ —8 8 ) E'(2 = 0.
'T

(25)

(26)

and w-independent n& (i),
The initial conditions on o.& and o. are transformed into

~~(i)(&») = —~'(0" + 0') (zi), (2o)

Second order

In the second order this changes immediately. Us-
ing the first order information almost all nonlinear terms
drop from the second order equations which now read

1 3 — 2—(9~7 0~0!(2) Vj 0!{2)7-

{

=0,

—D~TO~AgI2l —(Vg 8 —8 8 ) Ai
7

+Zg 0 [A~( ) ) o.'~(il] —0.

The only inhomogeneity in these equations comes from
the pure gauge o.~Iil. In fact using the residual (w-

which obviously is pure gauge.
To this order the problem is structurally identical to its

Abelian counterpart. Commutators do not appear either
in the equations of motion or in the initial conditions
(these contributions are necessarily at least second order
in p ), and hence no Geld strength is generated in the
forward light cone.

Zg
e() I-=o = —~Pi ~&2 .

2
(2s)

Obviously, the gauge condition 0' e'
~

o
——0 in this or-

der is preserved for all proper times w. Hence the i com-
ponents of the gauge field may be represented as

(29)

Using e and y, the second order Yang-Mills equations
and initial conditions simplify even further. In terms of
these variables, we finally obtain

—0~7 O~E(2) —Vj C(2) = 0,

1 2~+~X(2) 7j X(2) —0)
7

(30)

and

~(2l ~
=o = —c*A, cl*42I,

2

X(2) ~7 =0 ig & [~ 0'll ~ 0'2]

We stress that, even though the equations of motion (30)
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linearize to this order due to our gauge choice, the in-
trinsic nonlinearities of the system are very important.
They show up in the initial conditions (31) which carry
nontrivial physical information.

III. PERTURBATIVE SOLUTIONS

e(2)(7, xJ )
d2k '"~*~ h (k )(2~)'

( 3 l (1)x &, cos
I

~& ——+ I+0
l s

(~~) & 4 ) (~)
(as)

To solve (30), we note that the equations are of form

8 7 8 f(~, zg} —Vj f(~, zg) = 0, (32)
IV. DISTRIBUTION FUNCTIONS

where in our case m, = 1,3, f = y, e. Factorizing 7 and
x~ dependence, we immediately identify the eigenfunc-
tions

The solutions of the Yang-Mills equations at asymp-
totically large w are of the form

Ji (7, zg) = ((ui ~) ~ Z ~,
(

(~i ~) e'" (33)

F (~, x~) = d2kg
h (kg) fi, (~, zg)

27r 2

d2k e'" h (k~) (~i,~)
27r 2

x J~ i ~(~~).
2

For equations (30) this yields

where wA, = gk2& and Z„may in general be any linear
combination of the Bessel functions J„,N„.

The initial conditions (31) force our solutions to be
regular at w = 0 and thus preclude any admixture of
Neumann functions N .

A general solution is therefore of the form

7) 2:g
(2vr}2 g2~

(2~)2 +2~ rl/2

(39)

Here u =~ k~ ~, and x' = e' k /w. The notation c.c.
means complex conjugate.

To derive an expression for the energy density, we re-
call that 7 is large. Near z = 0, this implies that in the
range of z where w t )) z the solutions are z inde-
pendent. This means they asymptotically have zero p .
Now suppose we are at any value of z, and w is large but
t z. We can do a longitudinal boost to z = 0 without
changing the solution. Again in this frame the solution
has zero p . We see therefore that for the asymptotic
solutions the space-time rapidity is one to one correlated
with the momentum space rapidity, that is at asymptotic
times we And that

e(,) (~, x~) = d2k d ik~(x —y)~ h ( ) g ( )
1 1

r) = —ln(x+/x ) = y = —ln(p+/p ). (40)

X(2)(&~ z~) =
27r 2

(35)

To proceed further, we compute the energy density in
the neighborhood of z = 0. Here asymptotically w = t.
The energy in a box of size B in the transverse direction
and dz in the longitudinal direction, with L &( t, becomes

with h3 and hz determined by the initial conditions Eq.
(31) as

hs(z~) =ig c)*Pi, c)*$2 (x~),
dE=-dz

t ,~). I a,'(k~) I'
i, b

(41)

(36) Recalling that dy = dz/t, we find that

In the following we will need the large 7. asymptotics of
the solutions

dE 1=
(2 ),&). I ~;( ~) I

i,b

(42)

X(2)(T xJ ) 2
e hl(kJ )

27r 2

7r (11x g, cos cow —— +0
i

((ur) ~ 4

and the multiplicity distribution of gluons is

dN 1 dE
dgd2k~ R dgd2k~

(43)

As we expect for a boost covariant solution, the multi-
plicity distribution is rapidity invariant.

This is now easily compared to the asymptotic behav-
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ior of the second order solutions (38), (37). We read off
that (50)

ai(k~) = 1 hs(k~)
~VI'

1
a2 (k~) = iurhi (k~).

This is the main result of this work.

V. CONCLUSION

Hence we get the distribution function

ddk ddk (2)
2

"'( ')",'(" ) +~'h, (k )h&(k )2 QJ

(45)

Now we use

In this paper we have calculated the high k~ asymp-
totics of the distribution function of gluons produced in a
collision of two ultrarelativistic heavy nuclei in the frame-
work of the McLerran-Venugopalan model.

Our result, Eq. (50), has a very natural interpretation
in analogy with the naive parton model. The number of
produced gluons in the parton model is given by

+(kJ ) — d pJ +1(pJ )+2(kJ pJ )&(pJ ~ kJ )~ (51)

hs(k~) =

hi(kg) =

g ( ~*0,~*0 ) (g~)

e —ik~.yg

gg
(d

age cl Qi, cl Q2 (p~)

p 2g

gee —ig 2 8 1 6 2 g~
J

where X (qg) is the probability to find a gluon with
transverse momentum q~ in the mth nucleus, and o is the
cross section for production of the gluon with momentum
k~ in the Gnal state in the collision of the two gluons. To
the lowest order in perturbation theory the cross section
ls

and get
o.(k~) oc (52)

dN
dyd2k~

g 2 'Pij gkl + ij kl d2 ik~ z~
(2vr)s ark~~

Xtr 8' q, 6 2 x~ 8"
~

8' 2 0

(47)

ipse (z —y)z
(& ( )&."(~ )). = (»)'~ "~'

(48)

and the above turns into

where S~ is the transverse area of the system. As in-
dicated, we have to average over p with the Gaussian
weight Eq. (5). Using (15) we find

The distribution functions for the one nucleus case %
were calculated in [1,4] and were found to have the same
functional form as in the lowest order in perturbation
theory:

(q~) oc
g~

(53)

Substituting this into Eq. (51) gives the result of Eq.
(50).

Indeed the calculation performed in this paper can be
represented in terms of Feynman diagrams. The gluon
distribution function of Eq. (50) has a representation of
Fig. 2.

The reader may have noticed one peculiarity in the
preceding discussion. Although we have been using the

d% g
dyd2k~ (2vr)s-S~ — 6"8"' + 6*'e"' tr ([T,T ] ['r, 7- ])

2p
X

vrkq

d'p~ p'p" (p+ k)'(p+ k)'
(2vr) 2 p4(p + k) 4

2gsp4 N, (N2 —1) d p~ 1
J (2vr)s~ k~2 (2~)2 p2(p+ k)~

49

The integral in Eq. (49) is infrared divergent. This, how-
ever, is an artifact of the weak Geld expansion employed
above. As discussed in [1,4,5,2], the inclusion of higher
order terms for the initial fields would generate a mass
scale of order o.,p and hence regulate this divergence.
With logarithmic accuracy we obtain therefore

L

!o
1

!I

!o
E

0!
!

a!
E

!

e!
a!

FIG. 2. Diagrammatic representation of the lowest order
distribution function.



3814 ALEX KOVNER, LARRY McLERRAN, AND HERIBERT WEIGERT 52

dNN= dki (54)

Since
& &, &

is proportional to the transverse area of
the system, and is a function of the dimensionless ratio
p2/k&2, the integral has to be proportional to S~p . Re-
membering that for large nuclei p, scales with the number
of nucleon in the nucleus A as p oc A /, we conclude
that for large nuclei the total multiplicity scales as

N ocA.

On the other hand, the total multiplicity at momenta
larger than some fixed momentum p )& o.p will coincide
with the perturbative result

parton model notations, some of the gluons involved in
the process depicted on Fig. 2 are virtual. To produce
the real final state gluon, the internal gluons must be ofF

shell with virtuality of order of their momentum. In fact
if one wants to think about this process in terms of real
partons, it must be represented as "two quarks go into
two quarks and a gluon, " rather than "two gluons go into
one gluon, " which is kinematically forbidden for on shell
particles.

As we have seen, to this order our calculation essen-
tially reproduces perturbation theory. The reason is that
we have expanded in powers of the valence charge den-
sity, and thereby have ignored the fact that the classi-
cal fields involved are expected to be strong. The real
nonperturbative nature of this approach will become ap-
parent when those are fully taken into account. Some
of the qualitative consequences of such an analysis, how-

ever, can be understood already at this point. Consider,
for example, the total multiplicity of produced gluons,

by gluon gluon scattering. This populates the high p~
tail of the distribution by scatterings of low p~ gluons.
In our case, we have an intrinsic p~ for the gluons and
the gluons are far enough oE mass shell so that we can
produce high p~ gluons by glue-glue goes to single gluon
scattering. Consequently, although the p~ dependence of
the two results is similar, in the high p~ region we have
a diferent dependence on o.s. We have one power less,
since the factor o. p in Eq. (50) just sets the scale of
the intrinsic single nucleus glue distribution.

The scattering processes, which are leading in our ap-
proximation are also present in cascade codes as com-
posite processes qq ~ qqg, where some of the quarks are
oK shell by an amount p&. Although these contributions
are formally of order o;, for very large nuclei the quark
distribution functions will be large and these processes
may become leading. This seems to be the natural point
of contact between the two approaches.

Of course at some p~ )) p, our approximations for
computing the gluon distribution function break down.
This presumably first occurs when gluon bremsstrahlung
softens the high p~ distribution from its I/p& behavior,
and the spectrum steepens. The main point is, however,
not what happens in the tail of the distribution. This
is simply where it is most easy to compute. In the cen-
ter of the p~ distribution of produced gluons, the gluons
arise &om a nonlinear evolution of the gluons fields. This
is cause by the quantum-mechanical nature of the initial
state and the charge coherence of the initial state interac-
tions. In this case, the final state distribution of gluons
bears scant resemblance to that of the initial distribu-
tion convoluted over hard gluon scattering. Before one
knows whether there are substantial quantitative diÃer-
ences, one must of course numerically solve the problem
for gluons in the center of the distribution.

N — d ki
d d2k

K SLP K A4 - 4j3
I 2 )p2 dgd kg

Therefore it is very important to go beyond the weak
field expansion and incorporate truly nonperturbative ef-
fects due to strong classical fields.

In comparing our results with the parton cascade
model of Geiger et at. [7—9] one should keep in mind the
following difI'erences between the two approaches. In the
parton cascade, the leading order in o., scattering occurs
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