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Equivalence of the Maxwell-Chem-Simons theory and a self-dual model
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We study the connection between the Green functions of the Maxwell-Chem-Simons theory and
a self-dual model by starting from the phase-space path-integral representation of the Deser-Jackiw
master Lagrangian. Their equivalence is established modulo time-ordering ambiguities.
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In a recent interesting paper [1] the bosonization of the
massive Thirring model in 2+1 dimensions was discussed
by relating it in the large mass limit to the Maxwell-
Chern-Simons (MCS) theory [2]. As an intermediary
step, use has been made of the equivalence [3] of this
theory to that of a self-dual (SD) model discussed in [4].
This analysis has been carried out on the level of the con-
figuration space path-integral expressions of the partition
functions. Because of the constraint structure associated
with the various Lagrangians involved in the argument,
a complete investigation of the problem must start from
a proper phase-space path-integral formulation. This is
done in the present paper. Starting from the master La-
grangian of Deser and Jackiw [3], we follow the general
line of reasoning of Ref. [1] and establish the equivalence,
modulo time-ordering ambiguities, of the SD model, and
the MCS theory on the level of Green's functions.

Consider the symmetrized form of the master La-
grangian given in [3]

'f"f„—-2e" f„B Ap —2e" "A„B fp

A„B Ap.

The primary constraints [5] are given by

m
Op ——mp --0, 0; = vr; + 2e;~ f~ ——e;~A~ = 0,

Os ——e'sB, f, —me'sB;A~ = 0,

Os = fp — 'e~B;A, = 0.
(4)

O= V O+O3=0,

which can be checked to be the generator of the gauge
transformations A' ~ A' + O'A, f' -+ f' There . are
no further constraints. Hence, we have two first-class
constraints, Op and O, and six second-class constraints
Ap, 0, , As, and 0; (i = 1, 2). Since the equiva-(f) (f) (f)
lence to be demonstrated refers to the observables of the
SD and MCS models, we are &ee to choose the Coulomb
gauge for our discussion. The phase-space partition func-
tion [6] in this gauge is then given by

Z = D ~Der„DA"Der„b Ap b V'. A

&& ~(Ap) ~(O)b(n, )b(n, )

Although, apart &om mp, all other constraints appear to
be second class, there actually exists a linear combination
of the constraints that is first class. This constraint is
given by

O(f) (&) p O(~) (~) + i . .Ai p

(2) b(B ~
) exp

~

i f d x(vc„A" + m ~~~f"—W, )
ex=0

(6)
where m&(vr& ) are the momenta canonically conjugate
to A"(f"). The canonical Hamiltonian is given by

H, = d x —
2 „+Ap~' 0; ~

—mBA~

+e'~ fp8;As]

The Faddeev-Popov determinants associated with the
constraints and the gauge-fixing are all trivial and, hence,
do not appear in the functional integral. The momentum
integrations in (6) can easily be performed, and one ob-
tains

The persistence of the first-class constraints Op and Op
in time leads, respectively, to the secondary constraints

'On leave of absence from S.N. Bose National Centre for
Basic Sciences, DB-17, Sec 1, Salt Lake, Calcut ta-700064,
India.

Z= D ~DA"bO3 b V' A exp i dxZ . 7

To arrive at (7) we have expressed b(As) as a Fourier in-
tegral and have redefined the A field in order to obtain a
manifestly Lorentz-covariant action. We next couple the
gauge-invariant fields f" and F" = e&""B„A~to external
sources in order to establish the equivalence of the MCS
and SD models on the level of Green's functions. From
(7) we are led to consider the generating functional
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Z]dj] = f DfeDAd(pe )8(0 'A) exp] jf d x]C+ deFe+ jefe]

The f~ integration is easily done to yield

Z]dj] = f DAed(Sj . A) exp
]
jf d x]CMcs + Fe(de +j")+ sj ]

where

Mcs = —4~F& E""+—&" A&B A

is the familiar MCS Lagrangian [2]. For vanishing sources this is the partition function of the MCS theory in the
Coulomb gauge.

Alternatively, one may perform the A„ integration. To this end, we first integrate over the Ao field, leading to

Z]d j] = f Dje DA'd('sj A')b(ps )d(mje —e'Sljje j-es8'de)exp] jf d z]C +j j'" +Fed —eed jjeAe] ],'(11)

where

l =
2 f„f"— e*'A—,ctpAz —F.*~(fpO;A, —f;OpA. , ).p

(12)

Z]j d] = f Djed[mje — eje) exp
] sf Csc

]

1x exp i f„J"+j~f„— e"""J„B„Jp

The Gaussian A' integration may be performed by ex-
panding the A' fields about the classical solution of the
constraint equation in the Coulomb gauge:

where

(16)

A (x, t) = e,,O' d'x'D(x —x') f() (*',&),
u A

fjd = —ejdpeAD fm

Z = 'V „m 0 —e'~t9;
~ + e,.~8;J~

x exp i l:sD+ f„~ J"+ e"""g„Jz~—
m )

p, a A J„B„jp2m (14)

where V' D(x —x') = h(x —x'). One then finds that

is the dual of f„
In the absence of sources, expressions (14) or (16) re-

duce to the partition function associated with the SD
Lagrangian derived &om the phase-space path-integral
representation. Recalling the alternative representation
(9), we infer &om here the equivalence of the partition
functions corresponding to the MCS and SD models.

We next consider this equivalence on the level of
Green's functions. Because of the Gaussian character
of the models, it is sufhcient to consider the respective
two-point functions. Functionally differentiating the par-
tition functions (9) and its equivalent (16) with respect
to the sources j" and j",we obtain

where (&~( )+~(V))Mcs —&4'~-~(x —&) = (f~(x)f-(&))».

(15) Alternatively, by functionally differentiating (9) and (16)
with respect to the sources J~ and J", and making use
of (18), one finds that

is the self-dual Lagrangian of [4]. We note that the source
J' appears in the argument of the b function. A more
convenient form for the computation of Green's functions
is obtained by performing the integration over fp Then it.
can be veri6ed that the resulting path-integral expression
can also be written in the form where

(1S)
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S„„(x—y) = ——e„pI9 b(x —y)
Am"

ep~i ep~p8 8 b(x —y)

i—b„;b b(x —y). (20)

Performing the integration one is led to the action

Iso Ii, i] = —-', f &'«'u i,&""i- + 3~r" 3-

+2~„r~ &„—2~„~~ —»~~

Pinally, by differentiating (9) and (16) with respect to j"
and J", and again making use of (18), one is led to the
relation

where

&—~-—~(~ Jp)J" (24)

(f (&)f-(y))» = (f (&)f-(y))»+ S'.(*—y),

where

(21) r~" = 1
(m g"" + 0"0" + me" "0 ) b (z —'y).

+ m

(25)

S„' „(x—y) = ib„;b„;b(—x —y) + b„ph„—sess', 8i,h(x —y).m"
(22)

The contributions S„„and S„'„appearing in (19) and
(21), which contain Schwinger-like terms, can be recog-
nized as arising from a time-ordering ambiguity in the f„
fields. This can be verified by expressing these fields in
terms of the f„'s, which are the actual integration vari-
ables in the path integral, and making use of the commu-
tators of the f„fields given in [3]. Prom Eqs. (18)—(22) we
conclude that modulo a contact term and time-ordering
ambiguities the following identifications hold:

Il" e+ f" ++ f".
It is instructive to compare the above results connecting
the correlation functions involving f„and f„with the
corresponding relations obtained by not including [1,3]
the constraint appearing in the functional measure of
(16). Thus, consider the generating functional,

Ii i] = f of ~x~
I

~ f&'*I&so + f~i "+ f~i "]
I

(23)

For j"= 0 this expression reduces to Eq. (18) of Ref. [3].
From (24) we are immediately led to the following rela-
tions, which are the analogues of (19) and (2l.):

(f~(~)f-(y)) = (f~(*)f-(y)) +'g~-b(* —y)
= (f~(*)f-(y)) + ig~-b(~ —y)

Z

ep~~g b (x y)m" (26)
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Note that again the self-duality relation f„= f„ is re-
alized modulo nonpropagating contact terms. But now
these terms can no longer be interpreted as time-ordering
ambiguities, as was the case before.

As a final comment we point out that, while the Hamil-
tonian of the SD model is mapped onto the MCS model
by the above identifications [3], this is not the case for the
respective Lagrangians. The present phase-space analy-
sis has shown, however, in what sense the mapping is
realized on the level of Green's functions.
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