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Convergence of the optimized b expansion for the connected vacuum amplitude:
Anharmonic oscillator

C. Arvanitis, H. F. Jones, and C. S. Parker
Physics Department, Imperial College, London, United Kingdom, SR'7 2BZ

(Received 23 February 1995)

The convergence of the linear b expansion for the connected generating functional of the quantum
anharmonic oscillator is proved. Using an order-dependent scaling for the variational parameter A,

we show that the expansion converges to the exact result with an error bounded by A exp( —cN ).
PACS number(s): 11.15.Tk, 11.10.Jj

I. INTRODUCTION

The linear h expansion (I DE) is an analytic approach
to Geld theory which has been applied to a variety of
problems (see, for example, Ref. [1]). The approach is
nonperturbative in the sense that a power series expan-
sion is made in a parameter b artificially inserted into
the action which interpolates between a soluble action
So and the action for the desired theory S. The action is
written

Sg = (1 —b')Sp+ bS,

where So contains some dependence on a variational pa-
rameter A. The generating functional for the theory may
be evaluated as a power series in 8, which of course is usu-
ally evaluated to Gnite order. When b is set equal to 1
at the end of a truncated calculation of, say, a Green
function G, some dependence on A remains, which is
where the variational procedure makes its appearance.
One such procedure is the principle of minimal sensitiv-
ity (PMS) [2] which requires A to be a stationary point

of the truncated Green function |~.
clciv (A)

BA
(2)

The PMS can provide both nonperturbative behavior
and convergence. It has been shown to ensure the con-
vergence of the linear b expansion for the vacuum gener-
ating functional for P theories in both zero [3] and one

[4] dimension. For the finite-temperature partition func-
tion Ziv(P) at odd N there is only one stationary point, a
global maximum, and so there is no ambiguity. Problems
can, however, arise when there are multiple solutions to
the PMS condition (2), as is the case [5] for the con-
nected vacuum generating functional R' = ln Z in zero
dimensions. There, rather than applying the PMS di-
rectly to W, an order-dependent scaling for A was chosen
which guarantees convergence for YV. This was in fact the
scaling resulting from the application of the PMS to the
calculation of Z. In the present paper, we use a similar
choice of scaling to provide a convergent series of approx-
imants for the connected vacuum generating functional
of the anharmonic oscillator.

The simplest choice of b expansion used in Ref. [4] (using as trial action a free action with variable mass) gives the
finite-temperature partition function as a function of z, the complex extension of b:

Z(z) = Dx exp
P

d~ —,
'x' + -', (m' + 2gA) x2 + zg(x —Ax2)

where Zo is the partition function for g = 0. It is this sys-
tem that we consider here. The scaling required for the
PMS which also gives convergence was shown in Ref. [4]
to be A oc N ~ . In the present paper, we use this
scaling to prove the convergence of the b expansion for
W = ln Z, provided that m2 ) 0. This scaling is not
strictly the PMS, simply a choice to give guaranteed con-
vergence.

In the following Sec. II, we review the proof of con-
vergence in the zero-dimensional model. This serves as a
detailed preview of the arguments used in the main sec-
tions of the paper. In Sec. III, we set out the asymptotic
evaluation of the remainder Riv(z) = Z(z) —Ziv(z) for

the anharmonic oscillator. The analysis is closely related
to that of Ref. [4]. In Sec. IV we discuss the evaluation of
Eq. (3) for Z(z) by saddle point methods and the cancel-
lations that govern the convergence of TV~. We compare
our analysis with numerical calculations in Sec. V, and
summarize our results in the Conclusions, Sec. VI.

II. ILLUSTRATION OF THE METHOD

The method of the present paper is similar in spirit
to that of Ref. [5], which considers the zero-dimensional
analogue of the vacuum generating functional: namely,
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Z~'~(z) = f dT exp( —[A(1 —z)T +gzT ]).

An expansion of Z~o~ in powers of z was proved in Ref. [3]
to converge to the correct value for Z~o~(1) with an er-
ror bounded by e . The PMS condition guarantees
convergence and requires A to scale as ~¹

In Ref. [5] it was shown that the convergence of W~ =
(ln Z~(z))~~~ —i, where (f(z))~ denotes the Taylor ex-
pansion of f(z) truncated at O(z ), is governed by the
position of the roots of Ziv(z). If any of these roots lies
inside the circle ~z~ ( 1, the expansion for Wiv(z) is not
convergent, and in fact the position of the smallest mod-
ulus root determines the rate of convergence of the series
for R'~. The difhculty in such a proof is that while it is a
relatively simple matter to calculate the coeKcients c in
the series Z~(z) = Zc z (using simple integrals in zero
dimensions or the methods of Caswell [6] and Killing-
beck [7] in one dimension), finding the roots analytically
is highly nontrivial.

In order to circumvent this diKculty, we write

Z~(z) = Z(z) —B~(z). (5)

Froin this point of view, zeros of Z~(z) arise &om a can-
cellation between Z(z) and R~(z), each of which can be
evaluated by asymptotic methods. In Ref. [5], the re-
rnainder R~(z) is bounded quite simply, while Z(z) is
estimated by stationary phase integration.

The saddle points of the exponent S in Eq. (4) are
zo ——0 and z~ = +[A(1 —z)/2gz]~. The mechanism
identified in Ref. [5] for roots to lie inside the circle

of mean radius [z~ = ~co/c~[i~ was cancellation be-
tween the saddle-point contributions &om x0 and x~.
This can only occur along the Stokes line I' de6ned by
Re S(z~) = 0. However, part of I' lies inside ~z~ = 1, and
cancellation along this part of the curve would have been
disastrous for the proof of convergence. Such cancella-
tions were ruled out in Ref. [5] by explicitly constructing
the stationary phase paths for difFerent values of z. It
was shown that for ~z~ ( 1 the correct path did not pass
through z~, in contrast to the region ~z~ ) 1, where all
three saddle points were traversed.

Because this argument is diKcult to generalize to a
genuine path integral (see Sec. IV), we note here a sim-
pler argument ruling out dominant contributions from
z~ in the region Re z ( l. In fact Z~ j(z) may be eval-
uated exactly as a xnodified Bessel function Ki ([A(1—

4

z)] /(8g2z2)), provided that Re z ( 1. The asymptotic
behavior of this function as A ~ oo has no exponential
growth with N (x A in this region. Thus saddle points
potentially giving a greater contribution than the Gaus-
sian saddle point x0 are excluded. The argument imme-
diately generalizes to the left half plane without the need
for contour rotation. The analysis in the present paper
is similar, though we are unable to escape the need for
contour rotation.

In the region Re z ) 1 all three saddle points can
occur, with possible cancellations along the curve I'. In
this way it was shown that the smallest zero of Z~ j occurs
at z;„= a + ga2 —1 where a = 1 + 3vri/(Nn), with
o. = 1.3254. . . . This tends to unity sufBciently slowly as
N increases to ensure that TV~I converges to Wl I with
an error of the order of exp( —/3vrN/a).

III. CONVERGENCE OF THE REMAINDER R~(z)

The remainder B~ = Z(z) —Z~(z) can be written as

P
Dz exp — d7 2z + z(m + 2gA)z + zg(z —Az ) [1 —O~(y)],

0
(6)

where O~(y):= e "(e")~ and y = —gz f dw(z —Az ).
By integrating the identity for O~ given in Ref. [3],

d y~e-&
ON

dy N!

we can write

(8)

Since z and hence y is in general complex, we must make a change of variable dependent on the sign of the real part
of y. For Re y ) 0, we may write y = ~y~e' and change variables using y' = we':

lyl
1 —O~(y) = de exp [—ze' + i(N + 1)g¹!

For Re y ( 0, we write y = ~y~e'~ + l (—m/2 ( 8 ( vr/2) and use y' = ue'& + l:
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lyj N
1 —8~(y) = dw exp —we' + i(N + 1)(8 + m) j .

Nf

Applying these to the remainder, Eq. (6), for Re z & 0, we define weak and strong field regimes, respectively, by

A d~x & &x,
0 0

d~x' & d~~'.
0 0

We divide the remainder R~(z) into weak and strong field contributions A~ and B~, and find

~Az(s)~~ = Dz exP —f dc sz d- s(m +222)z d-g~~z~~ cosg(z —Azs)
A

lyl N
x du exp (—~ cos 0),

0

~B (z)z~ = Dz exp —f ds -z d- —(m d-gg2)z d-g~z~ cosg (z —Az )
Zo

lyl

x du exp(~ cos 0).
0 ¹!

(12)

(13)

The two regimes are dealt with separately in the following subsections. For Re z ( 0, we simply interchange the
role of the weak and strong field contributions to B~(z). The calculations give a result siinilar to the zero dimensional
case, namely, that we may bound the remainder by

[Bz(z)~[ & D~[z~[ +'exp (
—c2g' ') . (14)

The detailed derivation of Eq. (14) for ~z~ = 1 and its reliance on the PMS scaling A = (2p N /g) i) s with p = 0.186
are given in Ref. [4]. For ~z~ g 1 we see that Rdv(z) is convergent for

ized (1+O(N 'i
) .

A. Strong fields

This is the simpler regime to consider, as the analysis almost exactly mirrors that of Ref. [4]. Since the u integrand
in Eq. (13) is monotonically increasing, we may simply bound by the value at the upper limit:

1
[B~(z)~(, Dz exp — di. 2x'+ 2(m'+ 2gA)z +g~z~ c s8o(z —Ax') ~y~ +'exp(~y~ cos8).

0

Now using [y~ = g~z] J' dw [x —Ax ), we find that

~

z~&+i ) N+i
~B~(z)~, Dz exp — d~ 2i + ~(m q 2gA)z

~ g di. (z —Az ) ~

O z

(16)

which is just ~z~
+i times the B~ given in Ref. [4]. Thus with no further analysis we are able to bound the strong

field remainder by

(BN (z)) ( )z[ +'C(m, g)PN ~ exp [ NS~(p)], — (»)
with S~ and p as defined in Ref. [4].

B. Weak fields

The weak field contribution to the remainder is given by

~Az(z)
~

= Dz exp —f dc [sz + s(m + gg2)z + g~z~ cos g(z —Az ))

lyl N
x d(A) exp (—(D cos 0) .

0
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If we make a further change of variable u = g]zIo f de[Ax —x4], the familiar factor IzI
+ already emerges:

(20)

(22)

where

%+1
IAN(z)I = do Dx exp — dv 2x + 2(m + 2gA)x1 ~ 2 1 2 2

ZpNI p

( )N+1
x o

I g d~ (Ax —x ) I
exp gIzI cos0(l —o.) d (Ax —x )

For the allowed range of 0, it is then clear that
zN+1 1

IAN(z)I &, do Dx exp — dw 2x + 2(m + 2gA)x
p o A

r q
N+1

xo
I

g " (Ax' * ) I
exp glzl(1 o) dr(A* * ) (21)

l
We may then further bound AN(z) by removing the term (1 —o)gzx4 from the last exponent in Eq. (21). We also

use Stirling s approximation for the factorial. We follow Ref. [4] and allow the calculation to proceed for either sign
of m by writing

zN+1 1 r
do. Dx

I g d~ (Ax' —x')
I
exp — d~ —,'x'+ —,'Im'Ix'

+2m.NZp p p

x exp [ NS~(x—, rr, z)],

S~(x, o', z) = dv
I

—(gA [1 —IzI(1 —o)] +m g( —m )) I

—ln I dw (Ax —x ) —1,fg~
p ), N

))

(N p
(23)

which for z = 1 is equal to the S~ de6ned in Ref. [4].
The calculation proceeds in exactly the same manner as in Ref. [4], with the definition fp

x2 d~ = PAU and the
use of the Cauchy-Schwarz identity to show that

S~ ) nU —ln [aU(1 —U)] —1,
with n and n the z g 1 extensions of those defined in Ref. [4]:

gPA2o.

N

~=~
I Izl+ I

+ g(™).1 —IzI ) m'PA
o ) N

We minimize the bound on S~ with respect to U and take the minimum at

(24)

(25)

1 1U= —+ — 1 — 1+—
2 0! 4

(26)

which gives a similar result to that of Ref. [4]:

s„)t'(a) —&n (
—),2

where

0! A
E(6) = —— 1+—+ ln 1+ 1+—

2 4
(28)

It is true for the present definition of 6 that for A oc N ~ and large N,

r(ci) —ln (
—

) ( 0,

so that the integral over o in Eq. (22) is dominated by its value at the upper limit. Thus,

IANI& DxI g d7 Ax —x ] I
exp — d7 2i +2]mI x ]

4 l 1 2 1 2 2

/2rrNZp ) p

x exp ( N IE(np) —ln (—', np—)]),

(29)
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with the subscript 0 on n and 6 denoting 0 = 1, giving

gPA
Ap

m2PA
np ——up y 8(—mz).

z ) 1+m /(2gA). For general complex z the solution is
an hybrid.

A more general class of solutions is discussed by
Richard and Rouet [9] for the double-mell oscillator. The
action of Eq. (35) may be rescaled to the form of Ref. [9]
which is

Now if we use the relation g fp dr [Ax —x ] & gPA /4
and the fact that the functional integral in the numerator
of Eq. (30) is bounded above by that in the denominator,
we obtain

~PA2]z!N+i Ao

4/27rN
exp —N E np —ln

2

(32)

!A~(z)! & !z! +'K exp cN— (33)

IV. SADDLE POINT EXPANSION OF Z(z)

Using the scaling A oc N ~ we have 6p = op[1 +
O(K ~ )]. For large N, n oc N ~ and we may finally
write

T
S []= dt -* + —(* —1)

—T
(40)

The solutions to the modified equation of motion take
the form

G —12

xRR(t) = o! 1+
!'P(t + u!(u, (u') y si —

—,'a') ' (41)

where a is an integration constant and 7 (t + u]ur, ur') is
a Weierstrass elliptic function [10] whose periods ~, u'
are determined by the boundary conditions and form of
the elliptic integral inverted by Eq. (41). The cosine in-
stanton solution discussed above is equivalent to Eq. (41)
with (u'/(u m ioo.

The classical action for all the saddle points at large
M may be evaluated simply:

S[xp] = 0, (42)
The partition function may be written as

1
Z(z) = Dx exp (—S[x]),

(o)= (P)
(34)

where

p
S[x]:= d~ (2x + 2M x + gzx )

0
(35)

x = M x+4gzx

with x(0) = x(P), which has the static solutions

(36)

M2
x =x~

4gz
(38)

There is also a nonstatic instanton solution. This is
discussed by Zinn- Justin [8] in the case of negative g and
real M ) 0. This class of solution also arises in the
strong coupling contribution to the remainder in Ref. [4],
the modified action giving an equation of motion equiv-
alent to negative coupling. This solution is

xl(~) = —M2 1

2gz cosh[M(w —vp)]
' (39)

where 7p must strictly be taken as wp
———P to satisfy the

periodic boundary conditions. We note that this solution
takes the form 1/cos[M(r —'rp)] for real z, such that

and M = m + 2gA(l —z), which is large for A oc %2~s

and z g l.
Performing a saddle point expansion of the path inte-

gral requires finding the solutions of the Euclidean equa-
tion of motion

M4P
S[x~]=-

16gz

M3
S[xl] =-

3gz

S[xRR] = S[x~] + k S[xr],

(43)

(44)

(45)

where k is a positive integer, except that in the case
u'/ur ~ ioo, cancellations occur in the action of Richard
and Rouet to give S[xRR] = S[xr].

Having evaluated the classical actions, we must evalu-
ate the regions of the z plane in which the various sad-
dle points are dominant. These regions are illustrated
in Fig. 1 for the numerical values m = 1, g = 1/2,
P = 2, and A = 11.619 (K = 75). The solid curve I'
is the curve Re S[x~] = 0 and the dotted curve I'I is
the curve Re S[xI] = 0, while the dashed vertical line
marks Re z = 1.+ m, /2gA. All three meet at the point
z = 1 + m'/2gA.

Inside I'I, the Richard-Rouet saddle points are dom-
inant. Inside the loop of I', the saddle point x~ domi-
nates over xo, though this is unimportant given the over-
all dominance of S[xRR]. Outside I'I the zero saddle
point becomes dominant over all its competitors. This
remains the case up to the boundary I" to region C, in
which x~ is dominant. Neither xl nor xRR can dominate
the integral in this region.

It would then appear that instantons dominate for
small !z!, xp is dominant for intermediate !z!, and for
large !z! the saddle points x~ are the important ones.
However, as we learned from the zero-dimensional case,
it is important to check whether apparently dominant
saddle points do in fact contribute. In zero dimensions
[5] it was possible to trace out the stationary-phase paths
and to see that these did not pass through the nonzero
saddle points when !z! & 1. For a path integral such a
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Re(z)

FIG. 1. Plot of the z plane showing the regions in which
the possible saddle points are dominant.

procedure is extremely ill defined. The difFiculty is that
if we discretize the measure Dx as lim~~ g,. ~ dx(v;. )
the kinetic term in the action couples adjacent time slices
so that the phase does not simply depend on the path in
each time slice separately.

Fortunately we are able to circumvent this problem by
using instead an analogue of the Bessel function analysis
given above for the zero-dimensional case by realizing
that for Re z & 1 + m /(2gA) the action is generically a
real single well, the complex part of the mass term simply
adding a phase. Provided then that Re(gzx4) ) 0 the
partition function is bounded above by that for the pure
harmonic oscillator. The harmonic oscillator partition
function is given by

P
~Ze~ = J De exp — de —e y —Re(M )e

0

= C[det(0,'+ ReM )] (46)

where C is a normalization constant. The Gaussian in-
tegration about the saddle point x = 0 in Eq. (34) gives

]Z] = Ci det(B,' + M )] (47)

We are thus able to state that in the region 0 ( Rez &
1+m /(2gA) there is in fact no exponentially increasing
contribution &om saddle points with Re S[x] & 0. The
zero saddle point is the only one which can contribute.
From the form of Eq. (14), it is then clear that no zeros of
Z~(z) are possible for ]z] & 1+ O(N ~ ) in the region

1 + m /(2gA). In fact the zeros will be
expected to occur on a ring of radius 1+O(N ~~a).

The left half of the z plane may be included by ro-
tating the contour of integration to make Re(zx ) & 0

~VZ~~ & Xexp( —cN'~'),

where A and c are constants.

(48)

V. COMPARISON WITH NUMERICAL RESULTS

The above analysis of the position of the roots of Z~(z)
can be checked numerically. Figures 2, 3, and 4 show the
roots of Z~(z) for P = 2, m = 1, g = 1/2, and N = 25,
45, and 75, respectively. In each case, A is chosen as
the PMS value for Z~(z). In the previous section, it was
noted that the smallest root occurs where Re S[x~] = 0.
In order to make the comparison, we have plotted the
curve I' on each graph.

In Fig. 2 we see that at order 25, the roots lie to a
good approximation on a ring, the radius of which is
determined by the ratio of the first and last coeKcients
in the b series. Figure 3, for order 45, shows that two
pairs of roots have broken away &om this ring, one pair
moving out and one pair moving in. The inner pair of

The same breakdown occurs in the zero-dimensional case,
a point overlooked by the authors of Bef. [5], which only ex-
plicitly analyzed the massless integral of Eq. (4).

The values of the mass and coupling constant are those
chosen for convenience in Ref. [4]. However, different choices,
for example, m = 1,g = 1, give very similar results.

while keeping both Re(x2) ) 0 and Re(Mzx2) & 0. This
procedure is similar to that discussed in Ref. [8]. In
the upper half plane, we rotate the contour by an angle
P = (7r/2 —0)/4, where 8 = arg z. In the lower half plane,
we simply rotate the contour by an equivalent amount,
but in the opposite sense.

In the region Re z & 1+m /(2gA), we need only con-
sider the stationary saddle points xo and x~. In region
B, xo dominates and the requirements for cancellation
are the same as those discussed above. No zeros affect-
ing the rate of convergence of TV~ can arise in this region
for m & 0, and we expect the ring of zeros to continue
smoothly into this region. For the non-Borel summable
case m ( 0, this proof breaks down, since zeros of
Z~(z) could now occur for ]z] & 1.

In region C, where x~ is the dominant saddle point,
Z(z) contains exponential dependence on N, allowing
cancellation with R~(z), which grows with ]z~ for ~z] &
1+ O(N~~ ). The zeros in region C will thus tend to be
further out than those in B.

An exception to this is the region close to I', the Stokes
line where Re S[x~] = 0. There cancellations can occur
between the two saddle point contributions &om xo and
x~, giving a smaller effective exponent for Z(z), and the
possibility of roots of smaller modulus. However, since
this branch of I' lies to the right of Re z = 1+mz/(2gA),
such zeros again do not afFect the convergence of TV~ for
m ) 0. Having established that all the roots satisfy
~z —1] ) m /2gA = O(1/N ~ ), the analysis of Ref. [5]
shows us that W~ tends to the correct value TV with an
error 'R~ .——lV —R'~ bounded by



3710 C. ARVANITIS, H. F. JONES, AND C. S. PARKER 52

4

~ ~

~ ~

0
Re(z)

0
Re(z)

FIG. 2. Numerical plot of roots of Ziv{z) = 0 for P = 2,
N = 25, and the curve I'.

FIG. 4. As in Fig. 2, for N = 75.

roots have the smallest modulus, and lie suKciently close
to I' to indicate that the mechanism outlined above is
indeed operative. At order 75 in Fig. 4, two pairs of
roots are tracking in along the curve I'. This behavior
very closely follows that described in Ref. [5] for the zero-
dimensional case.

We have checked the convergence of the expansion
for R' numerically, using quadruple precision on a SUN

workstation. Taking A~ as the unique PMS value for ZN
we obtain Table I, showing convergence to 15 significant
figures by K = 85 for both P = 2 and P = 5. The conver-
gence is not monotonic, as was the case for Z~, rather it
oscillates around the exact value with an envelope con-
sistent with the bound of Eq. (48). A more rapid rate of
convergence is discernible at lower values of N before the
breakaway occurs.

Notwithstanding the problem of multiple PMS points
for Wiv(A) itself, it is interesting to explore the depen-
dence on A of TV~. For the values of N we have con-
sidered there seems to be an initial, extremely broad
maximum, which gives a very accurate estimate of W,
followed by a series of secondary maxima and minima of
progressively decreasing accuracy. For N = 45 and P = 2
the value at this first maximum is —1.353 868 180 362 611,
differing &om the exact value only in the 16th significant
figure. A similar situation occurs for P = 5.

VI. CONCLUSIONS

In this paper, we have proved the convergence of the
optimized b expansion for TV = lnZ, where Z is the
Gnite-temperature partition function of the anharmonic
oscillator. %'ith the variational parameter A chosen to
scale with the order N of the expansion as

Z = (2&'X'/g)'~', (49)

we found that

0
Re(z)

FIG. 3. As in Fig. 2, for N = 45.

iw —w~
i

& %exp {—cN ~
) . {5O)

Apart from the fact that in a field theoretic context it
is generally the connected Green functions which are the
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TABLE I. Results showing convergence of b expansion for W'~.

N
17
25
35
45
55
65
75
85

Exact value

W~(P = 2)
-1.353 868 204 836 737 1
-1.353 868 180 466 6174
-1.353 868 180 365 979 6
-1.353 868 180 362 651 3
-1.353 868 180 362 591 8
-1.353 868 180 362 614 8
-1.353 868 180 362 6174
-1.353 868 180 362 616 8
-1.353 868 180 362 6170

W~(p = 5)
-3.480 593 567 079 702 7
-3.480 588 072 583 091 2
-3.480 587 840 363 174 6
-3.480 587 832 425 126 1
-3.480 587 832 023 462 9
-3.480 587 831 996 870 0
-3.480 587 831 994 773 1
-3.480 587 831 994 588 5
-3.480 587 831 994 560 3

relevant quantities, the original motivation [5] for looking
at W was the nonuniform convergence with P of the b

expansion for Z~, in particular in the limit p m oo.
Since this nonuniformity corresponds to the limit of large
spacetime volume, it seemed plausible that the difBculty
would be much less severe for R', the generating function
of connected diagrams, which should depend only linearly
on the (large) volume cutoff. However, the present proof
of convergence for W~ does not address this problem,
since it relies as an intermediate step on the convergence
of the sequence Z~. It remains an open question whether
the PMS criterion applied directly to R'~ itself, in spite
of the problems of multiple stationary points, can give
rise to uniform convergence as P ~ oo.

In the meantime a paper by Guida, Konishi, and
Suzuki [11]has appeared, which, using a completely dif-
ferent approach involving a dispersion relation in g, has
proved convergence of the b expansion for the individual
energy levels of the anharmonic oscillator for a variety
of scaling exponents g in A~ oc N". The PMS choice
we have used here, with rl = 2/3, lies at the edge of their
range 2/3 ( rl ( 1. It is possible that their method could
be extended to a proof of convergence for TV or the free
energy E = W/p.

The proof of Ref. [11] is restricted to m ) 0, as is

the case here, even though it was shown in Ref. [4] that
for Z the sequence of approximants Z~ converges for
either sign of m . As a general principle the field the-
ory about which we expand should capture as closely as
possible the essential features of the system under inves-
tigation [12]. For the double-well oscillator it may well
be that to obtain a convergent expansion for the con-
nected Green functions a more sophisticated trial action
is needed than the one used here and in Ref. [11],namely,
a free action with positive m~.

The extension of the method to higher dimensions
should be possible, since only saddle point techniques are
used. In higher dimensional 6eld theories we must, how-
ever, take account of the interplay between the b expan-
sion and the renormalization procedure. Such a scheme
has been successfully applied to the Gross-Neveu model
in the large N limit using the b expansion [13] and a re-
lated scheme [14] and P4 theory in four dimensions in the
Gaussian approximation [15].
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