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Finite temperature formalism for non-Abelian gauge theories
in the physical phase space
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We establish a new framework of finite temperature field theory for Yang-Mills theories in the
physical phase space eliminating all unphysical degrees of freedom. Relating our method to the
imaginary time formalism of 3ames and Landsho8' in the temporal axial gauge, we calculate the
two-loop pressure and provide a systematic and unique method to construct the additional vertices
encountered in their approach.

PACS number(s): 11.10.Wx, 12.38.Mh

I. INTRODUCTION

This paper is devoted to establishing a finite temper-
ature Geld theory on the physical phase space of non-
Abelian gauge theories. It is the intrinsic nature of every
gauge theory that the whole configuration space contains
gauge group orbits, and gauge transformations generate
shifts along those orbits. Gauge equivalent field config-
urations are physically indistinguishable; therefore, only
transitions between distinct gauge orbits contain physical
information.

In standard field theory the problem of superficial de-
grees of &eedom is attacked by the introduction of a
gauge-fixing condition. However, because of Gribov's
ambiguity [1], the gauge orbit space of Yang-Mills po-
tentials cannot be parametrized uniquely by potentials
satisfying a local gauge condition. A gauge condition
surface in the entire configuration space contains gauge
equivalent Geld configurations.

Moreover, there may exist certain field configurations
where the gauge-Gxing surface is tangential to gauge or-
bits, corresponding to the zeros of the Faddeev-Popov
determinant. Perturbatively, this entails, depending on
the gauge chosen, unphysical poles in the propagator
that have to be defined properly. In particular for the
class of axial gauges, nA = 0, n" = (1,n), the spurious
poles at po ——p - n, have to be treated with the so-called
Leibbrandt-Mandelstam [2] prescription, which has to be
modified [3] for n" lightlike. It should be mentioned that
Landshoff's n prescription [4] also gives the correct ex-
ponentiation in a Wilson-loop calculation up to order g .

At Gnite temperature in the real time formalism
(RTF), analogously to the zero-temperature case, a
temperature-dependent pole prescription arises naturally
within the framework of Hamiltonian quantization [5],
and for the particular choice of temporal axial gauge
(TAG) (n = 0), a RTF has been developed successfully
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In the so-called imaginary time formalism (ITF), how-
ever, the energy can only take on the discrete Matsubara
frequencies po ——2vrinT. Thus if one naively heats the un-
physical degrees of freedom, an unresolved pole remains
for the zero mode for momenta p n = 0. Luckily, in the
particular case of the unresummed imaginary part of the
transversal structure function of the gluon self-energy,
these factors cancel out for symmetry reasons and the
straight forward application of ITF Feynman rules works
[7].

At the contrary, in TAG the naive ITF propagator
contains unregularized singular factors 1/pe at zero Mat-
subara frequency. This problem has been circumvented
in earlier works [8] by the ad hoc assumption that such
poles have to be dropped. Although there exists no jus-
tification for doing so, the leading order self-energy is
found to coincide with the results in other gauges. The
deeper reason for this is, however, not the correctness
of this prescription. In fact, in general axial gauge, the
dependence on the gauge-fixing vector n, and thus the ax-
ial poles, completely cancels out algebraically [7] which
gives the proof that no prescription enters at that loop
level. In fact, a closer inspection of the corresponding
expressions in TAG reveals that this cancellation takes
place in that gauge too. Moreover, this must be the case
since the leading-order expression for the self-energy is
nothing but the hard thermal loop, and thus a physical,
gauge-independent quantity.

It is well known that the consistent calculation of the
next-to-leading order contributions requires an appropri-
ate resummation of propagators and vertices [9]. How-
ever, since the two-point function is a gauge independent
quantity only on the mass shell, one cannot expect the
self-energy to be prescription independent off the physical
dispersion relation. In the light of this line of arguments,
the non-Debye screening behavior [10,11] which contra-
dicts results obtained in Coulomb gauge [12], and using
Polyakov-loop correlators [12,13] appears to be rather an
artifact of the oK-shell calculation and not of the ad hoc
pole prescription. Adopting the on-shell definition of the
Debye mass proposed by Rebhan [14] we expect that in a
pragmatic calculation keeping the undefined 1/po quan-
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tities those unphysical poles cancel out.
Taking seriously the naive formulation, it was proposed

quite recently [15] to regularize the divergent 1/po expres-
sions by a temperature-dependent expression. However,
this proposal may only serve to give the expressions an
intermediate meaning, and it has to turn out irrelevant
in the calculation of physical quantities. Moreover, it is
not clear if this prescription leads a truly temporal prop-
agator and can be adopted unambiguously without intro-
ducing ghost fields. Independent of any ad hoc method
to get rid of the temporal pole, there is no justiGcation
for the naive application of ITF Feynman rules in TAG.

It has been pointed out by James and Landshoff [16]
already some time ago that the temporal pole is related
to the &ee motion of the longitudinal modes of the gauge
Geld. This violates periodic boundary conditions that
are necessary to set up ITF. James and Landshoff in-
vented a new formalism in which the longitudinal Gelds
remain unheated and only the remaining physical degrees
of freedom attain a temperature. Within this formalism,
the longitudinal part of the propagator is automatically
&ee Rom the 1/po singularity. It was argued that one
can obtain the same answer for the two-loop pressure as
in other gauges. The main drawback in that formulation
is, however, that one has to construct physical states by
explicitly solving the Gauss law which gives rise to ad-
ditional time-independent vertices. This results in un-
wieldy expressions and it appears difBcult to establish a
resummation program.

In the present paper, we advocate a different route to
attack the problem. Based on a Hamiltonian formulation
of the theory, we are able to eliminate all unphysical de-
grees of &eedom from the Hamiltonian by introducing an
appropriate coordinate system in the space of Geld con-
Ggurations which allows to make a unique distinction be-
tween gauge degrees of freedom and physical ones [17—19].
Within this approach one neither encounters any unphys-
ical poles nor any explicit construction of physical states
is necessary. It is straightforward to heat the physical de-
grees of &eedom in the resulting nonlocal Hamiltonian.
In order to illustrate the new method, we calculate the
two-loop pressure and compare the result with the corre-
sponding expressions found using the approach of James
and Landshoff. Rewriting the physical fields in the ba-
sis used in their investigation, we give a general strategy
to construct the corresponding Gauss law states to arbi-
trary order and calculate them explicitly to third order
in the coupling constant.

II. CONSTRUCTION OF THE HAMILTONIAN
IN THE PHYSICAL PHASE SPACE

In this section we construct the physical Hamiltonian
of pure QCD by eliminating all gauge degrees of freedom.
The basic idea may be illustrated as follows. Consider a
point particle moving in a plane and rotations around the
origin as symmetry group. Then different trajectories are
gauge equivalent if they can be mapped one to another by
rotations. Of course, the dynamics appears simplest in
polar coordinates, where only the radial coordinate has

a physical meaning. The angular momentum generates
gauge transformations and the corresponding canonical
conjugate position coordinate, the angle, may be Gxed
arbitrarily.

We start our investigation with the pure QCD La-
grangian

V(A) = —(F",F")
2

(2)

appears as potential and g = V'[A] E' = O'E'—
ig[A', E'] is the so-called Gauss law, V'[A] being the co-
variant derivative in the adjoint representation.

The primary constraint must be conserved dur-
ing time evolution. This yields the secondary con-
straints Eo ——{Ep,II) = g 0, where we implic-
itly assumed the standard equal-time Poisson brackets
1A„(x),Es(y)) = b ~g„„bs(2:—y).

Since the algebra of the Gauss law closes,
{g (*) g'(y)) = gf' ~'( —y)g'(*)
{g,II) = f 'A—kg we conclude that there are no
more constraints, and all constraints are of the first
class. Following the standard Dirac quantization pro-
cedure [20], the Poisson brackets may be deformed to
eliminate the constraints Eo 0 at the operator level.
Since the gauge orbits generated by Eo are shifts of Ao
only, and leave the other phase space variables A', E~
untouched, we select the gauge equivalent configuration
in the phase space which satisGes Ao ——0. This amounts
to simply dropping the canonical pair Ao, Eo &om the
Hamiltonian. On this hyperplane, the remaining con-
straints g become time independent since the Harnilto-
nian now commutes with the Gauss law. Those con-
straints generate time independent gauge transforma-
tions on the remaining phase space variables E' and A':

E" = nEn-' A" = nAn-' —-'(an)n-'
g

where 0 is an element of the gauge group. It is con-
venient to formulate the quantized theory in a func-
tional representation. Representing the canonical mo-
menta by the standard functional differential operator
E(x) ~ ib/bA(x) the Schroding—er equation takes the
form

The Hermitian generators of the gauge group are normal-
ized according to Tr T T = b /2.

where F» ——8~A„—O„A~ + ig [A&, A„], and the Yang-
Mills Gelds are elements of the Lie algebra of the gauge
group. To go over to the Hamiltonian formalism,
we have to determine the canonical momenta E"
bL/hA" = Fol". The momentum conjugated to Ao van-
ishes, Eo 0 forming the primary constraint. The cor-
responding canonical Hamiltonian has the form H
2 A', E' —L = E', E' + V A' —2 Ao, where
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H@„[A]= (
—, + V[A]

)
@„[A]= E„@„[A]

t' b b

and the wave function is subject to the constraints

b/bw vanish. Thus the physical Hamiltonian is obtained
by simply dropping the three-components in the metric
and the Schrodinger equation (3) together with the con-
straint (4) is equivalent to the reduced dynamical system
described by the Hamiltonian

g@„[A]= V'[A] . C„[A] = 0.
b

(4)

A = UAU ——(o)U)U
g

(5)

Here U[w] = exp (igu) is an element of the gauge group
generated by the I ie-algebra-valued angle u and A' =
e' A, n = 1, 2 are the remaining coordinates projected
out by the operator e that is normalized such that e' e'n p
b p acts as unity in the corresponding subspace. The
constraint (4) transforms into

g @[A,~] = U @[A,~]U ' = 0
ib~ (6)

which tells us that physical variables are independent of
the angle u. The Gauss law itself turns out to be the
canonical conjugate momentum to the "position" vari-
able ~.

In the potential part V[A] we may simply replace the
original gauge field by its physical components, V[A] =
V[A], since it is gauge invariant under the transformation
(5). For the kinetic part in the Hamiltonian, we need
an expression for the metric entering implicitly in the
definition of the inner product in (1). The lower metric
components can be read off from the difFerentials (the
anti-Hermitian covariant derivative is meant to be taken
with respect to the field. s A):

ttt'A bA) —(BAt SA) t- (b~ttt ttA)

At ~g + g ~t~g

A

i.e.) g~p = C~ 6p = Amp ) g3cx g~3 7n ) g33 = 7 p )
t '4 'C

and. we defined the projected covariant derivative as
V' = V"e'. We shall also need the determinant of
the metric p = det(g) = det(1)), 1)
and the inverse components, which read g P = b P +

kinetic term in the Harniltonian reads in covariant form
(b/b~'t b/b~') = (p, b/bA g t p, b/bX ) where we

have put A = (A, w). When this operator acts on
physical wave functions which by virtue of (6) do not de-
pend on the angle u, the terms containing the momenta

In the approach of James and Landshoff [16] the wave
functions are constructed explicitly by solving this con-
straint in order to be able to perform the thermal trace
over physical states. Alternatively, one may eliminate the
superficial degrees of freedom by reducing the number of
Geld components. In analogy with the example given in
the beginning of the section, we parametrize the Geld con-
Ggurations in the unconstraint configuration space by an
"angle" cu and the remaining coordinates A' in the fol-
lowing way:

where the wave function as well as observables are func-
tionals of the coordinates A only. Apart &om the de-
terminant p appearing in the Hamiltonian) this expres-
sion was already found in [19] using a difFerent construc-
tion. The determinant resolves the apparently existing
operator ordering problem which is due to the necessary
inversion of the operator V in the kinetic term. This
problem was also discussed previously [21], however with-
out definite solution. The operator p gives contributions

[bs(0)]2, which may be dropped if one is only interested
in the local properties of the theory.

III. FEYNMAN RULES IN THE PHYSICAL
SUBSPACE

E a'faEn, a + @at(~nEn)a + (~nEa)a @a
2 2

1 1 --- -- 1
P .@atgabc b + gij,apij, a + atgab b (8)

The electric field E is the canonical conjugate to A in
the operator representation: [E(z) ', A(y)~' ] &o =go

ib b ~b (x —y). The—last term in (8) just subtracts ofF
the trace of the operator B, which amounts to dropping
those Feynman graphs which contain a C propagator but
no 4 (t7 E ) vertex.

For the particular choice of purely transversal Gelds,
O'A' = 0, the operator sandwiched between the covari-
ant derivative and the electric Geld becomes the spatially
transversal projection operator, e' e~ = b'~ —t9'8~/t9
T'~(B). In that case, the 4V'E terms in (8) turn into

A A

a single three-vertex 4AE and not two-vertex 4E re-
mains. We observe that even for a nontransversal choice
of A, E, the perturbative E E propagator is compen-
sated by the E 4' two-vertex and the 44 Green's func-
tion. This corresponds to the fact that in pure QCD
zeroth-order longitudinal states are pure gauge degrees

The Hamiltonian derived in the previous section may
serve to establish a set of Feynman rules in the physical
subspace. Since it no more contains unphysical degrees of
&eedom, it is straightforward to establish Gnite temper-
ature Geld theory by heating the field A. We emphasize
that no explicit choice of the projection operator e cor-
responding to particular coordinates is necessary so far.
However, (7) contains a nonlocal operator which makes
the theory unwieldy to deal with. Alternatively, one may
introduce an auxiliary Geld and rewrite the Hamiltonian
density as
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G2 =

FIG. 1. Graphs contributing to the two-loop pressure in the
physical subspace. Full lines correspond to A propagators, the
wavy line to the E-field propagator, and the broken line to
the auxiliary field.

of freedom. We want to point out that although all
fields are purely transversal they do not coincide with
the transversal components of the original gauge poten-
tials, and the transversal choice must not be confused
with the Coulomb gauge.

Splitting the Hamiltonian into a &ee part

(Ea,iyij Ea, i Ai, a~Tij Ai, a + @a~@a)
2

and an interacting one

for the O AT"bET~" vertex given by ( l—)q f 'Pj.
For two reasons, we do not express the electric fields in

terms of time derivatives of the gauge potentials. First,
this would again involve inverting nonlocal operators,
and subsequently render the theory untractable. Sec-
ond, the kinetic term and the potential term are both by
themselves physical observables. Keeping the E fields,
one preserves the possibility to calculate the electric and
magnetic dispersion independently.

At the present stage, the propagator of the field 4 only
serves to write the inverse I aplacian in a way convenient
for calculating quantities in ITF and remains unheated.
In the due course of an eventual resummation, however,
consistency may require to assign the auxiliary field a
temperature-dependent Green's function. This does, of
course, not contradict the original nature of an auxiliary
field since to a given order the perturbative inversion of
P in the nonlocal Hamiltonian is not unique.

IV. THE TWO-LOOP PRESSURE

+TVW
~OAK

~4 A

&v(x)

~4 AE + ~4 A + ~ViA1

fabc@aETi,bATi, c
7

fabc@aATi,

cubi

g b

2
~ 0 B~

fabcf adeC, bATi, c ATj, e@d
2 02

= —f 'BA "A 'A
2

+9 fabcf adeATi, bATj, cATi, dATj, e

4

In order to compare our method with the construction
of James and Landshoff [16] we calculate the two-loop
pressure given by the diagrams depicted in Fig. 1. We
observe that apart &om the third diagram only transver-
sal fields contribute.

The temperature-dependent contribution reads [t iv =
N(N2 —1) for SU(N)]

(2) 2 V d3P d3q

T (2n.)s (2vr)'

the former one gives rise to the propagators

(A 'A ')(p„g = T'&(g, -1

pp p

(E 'E ')(so p) = T"(p), —
pp p

1
(C'O)(po R = —=,p"

and kom the second one we shall only need the expression

where Z = oq + o2 + o3 and o., corresponds to the three
graphs in Fig. 1, respectively,

1 3 —z
(n„n~ + n~),4 pq

1 z (1+z')
cr2 = — (n„nq+ np),

2 p+q
1 1 (1+z)

os ————,(p + q ) (npnq + np),
4pq p+q '

x6=

FIG. 2. Graphs contributing to the
two-loop pressure in the approach of James
and LandshofF. The blob denotes an addi-
tional three-vertex due to the explicit con-
struction of Gauss law states.

T+L T+L
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z = pq/pq, p = lp l, n~ = [exp(p/T) —1] i, which gives
the correct answer

2 4
Z(2)

V 144

Note the simplicity of the calculation. As opposed
to that, the approach of James and Landshoff involves
zero-temperature longitudinal propagators and heated
transversal ones. The evaluation of the pressure calls
for the calculation of 12 diagrams shown in Fig. 2.

In addition to the usual three- and four-vertices of
@CD, a static vertex denoted as a blob in Fig. 2 enters
&om the explicit construction of physical states satisfy-
ing the Gauss law constraint (4). The (TTL) part of
that vertex is asymmetric in the transversal legs which
we indicated by an asterisk. We neither want to repeat
the details of the formalism nor the lengthy but straight-
forward calculation but rather state the result. In the
notation of Eq. (9) we find Z = P, e r; where (the con-
tributions ri r4 have already been calculated in [16])

1 1 (1+z )r.i ————„,(npn~ + n„) (p~ + q~)
2 pQ p+0

+(2n„+ 1)
3Tp
p + g

tage of their approach, which is the standard way finite
temperature Geld theory is handled, is that all degrees
of &eedom are heated which results in simple Feynman
rules. However, in the particular case of TAG, this con-
struction does not work [5] and one has to go back to the
projected ensemble involving physical states only.

There, the thermal average of an observable q is de-
fined by

q) = Z-') (physle "' qlphys)

where physical states satisfy the Gauss law, Q lphys) =
0. In the formalism of James and Landshoff, these are
constructed by acting with a unitary operator on the &ee
transversal states lT):

lphys) = RlT), R = ) g"R
n=o

(1O)

where B was determined by acting n + 1 times with
the Gauss law operator on the physical states. There
the longitudinal components of the gauge potential cor-
respond to gauge degrees of &eedom. In our approach,
the decomposition (5) allows us to identify the longitudi-
nal components with the "angle" variable A = t9u for a
Gxed time, whereas the remaining field components read

p 1 z 1
2

» (p+ q)'
AT A AL ig~A ig~ —

(g ig~) —ig~

g

1
&0 —O2y +2 — 2+1y +3 +2& ~4 —03) K6 ~7
K5, Ks = —K5, Kg = O, Nip = cri. All (TLL) graphs
cancel. Furthermore, since v1 + K2 + K3 ——0 only the
term K4 reinains in the (TTL) contributions that coin-
cides with the third graph in Fig. 1 in our calculation.
It is interesting to observe that only the (TTL) part of
James and LandshofF's new vertex plays a role and that
the only nonvanishing contribution comes from diagrams
which contain a pair of that vertex part.

In the case of the two-loop pressure one may even re-
place the longitudinal E fields in the original Hamilto-
nian by the vertex part of the Gauss law constraint, i.e. ,
OE —+ gf 'E "A"', and drop the longitudinal A fields
to get the correct result. However, it is clear &om our in-
vestigation that this oversimplifying guess does not give
the correct answer in general.

OO

A=) g"A„=e *
l

A +(0(u)+ —0 le'g

(nl
=), [ (u, A~ + (n/(n + 1))t9(u], (12)

Recalling that the Geld A contains but physical degrees of
keedom, one realizes that the transversal components of
A are physical only to zeroth order in g. Conversely, the
choice to keep the longitudinal components A unheated
to all orders corresponds to the fact that the physical Geld
A is transversal only to lowest order, which in turn means
that there do appear higher order heated longitudinal
modes contained in the states that satisfy the Gauss law.

The operator A can be expressed in (A+, A+) coordi-
nates by virtue of (11):

V. CONSTRUCTING GAUSS LAW STATES
TO ARBITRARY ORDER

There are two difFerent ways to handle gauge degrees of
freedom at Gnite temperature. Based on Becchi-Rouet-
Stora (BRS) invariance, Hata and Kugo [22] constructed
a theory where the Boltzmann factor in the thermal av-
erage gets replaced by exp (i,vrN, —H/T), N, being the
ghost number operator, and the trace is expanded to in-
clude ghost fields and all degrees of &eedom of the gauge
potential. They demonstrated that with this weight ther-
mal averages of operators corresponding to observables
are the same as in the projected ensemble. The advan-

(n) (ra —1) (0)
where [ X, Y] = [X, [ X, Y]], [ X, Y] = Y denotes
the multiple commutator. A is the counterpart of the
Gauss law operator to arbitrary order, where the Grst
few terms read

A = A +zg (d A + —Ocd ——cd [M A + —Rd]T - T 1 g T 2

2
'l ) 3

+ ~ ~ ~

Since the change of the basis &om physical to transver-
sal states is mediated by a unitary transformation, the
corresponding operators A and A are unitarily equiva-
lent according to AB = BA . Collecting terms by orders
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of g this leads to the recursion relation

[Ap, R„]+) A„R = 0.
m=O

The strategy to solve this recursion may be motivated by
the following observation. R is given by the action of an
(unknown) operator on the sum which inverts the com-
mutator with Ao ——A . Recalling the equal-time com-
mutator [A+" (x), E+~ (y)] = ib TU((9)b(x —y), one
may, roughly speaking, construct R by "multiplying"
the sum with E

In particular, for n = 1 one has to study the equation
[Ap, Ri] + Ai ——0 that has the solution

Rz = i (E A, ):=if d'zE (z)A, (z).

which coincides with the result of James and Land. shoff.
The recursion for n = 2 reads

[Ap, R2] + Ai Ri + A2 ——0. (13)

Guided by what we have learned above, one would
naively guess R2""' = i (E . A2) + 2RiRi which when

zzz

commutated with Ap gives [Ap, R2""'] = —A2 —2AiRi-
zR»A» that cancels the third but not the second term in
the recursion (13) since Ai does not commute with Ri
We therefore add a suitable chosen term proportional to
the commutator which compensates the wrong order in
the RiAi contribution. The solution of (13) reads

1 Z TR2 ——- x (E . A2) + RiRi ——(E— [R„Ai])
2 2

which is unique up to operators that commute with Ao.
One may continue further and derive the n = 3 contri-

bution to R:

;(
Rs ———Ri + — E [ Ri, Ai]

6 3

——R» E . R», A» +iR» E A2
2

+~

and the calculation of higher order terms proceeds along
similar lines. We note that our construction has formal
similarity with the Foldy-Wouthuysen transformation in
quantum mechanics.

Our result does not match the R2 contributions found
in [23] that also contain time derivatives of the longi-
tudinal fields, but agrees with the argument given by
James and Landshoff that those time derivatives should
not be present in R. We also find that the exponentia-

Plugging in the expression for A», the explicit form of R»
can be written as (pd = (9A+/(92)

Jiz =if jd z
~

'Bd ~(—z)E (z)(A "(z)

+-,' A~" (z)]

tion conjectured in [23] cannot be confirmed. Although
the R» terms appear with the correct factors, a com-
plete exponentiation is spoiled by an increasing number
of commutator terms, which is consistent with the nonlo-
cal Hamiltonian (7) that also contains an infinite number
of vertices. Unlike as in pure QED, where the radiation
gauge eliminates all gauge degrees of &eedom from the
Hamiltonian in a local manner, and where R does ex-
ponentiate, is has been argued [19] that in non-Abelian
gauge theory no such natural gauge exists.

VI. CONCLUSION AND OUTLOOK

We formulated a finite temperature framework for pure
QCD which is based on the elimination of all gauge de-
grees of freedom. In contrast to the former approach of
James and Landshoff, who explicitly constructed physi-
cal states by solving the Gauss law constraint, we elim-
inate spurious degrees of freedom at the operator level
which allows to heat the remaining degrees of freedom
in a straightforward way. We do not encounter any pole
ambiguities which exist in the naive imaginary time for-
mulation of axial gauges.

Although our effective Hamiltonian contains a kinetic
term nonlocal in the fields, it is possible to find a lo-
cal formulation by introducing an auxiliary field. We
compared our theory with the construction of James and
Landshoff for the particular case of the two-loop pressure
and found that the number of Feynman graphs is reduced
drastically in our framework. Since the construction al-
lows one to make a clear distinction between physical and
gauge degrees of freedom, we can also line out a strategy
to construct Gauss law states to all orders. Those are
calculated explicitly up to third order in the basis of the
free transversal states of the gauge field.

Clearly, we will establish a resummation program in
our formalism. Since the Hamiltonian only contains
physical observables, the location of the poles in the prop-
agators contains intrinsic physical information on the on-
shell dispersion relation. It would be interesting to com-
pare with results obtained in the usual approach, where
gauge-fixing independence of the poles has to be and was
proven [24].

Furthermore, we only dealt with pure QCD, which
by construction excludes the calculation of the Debye
mass that would require the gauge-invariant inclusion of
a charge density in the Gauss law constraint. Conversely,
if it turned out to be possible to include charges in the
present formalism it would be possible to separate effects
from external charges and those induced by pure QCD.
We are going to investigate on this question.
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