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Non-Abelian soliton operators
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We construct soliton operators for the Wess-Zumino-Witten (WZW) model with a chiral
O(N) xO(N) invariance, and use them to derive non-Abelian bosonization properties directly. The
soliton operators express the fermion fields as nonlocal functions of the boson currents and provide
a direct map from the boson to the fermion Gelds. With them we determine the fermion equivalent
Lagrangian for level A: = N together with the fermion bilinears equivalent to the boson 6elds. We
generalize this construction to arbitrary values of the coupling constant and 6nd the equivalent
fermion model, which has current-current interactions.

PACS number(s): 11.10.Lm, 03.65.Fd, 03.70.+k, 11.10.Ef

I. INTRODUCTION

Bosonization is the means by which a fermion Beld the-
ory can be expressed entirely in terms of boson fields,
the best known example being the massive Thirring
model equivalence with the sine-Gordon model [1,2] in
two space-time dimensions. Bosonization overs many
insights into models of interacting fermions; for exam-
ple, by using semiclassical approximations in the bo-
son formulation one can gain nonperturbative informa-
tion about the fermions. Bosonization is also useful in
the study of quantum critical phenomena, having been
used [3] in the description of quantum antiferromagnetic
chains.

In two-dimensional Geld theory the concepts of
bosonization can be stated precisely: the boson currents
of one model can be identified with the fermion cur-
rents of another model and explicit mappings between
the fundamental boson and fermion fields established.
The dynamics of the boson field then implies certain
dynamics for the fermion 6eld and vice versa. Man-
delstam [2] derived the essential features of bosoniza-
tion for the massive Thirring model by constructing a
soliton operator (so named because it could be viewed
as creating as sine-Gordon soliton) which expressed the
fermion Geld directly as a nonlocal function of the boson
fields. With this operator Mandelstam was able to estab-
lish the correspondence between the fermion and boson
currents, identify the mass and potential terms of the
two models, and derive the fermion Geld equations &om
those of the boson 6eld. Renormalization of the fermion
theory follows automatically from the renormalization of
the boson theory together with suitable regularization
of the soliton operator. Subsequently, Witten [4] de-
scribed a boson-fermion equivalence between the boson
Wess-Zumino-Witten (WZW) model, with a chiral O(%)
xO(1V) invariance and including a Wess-Zumino term,
and a &ee massless fermion theory; this equivalence is
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a non-Abelian generalization of the special case N = 2
of the Abelian sine-Gordon and massive Thirring model
equivalence in the zero mass limit, with the coupling con-
stant pz = 4m.

Non-Abelian bosonization has been formulated in a
path integral setting by several authors; see, for example,
Redlich and Schnitzer [5], and more recently [6,7] where
a path integral approach is used to determine "smooth
bosonization" in which mixed fermionic and bosonic de-
scriptions are possible. Our investigation, however, is
more in the spirit of Mandelstam, in which the equiv-
alence is determined by a direct mapping between the
quantum fields. We generalize Mandelstam's soliton op-
erators to the non-Abelian case by constructing opera-
tors, as nonlocal functions of the boson currents, which
satisfy the same commutation relations with respect to
the currents as do the fermion fields and which after suit-
able renormalization we identify as fermion fields. Cen-
tral to our construction is an operator factorization of
the boson matrix g (described in Sec. III) which is con-
sistent with the classical solution of the boson field equa-
tions and &om which the soliton operators can be ob-
tained directly using properties of the current algebra.
As a consequence of this construction, we are able to ex-
amine non-Abelian bosonization for the case when the
level k of the current algebra takes the value II' = N,
when the quantum WZW model exhibits a high degree
of symmetry which is manifest in the fermion formula-
tion (Sec. V). We also derive the equivalence between the
fermion and boson currents and between the boson ma-
trix and fermion bilinears. Although we use properties of
the classical fields, this derivation applies to the quantum
fields once the soliton operator is regularized and suitably
normalized. The regularization of divergences, discussed
in Sec. VII, arising &om the multiplication of fermion
operators at the same point is also necessary in order to
determine the precise anticommutation properties of the
fermion Gelds, and we indicate how this regularization
may be performed without deriving precise details.

Because the essential properties of the soliton opera-
ators follow solely from the current (Kac-Moody) alge-
bra, the formulas are not restricted to the WZW model
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and its fermion equivalent but can be extended to in-
clude, for example, massive boson models. Furthermore,
bosonization using soliton operators is not restricted to
the case in which the coupling constant A takes only the
values A2 = 4m/k, for which the WZW model is con-
formally invariant. We generalize the current algebra to
arbitrary A and construct soliton operators satisfying the
same equal-time commutation relations with the currents
as do the fermion 6elds. The equivalent fermion model
has current-current interactions which comprise a non-
Abelian generalization of the Thirring model and which
we determine &om the properties of the soliton opera-
tors, as demonstrated in Sec. VI. Finally, in Sec. VII, we
consider the regularization and renormalization of the
soliton operators which is necessary in order to establish
the equivalence between the two quantum field theories.
We indicate several ways in which these operators and the
quantum equations they satisfy might be regularized and
renormalized, although full details of the renormalization
required for the four-point fermion couplings remain to
be determined.

The boson I agrangian may be written

1
Tr(B„gB"g )d2x + kI',

4%2

where A and B are elements of O(N). By contrast, since
vP, depends only on x and @,+. depends only on x+
(because the fermion field equations are B Q+ = 0 =
B+@, ), .we see that in (4) each element g,~ has been fac-
torized, whereas classically Eq. (5) shows that the inatrix
g Inust be factorized. By requiring consistency between
(4) and (5), we will find soliton operators for the case
k = N which allow us to generalize (4) in a way which
still reduces to the known formula for N = 2.

In order to construct the appropriate non-Abelian soli-
ton operators, we return brieBy to the Abelian case
N = 2 where we can use the Mandelstam soliton opera-
tors to determine the correct form of the bilinear equiv-
alence (4) and then progress to the construction of non-
Abelian soliton operators.

II. ABELIAN BOSONIZATION

Let us parametrize g E SO(2) according to

( cos pp sin pp l
—sin cos

where P2 = 4m (in Coleman's [1] notation), giving, for
the currents,

where g EO(N), A = 4z/k, where k, the central charge
or the level of the current algebra, is an integer which
we take to be positive, and I' is the Wess-Zumino term.
Witten showed that this boson model is equivalent to a
model of 2N &ee Majorana fermion fields vP,

+ with the
left and right currents identi6ed according to

J,, =(B gg '),~=i%@,. @.

Define

J,+, =Pl ~+(
Bx)

A (x) = +—P(x) —— vr(()d(,P 2m.

2 P

J+ = (g-'B,g),, = '~'q+y+, — (2)
which, upon discarding a boundary terin and using P
4m, can also be written

where B~ = B/Bt +B/Bx These .currents satisfy B+J,
0 = B J,+, and the fermion field equations are B
0 = B+@,: The eq. ual-time current commutation rela-
tions are

Mg;~ = i/, g+—.(4)

where M is a mass renormalization. This formula can
be investigated in detail using soliton operators, includ-
ing the case N = 2 when a different formula applies [8].
It is also of interest to investigate the consequences of
the classical boson field equations B+(B gg ) = 0
B (g B+g), which imply that g factorizes in the form

g(*) = A(x-)a(x+),

[J,.+. (x), J„+,(y)] = +iA2b(x —y)[b'i, J i(x) + her J,g(x)
-b,.J,.+, (x) —S;,J,+.„(*)]
+2iAz 6'(x —y) (8;i,b,.i —b;i b, i,),

and [J+(x), J&&(y)] = 0. In addition to the current
equivalence, Witten also identi6ed the boson Gelds with
fermion bilinears according to

=:sinA I(2 =:cos A

where we have indicated that normal ordering must be
performed and it is understood that suitable regular-
ization is also to be carried out (for a discussion, see
Refs. [2,9]). By using the soliton operators we can now
verify directly [8] that, for N = 2, Eq. (4) is replaced by

Mg;~ =i(s;i,@& @+ —g s &@+) . . .

In matrix form this can be written

(10)

Then, following Mandelstam, we can form the soliton op-
erators exp(iA+), which we identify with Dirac fermions,
or equivalently we can form Majorana fermions according
to

@i+ =:cos A+:, @z+ = —:sin A+:
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which is consistent with the dynamics as expressed in (5)
because the boson matrix is in a manifestly factorized
form. Equation (11) can be rewritten in terms of the
soliton operators (9), and we find that g can be written
in the suggestive form g = g g+, where

g =~xvl+ ', Lnf-&„(f)~(i,

011,
—1 0)

where we have used Ji+z —Ji2 ——2P(9$/Ox. We see that
g = g g+ is an operator factorization of g which is in-
dependent of, but consistent with, the boson field dy-
namics. Furthermore, &om the factors of g we can form
the soliton operators themselves, for by choosing g to
be a column of g and @+ to be a row of g+ we obtain
correctly the fermion fields, as (11) shows.

III. NON-ABELIAN BOSONIZATION

The factorization of g for N = 2 relies only on the
properties of the quantum boson fields and the current
algebra derived &om these fields, but can be regarded
as the starting point of the boson-fermion equivalence
because it determines the soliton operators and hence the
fermion fields. Now let us generalize this construction to
the non-Abelian case. By definition, the soliton operators
satisfy the same equal-time commutation relations with
respect to the currents as do the fermion fields: namely,

I
J;+, (x) @~ (y)] = +i&'~(x —y) (~'~@, —~~~@,+)

[J;+, (x) @.(y)l = [J;, (x) @~ (y)] = o .
(13)

These equations can also be regarded as the definition of
the fermion fields, given the fermion currents J,+. This
method of introducing fermion fields follows the approach
of Dell'Antonio, Frishman, and Zwanziger [10] and also
Johnson [ll], in which the direct introduction of the sin-
gular fermion anticommutation relations is avoided. In-
stead, one begins with the current commutation relations
and then postulates the commutation relations of the
fermion fields with the currents, allowing for renormal-
ized arbitrary constants which are determined from the
quantum field equations. The renormalized fermion an-
ticommutation relations can then be derived in operator
form by means of the expansion of operator products on
the light cone.

We will solve the commutation relations (13) by re-
garding J,-+ as given boson currents in order to obtain
the soliton operators. Let us define antisymmetric ma-
trices L;~, which span the Lie algebra of O(N), by

J+=iy L J

(*) g(y)] = - ' (*- y)g '. .

Let us suppose that g can be factorized in the form g =
g g+, where g+ c O(N) and g depends (nonlocally) on
J,. and g+ depends on J,-+. . his factorization accords
with the N = 2 case shown in (12) and is consistent with
the classical boson dynamics given in (5) for the WZW
model. Using [J, , J&+&] = 0, we then determine &om (15)
that

[J;,(*) g (y)] =-i~'~(x —y)Leg (y)

[J;+, (x) g+(y)] = -i&'~(x —y)g+(y)L', .
(16a)

(16b)

Now let us choose g to be any column of g and g+ any
row of g+; then, the components @, satisfy precisely the
relations (13). In other words, by factorizing g appropri-
ately we obtain immediately the soliton operators, &om
which the boson-fermion equivalence can be established.

Rather than seek an operator factorization of g di-
rectly, let us proceed as in the Abelian case by solving
Eqs. (16) for g and g+. The dynamics of the &ee boson
field is of assistance in obtaining a trial solution. Using
8+g = 0 and J = 0 g (g ), which follows from
the assumption g = g g+, we find that, for any fixed
time,

(9g x) = —
2 J (x)g (x) .

The solution, for given J, can be expressed as a path-
ordered exponential:

x

g (x) = P exp
~

——,
' J (()d( ~—OO

(18)

where P denotes path ordering; i.e., factors are ordered
such that operators J (() with larger arguments ( stand
to the left. Explicitly,

~ (*) = ) (—l)"f l ~(G-i —G)~ ((;)
n=O i=1

where (0 = x. We adopt (18) therefore as the definition
of g and must now prove that g actually satisfies the
commutation relation (16a); we do this by finding R(x)
such that

The commutation relations of the currents and the boson
fields are [4]

[J;,(*) g(y)] = —i&'~(x —y)Leg

(L', )ai = ~'a~, i —~a@~ (14)
g (x)A = E3(x)g (x), (20)

(i, j, k, l = 1, . . . , N) and define
where A = J, . (y) (suppressing the dependence of A, B,
on i, j,y). First, we difFerentiate (20) using (17), to get
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and upon integrating Gnd

This equation can be solved iteratively; however, it is suf-
ficient to verify by direct substitution that the solution
is B(x) = iA h(x —y)L,~ + J, (y) by using the current
commutation relations (3). Hence (16a) is satisfied. Sim-
ilarly, the expression for g+ which satisfies (16b) is

g+(x) = P ' exp
~ 2 J+(()d(

~—OO

(21)

IV. PKOPEKTIES OF SOLITON OPERATORS

where P indicates path ordering in the sense opposite
to P.

Hence we have solved Eqs. (16) for g, g+ as func-
tions of J,J+, and we refer to g+ as soliton operators
by analogy with the Abelian case, where these operators
have a soliton interpretation. The soliton operators are
not unique, because g h and h+g+ also satisfy (16a)
and (16b), respectively, where h, ti+ are constant or-
thogonal matrices, and we also retain the &eedom to set
overall normalization factors.

Path-ordered exponentials of currents appear in several
contexts in non-Abelian models, although not previously
as soliton operators. For example, Bardakci, Cresci-
manno, and Hotes [12] have realized parafermion fields
in non-Abelian coset models as path-ordered exponen-
tials of free currents (with finite base points, whereas our
base point is taken at infinity) which may be quantized to
obtain quantum parafermion operators. The finite base
point is associated with a Wilson line which is attached
to each parafermion field, and gauge invariance of the
WZW currents ensures that physical quantities are in-
dependent of the base point. Alekseev, Faddeev, and
Semenov-Tian-Shansky [13] have investigated properties
of the monodromy matrix M, defined as a path-ordered
exponential of the currents, using a lattice regulariza-
tion and have shown that properties of the monodromy
are determined by the quantum group Qq(Sl(2)). This
observation, that quantum groups can be used to deter-
mine properties of the regularized quantum Geld theory
including path-ordered exponentials of the currents, is
applicable to quantum soliton operators and this is dis-
cussed brieHy in Sec. VII.

Gelds, which is consistent with a fermion theory with a
central charge of N. The operators (22) are normal or-
dered with respect to a Fock space representation of the
quantum currents (where normal ordering is performed
by writing the currents as a sum of components with
positive and negative &equencies) and are also regular-
ized and normalized as necessary. The regularization will
include a suitable cutofF for the integral in the exponen-
tial shown in (18), as well as regularized step functions
0 in (19). Indeed, suitable regularization is necessary
in order to determine whether the fields g+ defined by
(22) anticommute for difFerent arguments x, y. In the
form shown, the elements of g (x) in fact commute with
those of g+(y), because the left and right currents com-
mute, and it can also be shown that the elements of g
commute among themselves for x g y and similarly for
g+. This is true even for N = 2; i.e. , when A+ is de-
fined as in (8), the Majorana fields (9) coinmute for ar-
guments x g y. On the other hand, when A+ is given by
(7) the correct anticommuting properties are satisfied, as
shown by Mandelstam. Since (7) and (8) difFer only by
a boundary term, which vanishes when the operators are
regularized, we conclude that anticommutation proper-
ties of g+ can be determined only when the operators
(22) are correctly regularized.

Without considering details of regularization, which
are discussed further in Sec. VII, we can see that fermion
anticommutation relations for v)+ are not possible for
odd values of ¹ Each element of an orthogonal matrix
is equal to its minor in the matrix and so, considering g
for example, the first column can be expressed in terms
of the remaining columns. Therefore we may write

(23)

where " " means equality up to multiplicative normal-
ization and where the right-hand side is evaluated by
point splitting and then renormal ordered to give the
left-hand side. Equation (23) shows that for odd K the
components of Q cannot consistently anticommute for
difFerent arguments x, y. For even N, however, let us as-
sume that in a regularized form @+ will satisfy fermion
anticommutation relations, and hence we refer to the
components of v)+ as fermion operators. Since normal or-
dering amounts to a multiplicative renormalization, the
quantum fermion operators satisfy the relations (13).

Now we consider the product g g+, which is an or-
thogonal matrix with commuting elements, which we can
therefore identify with the boson matrix. g; the expres-
sion g = g g+ factorizes g in a way similar to the Abelian
case. From (22) we find that

Now let us develop properties of the soliton operators
and, in particular, derive details of the boson-fermion
correspondence. From the classical fields g+ we define
quantum operators @+ according to

a=1
(24)

(22)

which we wish to identify with Majorana fermion fields.
We note first that we have in fact constructed N such

which is the generalization to level k = N of Eq. (4). By
substituting for dependent columns or rows of @ and
Q+, as shown in (23), we obtain the precise non-Abelian
analogue of (10). Using also g = g(g+), we can write
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(25)

which shows that the boson matrix transforms the right
Majorana components into the left components.

From the soliton operators we can determine the
fermion currents equivalent to the boson currents J+.
By using (17) we obtain the expansion

y (~) =y (y) —2(* y) J—(y)9 (y)+&((*—y)')

and therefore

where we subtracted a c-number constant in the last step
to obtain J,. . . Hence, for k = N, Eq. (2) generalizes in
the natural way to read

N

J,, = (~-w ');, -).0,.0...
a=1

N

J,+, = (g '~+a)', - ) .4.+,@.+, .
a=1

(27)

V. EQUIVALENT FERMION MODEL

The field equations satisfied by the fermion fields fol-
low immediately &om those of the boson fields, i.e.,
8 J+ = 0 = 8+J implies 0 v)+,. = 0 = 8+/,. , and
so the fermion Lagrangian which corresponds to the bo-
son theory is given by

L =i ) (g, 8+/, + @+0. Q+)d z,
z,a

(28)

where @+ are constrained to be orthogonal matrices, as
follows &om the orthogonality of g+ and the identifica-
tion in (22).

The equivalence of the WZW model for general k with
a constrained fermion theory is well known; Antoniadis
and Bachas [14] found that the boson model is equiva-
lent to a gauged theory of Majorana fermions or, alter-
natively, to a theory of &ee fermions obeying para-Fermi
statistics. This approach has been developed by Chang,
Kumar, Mohapatra [15] and also Bardakci, Crescimanno,
and Rabinovici [16] and Redlich and Schnitzer [5] using
path integrals. Let us demonstrate the equivalence of
the constrained fermion Lagrangian (28) with that ob-
tained by gauging a &ee fermionic theory and show that
the orthogonality of the fermion fields in (28) can be ex-
pressed as a set of constraints on certain currents. Con-
sider therefore the &ee fermion Lagrangian density

@;~"[~v &~ + (&~)v]@;
z,j,a

(29)

N

lim ) @,:(x)@ (y) lim[g (x)g (y) ],, - J,. (x),
a=1

(26)

where A„ is a gauge field taking values in O(N) and vP is
a set of Dirac fermions which can be written in Majorana
form according to

(30)

The gauge field A„ is not dynamical, but acts as a La-
grange multiplier to project out the currents of the alge-
bra, which implies that the constraints can be written

).@PAL"(Iv)~i@P = o
a, A;, l

(31)

where I;~ is defined in (14). By choosing p, = 0, 1 sepa-
rately, we find that the constraints take the form

(32)

which become, for i g j, g @+;@ = 0 = g
Up to an overall normalization we find, therefore, that
the constraints (31) are equivalent to specifying that
the Majorana fields @+ should form orthogonal matri-
ces, and so the fermion model given by (28) is equiva-
lent to (29) with the gauged &ee fermions. It should be
pointed out that the bilinear constraints (32) must be
understood in terms of point splitting and do not con-
tradict the fact that bilinear fermion fields generate the
currents, as shown in (27). More precisely, we expand

g+,. (x)@+.(x+ s) in powers of z, and the lowest-order
contribution will vanish unless i = j and the terms of
next highest order will be proportional to the currents

+
Jz~ 0

The Lagrangian (28) displays a symmetry not present
in the boson Lagrangian (1), namely, invariance with
respect to O(N) transformations on the index a, cor-
responding to right and left trans formations on g, g+,
respectively, by elements of O(N). This invariance, how-
ever, is present in the quantized boson theory, for it
corresponds to the transformation g = g g+ -+ g' =
g Ii h+g+ 6 O(N), where h+ are constant orthogonal
matrices. Since this transformation relies on the opera-
tor factorization g = g g+, this symmetry appears only
in the quantum theory, whereas the O(N) xO(N) chiral
invariance is manifest classically. This hidden symme-
try was observed by Antoniadis and Bachas [14] for a
general level k and is an O(k) xO(k) invariance of the
fermion theory.

Because the soliton operators are defined entirely in
terms of the boson currents, their properties are not re-
stricted to the WZW model, but depend only on prop-
erties of the boson currents. If we add a mass term Trg
to the Lagrangian (1), then the current commutation re-
lations (3) are unchanged and so the soliton operators
g g+ given by (18) and (21) still satisfy the same com-
mutation relations (16). In this case the classical solution
of the boson field equations is no longer of the form (5),
and J,J+ depend on both x, x+; however, the opera-
tor factorization g = g g+ and other algebraic properties
of the soliton operators are still valid because the current
algebra is unchanged. This includes the current equiv-
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alence (27) and the boson matrix and ferxnion bilinear
equivalence (24), but now the fermion field equations are
determined directly Rom the soliton operators by using
the nonlinear boson Geld equations. More directly, we
can regard the mass term Trg as a perturbation within
the WZW model and (24) then shows that

N

Tg - ).0,.@.+;,
i,a=1

and so, by adding the right-hand side to (28), we obtain
the equivalent massive fermion theory. The quantization
of the massive WZW model has been discussed by Gep-
ner [17].

VI. ARBITRARY' COUPLING CONSTANT

Let us now generalize the bosonization results by
removing the restriction that the coupling constant A

should take only the values A = 4vr/k, and so we consider
the Lagrangian (1) for arbitrary A. The WZW model
no longer displays conformal symmetry, but we can still
find a fermion equivalent model. In the Abelian case this
equivalent model is the massive Thirring model, and so
we expect that for the non-Abelian case the fermion La-
grangian (28) will need to be modified by the addition
of current-current interactions. The generalization pro-
ceeds by finding the current algebra for arbitrary values
of the coupling constant A and factorizing the boson ma-
trix g into a product g~gR of left @nd right components
which can be identified as fermion operators.

The Lagrangian (1) for general A is chirally invariant
and so has two conserved currents, the left and right
currents corresponding to the chiral group O(N) xO(N).
These currents are

kA2J"= g t9"g — ~""g '0 g,
4m

(34)
kA2K" = 0"gg + E," B„gg4'

each of which is conserved, as follows directly &om the
field equations

kA2
B„(g 8"g) = s„„B"(g '0"g) .

(we have verified these relations explicitly for N = 3).
The two commuting algebras each generate an invari-
ant chiral algebra, with Schwinger terms contributing a
quantized central charge k. Again, these commutation
relations reduce to (3) when A = 4m/k. The commu-
tators of the currents with the fundamental fields g;~ (z)
are

[J,(*) g(y)] = -'~'b(z —y) g(y)L*~

[K,, (z), g(y)] = —iA b(z —y)L;, g(y) .
(37)

We can now write down operators in terms of path-
ordered exponentials which satisfy the same equal-time
commutation relations as do the currents with the
fermion operators (designated as left and right fermion
fields @,@ ). These commutators, which we can re-
gard as defining the fermion operators (again following
Dell'Antonio, Frishman, and Zwanziger [10]),are

[J,', (z) &F(y)] = &&'b(z y)(b'i @—,"—b.~0, )

[K.', (*),@'(y)] = '~'b( -y)(&..@—,' &,'V. )-,

[J,(*) @a(y)] = [K,', (z) &~ (y)] = o.
(38)

Define now, in analogy with (18), the operators (for fixed
time)

(39)

The commutation relations satisfied by these operators
are

[K,', (*) g'(y)] = —~&'b(z —y)Lv g'(y)

[J,, (z), g~(y)] = —iA'b(z —y)g (z)L.. .
(40)

[J,', (*) g'(y)] = o

[K,', (*) g (y)] =o.
These relations are proved in a way similar to (16) for
the operators (18) and (21), by using the properties

Og 4'
0 2kA2

For A2 = 4vr/k, the current densities J,Ko reduce
to J+,J, respectively, as defined in (2). The equal-
time commutation relations satisfied by J and K are
given [18], in matrix form, by

Og 4' R p

Ox 2kA2

(41)

[J,', (*) J'(y)l = —~~'b(z —y)[J'(z) Lv]
2ikA4

+ 8'(z —y) L;, ,
4m

[K,",(z) K'(y)] = i~'b(z y)[K'(*) LV]-
2ikA4

b'(z —y)L;, ,
4m'

K;(z) K~i(y)] = o

(36)
qL .

( I) . qR .
( B) (42)

we find that precisely the relations (38) are satisfied.
Again, we obtain N fermion fields for each of the left

Equations (40) can be viewed as integrated forms of the
commutators (36) since, by difFerentiating (40) with re-
spect to y (at fixed time), we regain (36). Now, by identi-
fying fermion operators according to the normal-ordered
operators
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and right components, and hence we have obtained the
desired generalization of the soliton operators to the case
of general A. As before, since normal ordering is multi-
plicative, the quantum fermion operators (42) satisfy the
coinmutation relations (38).

Several properties follow immediately, again in the
same way as for the particular case A2 = 4vr/k. First,
we can identify the combination g g with the matrix of
boson fields g, corresponding to (24), i.e. ,

N

g. ) @I@R (43)

N
Jo ) @R@R

(44)

Here we used the expansion (for Jo)

g"(*)= g"(~) + 2„A, (*
—g)g"(~)J'(~)

+O((* —&)') (45)

and then the identification in (44) follows in the same way
as for (26). The spatial components of the currents can
also be identified with fermion bilinears by expressing
J and K as linear combinations of g K g, J and
g J g, K, respectively. From expansion (45) we find

g"(*)g"(~) '=1+,kA, (*—~)g"(~)J'(~)g"(~) '

+o((x —&)') (46)

and similarly for g K g, giving

and we may also identify the currents as fermion bilinear
combinations:

N
~0 ) @I @~L~

& = —
4A, Tr[(g g*) +(g 'gi)']

1
& = —

2A,
T [g 'g*g 'ge],

(48)

and can be written in terms of the charge densities of the
currents:

R = Ro+'Rl
1 (4' l

Tr 1+
~ ~

(Ko2+ Jo)

(49)

encounter several highly singular commutators which we
seek to avoid by regarding the corresponding terxns in the
Hamiltonian as perturbations. Hence the procedure we
adopt is to identify part of the boson Hamiltonian as the
"&ee" part Ho, &om which the time rate of change of the
soliton operators can be calculated without encountering
singular commutators. We regard the remaining part
of the Hamiltonian HI, which comprises current-current
interactions and could also include a mass term, as a per-
turbative interaction which is multiplied by a parameter
that can later be set to unity.

We identify HI directly with corresponding terms in
the fermion Hamiltonian by using the equivalences given
in Eqs. (43)—(47). This is analogous to the treatment of
the massive Thirring model (Coleman [1)) in which the
mass term is introduced in the Lagrangian as an oper-
ator within the massless Thirring model. We point out
that one cannot directly identify all terms of the boson
Lagrangian with those of the fermion Lagrangian, since
the equivalence of the two theories occurs only at the ex-
trema of the respective actions, when the quantum fields
satisfy the quantum Euler-Lagrange equations. In par-
ticular, we cannot directly identify the two kinetic terms
of the boson and fermion models.

The Hamiltonian and momentum density operators for
the WZW model are given by

(g 'It'g)- =b[(g') 'It'g']. b - ) @,'.0,'b,

N
Jo —i) [

RJo( R) —i] ) qR@R

(47)

t'4~ t'
+2 1 —

/ ~ / (2 'ECoggo)I,

Tr[Jo —Xo],

where we used the decomposition g = g+g+ and the fact
that g commutes with K and similarly for J .

Next, we wish to establish the form of the equivalent
fermion model directly using the soliton operators. For
A2 = 47r/k this is straightforward since we can obtain
the equations satisfied by the fermion fields immediately,
i.e., 8 v)+ = 0 = 8+@,. , from which the Lagrangian (28)
follows. In general, however, the fermion fields depend
on both x, x+ and we now use the Hamiltonian for-
malism to calculate the time and spatial rates of change
of the fermion fields. We can then in principle deduce
the form of the fermion Lagrangian &om the correspond-
ing field equations. With this approach, however, we

where the "free" part of the Hamiltonian density is given
by

2

16A' q kA' )
and the remaining term is denoted 'Rl.

The spatial derivative @' of the ferinion operator g is
given by @' = i[P, Q], where P is the total momentum,
and so, according to the equivalence (42), we calculate

[T (Jo (*) —Ito(~)) g"(g)l

= A'~( —&) ) .(g"(&)I J,', (&)) (51)
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from which follows

@ai )~{yR Jo
~ (52)

Evidently, the right-hand side corresponds to a current-
current interaction in the fermion Lagrangian and is
interpreted as before with point splitting between the
fermion and current terms. Next, we calculate the com-
mutator i['Ro, g] in order to obtain the time derivative
of the fermion field, with the further contribution to the
field equations from 'RI to be considered separately. The
calculation is similar to that leading to (52), and we ob-
tain

p

(53)

By combining (52) and (53) we find

2
R 1 f 4z ) R Jo

Pai =
8 l~ kg2 I ) (@aP& Pi )

p

(54)

which corresponds to a fermion Lagrangian with a
current-current coupling of strength K given by

1 f 4vr i
r. = —1—

32 q kAzp
(55)

Tr[g K gJ ] = Tr([(g ) K g ][g J (g ) ]] (56)

and identifying the fermion fields as in (47), we find

—iKO Jo] @L@LyRqR (57)

which, as in the case of the massive Thirring model equiv-
alence with the sine-Gordon model, corresponds to a
strong fermion coupling (large r) for a weak boson in-
teraction (small A); in addition, the case e = 0 of free
massless fermions corresponds to the conformally invari-
ant boson theory for which A = 4vr/A, '.

The interaction term RI in the Hamiltonian (49) can
be identified directly with a corresponding fermion term
in the following way. By writing

the constraints that the matrices @ and v/i each be or-
thogonal, as follows Rom (42) from the orthogonality of
g and g

Quantization of the constrained ferrnionic system de-
fined by (58), consisting of N interacting left and right
Majorana fermions, may be carried out by means of the
path integral formalism or by canonical quantization.
The problems posed by the constraints in the latter ap-
proach have been discussed by Chang, Kumar, and Mo-
hapatra [15], where it is noted that classically the van-
ishing currents in (31) comprise a set of first class con-
straints. However, in quantum theory the algebra gener-
ated by these currents includes a Schwinger term which
converts the constraints &om first class to second class.
Quantization in the presence of such Schwinger terms has
also been discussed by Faddeev [19];the Poisson brackets
of the constraints must be modified by the addition of a
two-cocyle, at least for the model of fermion-gauge boson
interactions considered by Faddeev, which may be deter-
mined by suitable operator ordering and point splitting
in order to define the multiplication of singular opera-
tors. One can expect that a similar procedure must be
undertaken for the model (58) and that the constraints
must be treated as second class. Faddeev [19] has also
developed a path integral approach to quantization in the
presence of second-class constraints, by adding auxiliary
fields, and for constrained fermionic systems this has also
been discussed by Chang, Kumar, and Mohapatra [15].
The precise meaning of the path integral, in particular
the form of the trace anomaly, depends on the method
of regularization.

The Lagrangian (58), without the mass term, again
displays symmetries present only in the quantum WZW
model, specifically the O(N) xO(N) invariance arising
from O(N) transformations on the indices a, b and which
corresponds to right and left orthogonal transformations
on g and g, respectively. The method of bosonization
which we have developed here via soliton operators pro-
vides a very direct way of demonstrating this quantum
symmetry. Indeed, we have shown that soliton operators
provide a direct means of determining the main features
of the boson-fermion equivalence for WZW models with
mass terms and arbitrary couplings and non-Abelian gen-
eralizations of massive Thirring models.

where repeated indices are summed from 1, . . . , N. (We
have discarded additive renormalization constants, and
there will also be a multiplicative renormalization. ) If we
now include the four-point interaction (57) in the fermion
Lagrangian, along with the terms equivalent to Tr[JO +
Ko] and also a mass term, we obtain

~ = '@L(r,,a++ ~+)qL + iy.",(~;,a + ~;,)@.",
@L@L yLyL + qR yR @RyR

Iyj yLqR qR + qL yR (58)

where repeated indices are summed from 1, . . . , N. The
coefBcient K' is related to rc in a way that is dependent
on the pI'eclse renoI Inallzat1OI1 procedure. We have lI1-

cluded nondynamical gauge fields A+ in order to enforce

VII. REGULARIZATION AND
B,ENORMALIZ ATION

Although the definition (39) of soliton operators as
path-ordered exponentials of the boson currents is given
in classical terms, as are several properties such as the
commutation relations (40), nevertheless these relations
extend to the corresponding quantum fields when the cur-
rents become quantum operators. This follows once the
soliton operators are normal ordered because the renor-
malization is multiplicative. Let us consider therefore
how soliton operators may be regularized and hence how
the infinities arising &om singular commutators may be
renormalized. %'e regard the current densities K, J in
the definition (39) as quantum fields and regularize the
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spatial integral over ( by introducing a cutofF in the form
of a factor exp(e() in the integrand. In order to effec-
tively regularize the h functions in the commutators (40)
(and hence also in the current commutation relations),
we insert a set of zn(n —1) regularized step functions
8;s (() into the integrand, where ());s interpolates between
0 and 1. A possible definition is

t'(l
&e")

where 8(x) is a smooth function which interpolates be-
tween 0 and 1. For small e;z the function 0;& approxi-
mates the step function 0(x) and the derivative gl is a
regularized b function. Hence we write the regularized
soliton operator as

(x) = N(e): P ' 'exp f exp(~g)-', ) 0;, (j)L;,z, (/)dan
'v

lime g (x)@ (x+e), (59)

where 0 is calculated so as to produce a finite result as
e —+ 0. Point splitting for soliton operators has the same
efFect as multiplicative renormalization, as follows from
the semigroup property of path-ordered exponentials:

4 x+s
gR(x+e)gR(x)/ i exp

q2kA2

The exponent o in (59) is calculated by renormal ordering
the product @ (x)@+(x) of soliton operators.

Another way of regularizing the soliton operator is
an adaption of the method of Alekseev, Faddeev, and
Semenov-Tian-Shansky [13], in which one introduces a
direct cutofF in the integration and defines

where N(e) is an overall normalization that depends on
the regulators e, c,~. This soliton operator satisfies a reg-
ularized form of the commutation relations (38).

We avoid singularities arising from the multiplication
of operator-valued distributions at the same point in the
standard way by point splitting. For example, we replace
products of the form Q+(x)g+(x) by

dered product of fields on the lattice points xo ( xi &
~ . & x i & x = x by using the semigroup property of
path-ordered exponentials:

(x(), x) = N(xp, e): LpLi . L„

where N(xo, e) is a normalization depending on xo and
the lattice spacing e = x,+i —x;. The fields I, may each
be normal ordered, and it is found [13] that I, = e:L;:,
where the exponent a has been calculated for the case

= 4'/k in [13] using an operator expansion and prop-
erties of the A matrix for the quantum group. [In [13] the
fields L; are lattice variables comprising the monodromy
of the current and have properties determined by the
quantum group M~(5[(2)), which suggests that quantum
groups can play a similar role for the soliton operators
in lattice form. ] The calculation of the fermion-boson
current equivalence as shown in (44) and (45) may be
carried out in regularized form:

N
1 ) qR( )@R( + )

cx= 1

(xolx) = N(xo): P ' exP
~

1 (()« ~

so that now the fermion fields @ depend on a cutoff xo
(also called a base point in [12]) which can be different
for each fermion field. We assume that for large negative
values of xo physical quantities such as expectation values
are independent of xo. We may further regularize the
operators @+(xo,x) by placing these fields on a lattice of
n points, and so we define

f 4~ *'+
L; =P exp(

q2kA2

for i = 0, . . . , n —1, and then write vP (xo, x) as an or-

N (x(), e)J,~ (x) + O(e),
2kA2

where the term A/e arising from renormal ordering can
be discarded by means of an additive renormalization
and N (xo, e) comprises a multiplicative renormalization
constant. Again, we assume that physical quantities are
independent of xo for large negative xo.

We conclude by noting that in principle these methods
can be applied to verify other bosonization formulas in
regularized form, including the equivalence of singular
current-current terms such as in (56), but that at present
the precise expression of these equivalences in regularized
form, particularly for the case of arbitrary coupling A,
remains to be determined.
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