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Hydrodynamic transport coefBcients in relativistic scalar field theory
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Hydrodynamic transport coefBcients may be evaluated from first principles in a weakly coupled
scalar field theory at an arbitrary temperature. In a theory with cubic and quartic interactions, the
infinite class of diagrams which contributes to the leading weak coupling behavior is identified and
summed. The resulting expression may be reduced to a single linear integral equation, which is shown
to be identical to the corresponding result obtained from a linearized Boltzmann equation describing
effective thermal excitations with temperature-dependent masses and scattering amplitudes. The
effective Boltzmann equation is valid even at very high temperature where the thermal lifetime
and mean free path are short compared to the Compton wavelength of the fundamental particles.
Numerical results for the shear and the bulk viscosities are presented.

PACS number(s): 11.10.Wx

I. INTRODUCTION

Linear response theory provides a &amework for cal-
culating transport coeKcients starting &om first princi-
ples in a finite temperature quantum field theory. As
reviewed below, the resulting "Kubo" formulas express
the hydrodynamic transport coeKcients in terms of the
zero momentum, small &equency limit of stress tensor—
stress tensor correlation functions [1]. One-loop calcula-
tions of transport coeKcients using these Kubo formulas
in a relativistic scalar P4 theory have appeared previ-
ously [2,3]. However, those calculations are wrong even
in the weak coupling limit; they fail to include an infi-
nite class of diagrams which contribute at the same order
as the one-loop diagram. These multiloop diagrams are
not suppressed because powers of the single particle ther-
mal lifetime compensate the explicit coupling constants
provided by the interaction vertices.

In this paper, all diagrams which make leading order
contributions to the viscosities in a weakly coupled rel-
ativistic scalar field theory with cubic and quartic inter-
actions are identified. The diagrammatic rules needed
to calculate the required finite temperature spectral den-
sities of composite operator correlation functions were
derived in a previous paper [5] (and are summarized be-
low). The dominant diagrams are identified by counting
the powers of the coupling constants which result &om
a given diagram, including those generated by near "on-
shell" singularities which are cut off by the single particle
thermal lifetime.

For the calculation of the shear viscosity, certain cut
"ladder" diagrams, corresponding to the contribution of
elastic scatterings only, are found to make the leading
order contributions. The geometric series of cut ladder

diagrams is then summed by introducing a set of effective
vertices which satisfy coupled linear integral equations.
The resulting expression is then shown to reduce to a
single integral equation, which is solved numerical. y.

For the calculation of the bulk viscosity, in addition to
the leading order ladder diagrams, contributions &om the
next order diagrams containing inelastic scattering pro-
cesses must also be summed. In general, the bulk viscos-
ity is proportional to the relaxation time of the processes
which restore equilibrium when the volume of a system
changes [6]. For a system of a single component real
scalar field, such processes involve inelastic scatterings
which change the number of particles. Hence, diagrams
corresponding to such processes must be included.

Boltzmann equations based on kinetic theory have tra-
ditionally been used to calculate transport properties of
dilute weakly interacting systems. However, the valid-
ity of kinetic theory is restricted by the condition that
the mean &ee path of the particles must be much larger
than any other microscopic length scale. In particular,
the mean free path must be large compared to the Comp-
ton wavelength of the underlying particle in order for the
classical picture of particle propagation to be valid. A
Boltzmann equation describing the fundamental parti-
cles cannot be justified when this condition fails to hold.
Such is the case at extremely high temperature, where
the mean free path scales as 1/T.

No such limitation exists when starting &om funda-
mental quantum field theory. Nevertheless, it will be
shown that the correct transport coeKcients, in a weakly
coupled theory, may also be obtained by starting &om
a Boltzmann equation describing effective single particle
thermal excitations with temperature-dependent masses
and scattering amplitudes. This equivalence holds even
for asymptotically large temperatures where both the

Similar phenomena occur in the calculation of transport
coefficients in nonrelativistic fluids [4].

The Boltzmann equation derived by Calzetta and Hu [7]
via a relativistic Wigner function is also expressed in terms
of the thermal mass.
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thermal lifetime and mean free path are tiny compared
to the zero temperature Compton wavelength. Hence,
in a weakly coupled theory, although a kinetic theory de-
scription in terms of fundamental particles is only valid at
low temperatures, a kinetic theory description of efFective
thermal excitations remains valid at all temperatures.

The effective kinetic theory result presented in this pa-
per is valid through all temperatures in the weak coupling
limit. At low temperatures T (& m~h~» where mpQys is
the physical mass of the underlying particles at zero tem-
perature, most particles are nonrelativistic. Hence, the
efFective theory reduces to nonrelativistic kinetic theory
at low temperatures. If the temperature is in the range
m~h~, & T && m~~„,/v A, where A is the quartic coupling
constant, most particles are relativistic, but the thermal
corrections to the mass and the scattering amplitude are
negligible. Consequently, the viscosities at these temper-
atures can be calculated by a kinetic theory of relativistic
particles with temperature-independent mass and scat-
tering amplitudes.

The most interesting temperatures are those where
T = O(m~hr, /~A). At these temperatures, the thermal
correction to the mass is comparable to the zero tem-
perature mass. For weak coupling, this temperature is
also large enough that most excitations are highly rela-
tivistic. One might expect that the thermal correction to
the mass would then be irrelevant. This is true for some
physical quantities which are insensitive to soft momel. .-
tum contributions, such as the shear viscosity. However,
other quantities, such as the bulk viscosity, are sensitive
to soft momenta. For such quantities, including the ther-
mal correction to the mass and the scattering amplitude
will be shown to be essential.

At very high temperature T & m~hr, /A, all mass
scales, including the cubic coupling constant, other than
the temperature are completely negligible, and. conse-
quently the theory reduces to the massless scalar theory
with only a quartic interaction.

Throughout this paper, we work with the Lagrangian

—l: = -P(—0 —V' + m )P+ —P + —P2 2 2 ~ 3 ~ 4
2 3I 4I

It is assumed that A « 1 and g2 = O(Amo), so that
the theory is always weakly coupled. For simplicity, we
also take mp ) 0. Note that at the tree level mp can

I

. be regarded as the physical mass mphy Portions of the
analysis will begin by assuming pure quartic interactions,
after which the additional contribution arising from cu-
bic interactions will be considered. The remainder of the
paper is organized as follows. A brief review of various
background material is presented in Sec. II. This mate-
rial includes the definition of transport coeKcients, basic
linear response theory, diagrammatic "cutting" rules for
the evaluation of spectral densities, and a summary of the
behavior of self-energies at high temperature. Section III
deals with the problem of identifying the leading order
diagrams. By counting powers of coupling constants, in-
cluding those from near on-shell singularities, ladder di-
agrams are identified as the leading order diagrams. The
summation of these diagrams is discussed in Sec. IV. Sec-
tion V contains a brief review of the computations of vis-
cosities starting &om the Boltzmann equation, and then
discusses the relation between the resulting formulas and
those in Sec. IV. Using the results of the previous sec-
tions, the Gnal calculation of viscosities is discussed in
Sec. VI, and numerical results presented in Sec. VII.

Several appendixes contain technical details. Explicit
forms of the imaginary-time and real-time propagators
used in the main body of the paper are summarized
in Appendix A. Appendixes B and C present explicit
forms of the "ladder" kernels discussed in Sec. IV. In
Appendix D, the Grst order correction to the equilib-
rium stress-energy tensor needed in Secs. IV and VI is
calculated. Appendix E discusses the soft momentum
and collinear contributions to Gnite temperature cut di-
agrams, and shows that they do not upset the estimates
used in Sec. III. Appendix F contains technical de-
tails of summing up the "chain" diagrams appearing in
Sec. III D.

II. BACKGROUND MAT'ERIAL

A. Hydrodynamic transport coe8icients

In a single component real scalar Geld theory, the only
locally conserved quantities are energy and momentum.
The transport coefBcients associated with energy and
momentum How, known as the shear and bulk viscosi-
ties, may be deGned by the constitutive relation

(T;,.) — (V;(T,') + V', (T,') —,'b;, V'(T,')) — -b;,.V'(T,') + 8,, ('P),

valid when the length scale of energy and momentum
Quctuations is much longer than the mean &ee path.
Here, T;~ is the spatial part of the stress-energy tensor
T&, E = Tpp is the energy density, P = ~T- is the pres-
sure, and rl and ( are the shear and the bulk viscosities,

respectively. Also, angular brackets denote the expecta-
tion in a nonequilibrium thermal ensemble describing a
system slightly out of equilibrium. Since there are no ad-
ditional conserved charges, thermal conductivity is not
an independent transport coeKcient.

In a strongly coupled theory, the mean free path can be
comparable to the scattering time, or other microscopic scales,
and no kinetic description is justi6ed.

Calculation of the thermal conductivity in a scalar AP the-
ory in Ref. [2j is in this sense misleading.
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The above constitutive relation and the exact conser-
vation equation

B„T""(x)= 0 (2.2)

constitute linearized hydrodynamic equations for a rela-
tivistic Huid. With the help of the equilibrium thermo-
dynamic relation

(2 3)

where v, is the speed of sound, the linearized hydrody-
namic equations can be reduced to two equations for the
transverse part of the momentum density (7r&) and the
pressure P'),

(o), —DV') (~~(x)) = O

(o),
' —v2V' —I'V'a, ) P'(x)) = O .

(2.4a)

(2.4b)

D = &/(s+&).q (2.5)

and the sound attenuation constant I' equals a linear
combination of the viscosities

(2.6)

Using the basic linear response result, one may express
the viscosities in terms of the stress tensor-stress tensor
correlation functions [1,8). One finds the "Kubo" formu-
las

Here the diffusion constant D is proportional to the shear
viscosity,

B. Qualitative behavior of the viscosities

In general, a transport coefBcient is roughly propor-
tional to the mean free path, or equivalently the relax-
ation time, of the processes responsible for the particular
transport [6].

This behavior is most easily seen in a diffusion con-
stant (or in the shear viscosity). Consider a system with
a conserved charge. In such a system, the diffusion of a
charge density Huctuation may be modeled by a random
walk [8]. The rate of the diffusion then depends on two
parameters: the step size (the mean &ee path) and the
number of steps per time (the mean speed). A longer step
size or a larger number of steps per time implies faster
diffusion of the excess charge, i.e. , a larger diffusion con-
stant D. Since the diffusion constant has the dimension
of a length, one finds

D ~ l fp, @v . (2.12)

because of energy-momentum conservation, Wightman
functions involving the energy density vanish (at nonzero
frequency) in the zero spatial momentum limit. However,
as will be discussed in Sec. IV, v will eventually be chosen
to equal the speed of sound. This will be necessary in or-
der to make the final integral equation for the transport
coeKcient well defined. Note that, whereas the approxi-
mate constitutive relation (2.1) involves a nonequilibrium
thermal expectation, the Kubo formulas (2.7) express the
transport coefFicients solely in terms of equilibrium ex-
pectation values.

il = —lim lim o ((v, q),20 u~O q —+0
(2.7a)

Recall that the difFusion constant in Eq. (2.5) is given
by D = yl/(s+'p), q. Applying the above estimate of D
yields

( = —lim lim o&&(v, q) .
2 u —+Oq —+0

(2.7b)
)7 lfreev(s++)eq (2.13)

o„„(tx,0):—f d' dte 'x'"x+' '(x& (r„) (0))x.~x,

(2.8)

where

(x) —= T) (x) —sb) T (x)

is the traceless stress tensor. Similarly,

(2 9)

x00(~, q):—f d xdte 'x' +* '(P(t)'P( x)),~,0(0.10,)

where

Here (r (~, q) is the Fourier-transformed traceless stress-
stress Wightman function,

(T )) mp), y.) . (2.14)

At low temperature T « mph„(y A /m h, and 6

(T/mphy, ) i~z. At these temperatures, the energy density
(s),q mp), y, n, dominates over the pressure. Canceling
two density factors in lg„, and (s),q, the shear viscosity
can be estimated as

Given the scattering cross section 0 and the density
of the particles, n, the mean free path can be estimated
as lg„, 1/no. . Consider a weakly coupled scalar AP
theory. The lowest-order scattering cross section in the
AP theory is o Az/s, where s is the square of the
center of mass energy. At high temperature T )) mph„
the only relevant mass scale is the temperature. (Here
mp), y, denotes the physical mass. ) Hence, o A /T,
n~T ) and

'P(t, x) =—'P(t, x) —v s(t, x) = sT (x) —v T()()(x)

(2.11)
mph„, (T/mphye) /A (T « mp), y, ) . (2.15)

is a linear combination of pressure and energy den-
sity. The constant v in this combination is arbitrary;

Note that the shear viscosity is not analytic in the weak
coupling constant. This may be taken as an indication
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that the 6rst few terms in the usual Feynman diagram
expansion cannot produce the correct value of the leading
order shear viscosity.

For the bulk viscosity, the situation is more compli-
cated than the simple picture given above. The bulk
viscosity does not have an interpretation as a diffusion
constant. Hence, the random walk model cannot be di-
rectly applied. The bulk viscosity is still proportional
to the. mean &ee time (inverse transition rate) of a scat-
tering process since the viscosities govern relaxation of a
system towards equilibrium. However, the factors mul-
tiplying the mean &ee time cannot simply be (s+'P),~
since the bulk viscosity g vanishes in a scale-invariant
system [9].

To understand this, consider a slow uniform expansion
of the volume of a system. In such an expansion, there
can be no shear flow [10]. Hence, the relaxation of dis-
turbances caused by the expansion depends only on the
bulk viscosity. For scale-invariant systems, the restora-
tion of local equilibrium does not require any relaxation
process. A suitable scahng of the temperature alone can
maintain local equilibrium at all times. Hence, for such
systems, including the nonrelativistic monatomic ideal
gas and the ideal gas of massless particles, the bulk vis-
cosity vanishes since the relaxation time vanishes.

When the system is not scale-invariant, the bulk vis-
cosity must be proportional to a measure of the violation
of scale invariance, or the mass mphys In Sec. IV, the
formula for the leading order bulk viscosity is shown to
be

4
~p hays &free

The mean &ee time vf„, here is given by the inverse of
the transition rate per particle:

~r„, = n/(dW/dVdt),

where dW/dVdt is the transition rate per volume corre-
sponding to the relaxation of the uniformly expanding
system. In a number-nonconserving system with bro-
ken scale invariance (such as a massive scalar theory),
the number-changing inelastic scattering processes are ul-
timately responsible for relaxation towards equilibrium.
As the system expands, the temperature must decrease
since the system loses energy pushing the boundary. De-
creasing energy implies decreasing particle number in a
number-nonconserving system with broken scale invari-
ance. Hence, the relaxation toward equilibrium must

involve number-changing scatterings. In the gP +AP4
theory, the lowest-order number-changing process is 2—
3 scatterings involving 3 cubic vertices or 1 cubic and
1 quartic vertices. In pure AP theory, the lowest-order
number-changing process is 2—4 scatterings involving 2
quartic vertices.

At high temperature m~i,„, (( T ( m~h„, /~A, most
particles have momentum of O(T). However, because of
the Bose-Einstein enhancement, the transition rate per
volume will be shown to be dominated by the O(mt, .h)
momentum components in the system where m&h is the
thermal mass containing O(~AT) thermal corrections. In
the ggP+AP4 theory, with the statistical factors for five
particles involved in the scattering, the transition rate
per volume is O(A g2Ts/marsh) which is O(Ts/mts&) larger
than the transition rate of the particles with O(T) mo-
mentum. Hence at temperatures in the range mphy Q(
T & m~h„, /~A, the bulk viscosity will be

mph', mti, /A g T

When T = O(m~i, „,/~A), ( = O(T /~A) which is
O(As~2) smaller than the shear viscosity. At the same
temperature, the AP4 theory transition rate per volume
is O(A T ) again due to the Bose-Einstein enhanceinent.
In this case, ( = O(m h, /A T) = O(T /A) which is

O(A) smaller than the shear viscosity.
At very high temperature T )) m~h~, /A, all mass

scales, including the cubic coupling constant, other than
the temperature are completely negligible, and conse-
quently the theory reduces to the massless scalar the-
ory with only a quartic interaction. The massless scalar
theory is classically scale-invariant. However, quantum
mechanics breaks the scale invariance. The measure of
the violation of scale invariance in this case is the renor-
malization group P function. Since the transition rate
per volume must still be O(AsT4) due to the thermally
generated O(~AT) mass, the bulk viscosity in this case
is O(T P(A)2/As) = O(ATs).

At low temperature T (( mphy, the transition rate per
volume in the ggP+AP theory is O(e ~ ~"~'), since the
center of mass energy must exceed 3mphys for a 2—3 pro-
cess to occur. Since the density n = O(e ~ &"&') at low
temperature, the bulk viscosity is then O(e~ p"&'/A ).
The bulk viscosity at low temperature is hence much
larger than the O(1/A2) shear viscosity. In the A/4 the-
ory, the transition rate is O(e 4~ p"~') since the cen-
ter of mass energy in this case must; exceed 4mphy,
for a 2—4 process to occur. The bulk viscosity is then
O(e2~ &"&'/A ), and again much larger than the shear
viscosity.

The nonrelativistic monatomic ideal gas is not equivalent to
the low temperature limit of the single component real scalar
Geld theory. The number of particles in the nonrelativistic
monatomic ideal gas is conserved whereas the number of par-
ticles in the low temperature limit of the scalar Geld vanishes
as the temperature goes to zero. Hence, the low temperature
limit of the scalar theory bulk viscosity need not vanish.

C. Linear response theory

Linear response theory describes the behavior of a
many-body system which is slightly displaced from equi-
librium. First order time-dependent perturbation theory
implies that [8]
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t

8(A. (t, x)) =if d'x' dt'([A, (t, x), 4(t 'x, )]) ,.Fi(t'x), , (2.19)

where (Es(t, x)) is some set of generalized external forces
coupled to the interaction picture charge density opera-
tors (As(t, x)j so that

6H(t) = —f d «Fj(t., x) Ag(t, x) (2.20)

and (. . .),~ denotes an equilibrium thermal expectation.
(Summation over the repeated index 6 should be under-
stood. )

To examine transport properties, it is convenient to
consider a relaxation process in which the external field
is held constant for a long time (allowing the system to
reequilibrate in the presence of the external field), and
then suddenly switched ofF:

Fs(t, x):—Fb(x) e" 6)(—t), (2.21)

where e is a positive infinitesimal number. Once the field
is switched oK, the system will relax back towards the
original unperturbed equilibrium state. Spatial trans-
lational invariance implies that Fourier components of
the initial values h(A (0, x)) are linearly related to the
Fourier components of Pq(x). Hence, after a Fourier
transform in space and a Laplace transform in time,
Eq. (2.19) turns into an algebraic relation [8]

p (~, q) = (1 —e ~ ) o. ((u, q),
pp~(~, q) = (1 —e ~ ) ~~~(~ q) .

(2.25)
(2.26)

Hence, the viscosities can equivalently be written as zero
&equency derivatives of spectral densities:

t9
)7 = —lim lim p (u), q)20 w-+0 @~0 gpss

(2.27a)

is the energy density or the longitudinal part of the mo-
mentum density.

Equation (2.22) solves the initial value problem in
terms of the response function. When the conserved
quantities are energy and momentum densities, the time
evolution of the initial values can be also described (for
low frequency and momentum) by the phenomenologi-
cal hydrodynamic equations (2.4). When Fourier trans-
formed in space and Laplace transformed in time, Equa-
tion (2.4) yields response functions with exactly the same
difFusion and sound poles. Hence, by extracting the dif-
fusion constant D and the sound attenuation constant I'
&om the pole positions in the correlation functions, one
may derive the Kubo formulas (2.7) for the viscosities.

The Wightman functions appearing in formulas (2.7)
for the viscosities are trivially related to the correspond-
ing spectral densities:

bA (z, k) = —. [y s(z, k) y~, (ie, k) —h, ]hA, (t=O, k),
'LZ

(2.22)

1 . . |9( = — lim lim ppg(~, q) .
ur~o g~o

(2.27b)

where bA (z, k) are Laplace- and Fourier-transformed
deviations &om equilibrium values b (A (t, x) ), and
h A, (t=0, k) are Fourier-transformed initial values

h(A (t=O, x)). Here, y &(z, k) is the retarded correlation
function with complex &equency z; it has the spectral
representation

d(u p s((u, k)
2' (d —Z

(2.23)

where the spectral density is

p ~(~, k)—:f d4Te '"'"+' '([A (tx), Ar(0)]).~, .

(2.24)

If A 's are conserved charge densities, then Ward iden-
tities can be shown to imply that the response functions
have hydrodynamic poles (poles in the frequency plain
which vanish as the spatial momentum goes to zero) [11].
In the case of the conserved energy and momentum den-
sities, the response functions in Eq. (2.22) can be shown
to have a pole at z = —iDk when the disturbed charge
is the transverse part of the momentum density vrT, and
poles at z = v k —iI'zk when the disturbed charge

D. Cutting rules

In Ref. [5], diagrammatic cutting rules for the pertur-
bative calculation of the spectral density of an arbitrary
two-point correlation function were derived starting &om
imaginary-time Gnite temperature perturbation theory.
These rules are a generalization of the standard zero tem-
perature Cutkosky rules, to which they reduce as temper-
ature goes to zero.

To calculate the perturbative expansion of a finite tem-
perature spectral density, one should draw all cut Feyn-
man diagrams for the two-point correlation function of
interest. All cuts that separate the two external op-
erators are allowed at nonzero temperature. Each line

Only half the cut diagrams, those in which the external mo-
mentum Hows into the shaded region, need to be considered if

Opone includes an additional overall factor of (1—e ~ S), where

q is the external frequency. Omitting this factor, the same
rules generate the Wightman function instead of the spectral
density.
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G(~) —= f I'+"(~)I P(~ I&l) I

(2.28)

where p(u, ~k~) is the single particle spectral density. The
cut propagator is proportional to the single particle spec-
tral density

S(k) = [1+n(k )] p(k), (2.29)

where n(ko) is the Bose statistical factor 1/(e" ~—1). In
more physical terms,

4 4

dV(k) = 0(k') S(k), = 8(k') [1+n(k')] p(k)

(2.30)

corresponds to either a cut or uncut thermal propagator,
as described below.

A typical example of a finite temperature cut diagram
is shown in Fig. 1. Note that a cut at finite temperature
can separate a diagram into multiple connected pieces,
some of which are disconnected &om the external oper-
ators. A disconnected piece, such as the portion labeled
A in Fig. 1, cannot contribute in a zero temperature cut
diagram because of energy-momentum conservation. For
example, at zero temperature the piece labeled A would
represent an impossible event of four incoming on-shell
physical particles scattering and disappearing altogether.
However, at Gnite temperature there exist physical ther-
mal excitations in the medium. Thus, the above discon-
nected piece also represents the elastic scattering of a
particle ofF of a thermal excitation already present in the
medium. This scattering process is clearly possible; the
amplitude is proportional to the density of the thermal
particles (as the form of the cut propagator shown below
clearly indicates).

An uncut line in the unshaded region corresponds to a
real-time tiine-ordered propagator (7 [P(x)P(0)]), an un-
cut propagator in the shaded region is (7 [P(x)P(0)])*,
and a cut line corresponds to the Wightman function
(P(z)P(0)). In momeiitum space, the uncut propagator
has the spectral representation

a4I
dN(k) —= 0(—k ) S(k)

= —0(—k ) n( —k ) p(k)
d4k

(2vr) 4 (2.31)

P~„,(k) = sgn(ko) 2vrb(k' + mo2), (2.32)

then self-energy insertions on any line generate ill-defined
products of on-shell b functions. Although these on-
shell singularities disappear when all cut diagrams are
summed, it is far more convenient to 6rst resume sin-
gle particle self-energy insertions. The resummed sin-
gle particle spectral density p(k) will then include the
thermal lifetime of single particle excitations, which will
smear the b-function peaks and produce a smooth spec-
tral density. Henceforth, all single particle propagators
will include the thermal self-energy and no self-energy
insertions will appear explicitly in any cut diagram.

E. Propagators and self-energies at high
temperature

To analyze near-in&ared singularities, the explicit
forms of single particle propagators will be needed. The
resummed single particle spectral density can be cal-
culated as the discontinuity of the analytically contin-
ued imaginary-time propagator across the real-&equency
axis ~

p(k) = i [G@(k +i s—, k) —G~(k —ie, k)]

+k'+ m' + Z(k) k'+ m' + Z(k)'

2Z, (k)
~k2 + m2 + Z(k) ~2

'

is the number of thermal excitations within the four-
momentum range (k„,k„+dk„)

If the single particle spectral density is approximated
by a 8 function (to which it reduces at zero temperature),
i.e.,

is the thermal phase space volume available to a 6nal
state particle in a scattering process, and

where the subscript B indicates the retarded propaga-
tor given by the analytic continuation of the Euclidean
propagator,

G~(k) = G~(k +is, k), (2.34)

and the subscript A indicates the advanced propagator
defined similarly, but with ko —ie instead of k +is [12,13].
Here, the thermal mass mth includes the O(AT ) one-
loop corrections shown in Fig. 2, and Z(k) is the analyt-
ically continued single particle self-energy:

777/7F/7 Z(k) = ZE(k +is, k) = Z~(k) —iZI(k) . (2.35)

FIG. 1. A typical cut diagram in a scalar AP theory.
The thermal mass squared m~h may be de6ned by the
(off-shell) condition Z~(0)—:0. Also, note that since
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(~) (b) (c)

FIG. 2. One-loop self-energy diagrams in a scalar gP +A/
theory At high temperatures, diagrams (a) and (b) produce
a thermal mass squared of order AT . The contribution of
diagram (c) to the thermal mass is O(g T/m ih) = O(A T ).

Ef, = ~'+ mtb+ Za(Ea, ~k~) (2.36)

As will be reviewed below, the imaginary part of the
self-energy is O(A2), and so is small for weak coupling.
Hence, the definition (2.33) shows that the spectral den-
sity in the weak coupling limit has sharp peaks near
k = SEA, , where the efFective single particle energy EA,
satisfies the dispersion relation

p(k) is the spectral density of a correlation function of
the CPT even H-ermitian operators P, p(k) must be an
odd function of the frequency k [5,8]. This implies that
ZI(k) is also an odd function of k .

Near the peaks, the spectral density may be approxi-
mated by a combination of two Lorentzians,

1 ( 21'k
p( ) =

2E IE(k' —E,)2 ~ r' (2.37)

where I'p is the momentum-dependent thermal width given by

I'g =—Zl(Ei„~k~)/2Ei, . (2.38)

The thermal width I'i, is always positive since ZI(k), or equivalently the single particle spectral density, must be
positive for positive &equencies. This can be easily seen &om the relation between the spectral density and the
Wightman function and the positivity of the (Fourier transformed) Wightman function (P(z)P(0)) [12]. Note that
altogether p(k) has four poles at k = Ei, kiI'g and ko = —Eykil'g. In terms of the single particle spectral density,
the cut propagator is

~(k) = [+-(")].(k) = ',[""',"']"'"',
~k'+ mt2„~ Z(k)

~

(2.39)

For the uncut propagator given by Eq. (2.28), the frequency integral can be exactly carried out to yield (see
Appendix A for details)

k2 + m2 + Z(k) k2 + m2„+ Z(k)*

. k + m, b+ ZR(k) coth(koP/2)
~ + pk]k'+ m + Z(k)~

(2.40a}

In the weak coupling limit, this becomes

G(k) =
~

i .— +i . , ~
[1+0(I'g/Eg)] .1+n(E ) . n(E ) (2.40b)

The first term in Eq. (2.40b) has poles at k
+(Ei,—il'i, ), and the second term has poles at ko

+(Ei,+il'i, ), coinciding with the pole positions of the
spectral density p(k).

An important point to notice is that even though the
statistical factor n(k ) has a pole at k = 0, both the cut
propagator S(k) and the uncut propagator G(k) are finite
at zero frequency since the self-energy ZI(k), which is an
odd function of ko, vanishes at k = 0. Hence, although
numerous factors of the statistical factors may appear in

an expression for a diagram, one can be sure that there
is no pole when loop &equencies approach zero.

To determine the size of the thermal mass mth and the
thermal width I'I, at high temperatures, the size of the
one-loop (Fig. 2) and the two-loop (Fig. 3) self-energies
at on-shell momenta must be known. At relativistic tem-
peratures T & mo, the first one-loop diagram, Fig. 2(a),
generates an O(AT2) contribution to the real part of
the self-energy. Diagram 2(b), with two cubic interac-
tion vertices, is O(g T /mtb) which is at most O(AT2)
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(a) (b)

FIG. 3. Cut two-loop self-energy diagrams in a scalar

gP +A/ theory which produce a thermal width of order A T.

since by assumption g = O(~Arne), and mti, ) mo. At
high temperature, the real part of diagram Fig. 2(c) is
O(g in(T/mti, )) which is at most O(A2T2 ln A). Hence,
diagram 2(c) does not contribute to the leading weak cou-
pling behavior of the thermal mass correction. Hence,
the thermal mass is of order

r&

r,

r'

FIG. 4. A typical one-loop cut diagram for the calculation
of a Wightman function. The black dot at each end represents
the external bilinear operator.

tices each of which connect to at least two propagators.
For example, the shear viscosity requires evaluating the
correlation function

2 + O(AT2) - v AT (2.41) lm,
~Lan~ ) (3 I)

when T & mo/~A.
The imaginary part of the self-energy receives an

O(g2T ) contribution from the one-loop diagram 2c, but
this contribution vanishes for on-shell external rnomenta
since an on-shell excitation of mass mth cannot decay into
two on-shell excitations with the same mass. (Nor can
an on-shell excitation absorb the momentum of a ther-
mal excitation and remain on shell. ) Hence, the doxni-
nant contribution to the on-shell imaginary part of the
self'-energy comes &om the two-loop diagrams shown in
Fig. 3. At high temperature, these two-loop diagrams
produce a O(A T ) imaginary part of the self-energy.
Consequently, at high temperature, the thermal width
I'I„as defined in Eq. (2.38), is O(A2T) for hard (com-
pared to mti, ) external on-shell momenta, and O(A /2T)
for soft on-shell momenta.

III. CLASSIFICATION OF DIAGRAMS

A. Near on-shell singularities of cut diagrams

Diagrams contributing to the spectral density of the
stress tensor correlations function have two external ver-

This estimate is for the external momentum of O(T). For
a soft external momentum, diagram 2(c) is O(A T ). How-
ever, this is still O(~A) smaller than diagrams 2(a), 2(b).

Diagrams 3(b) and 3(c) for soft external on-shell mo-
menta are O(g T /m, h), which is smaller than O(A T ) by
a factor of Q(mo/m, i,). Diagram 3(d) in the same limit
is Q(Ag T /m, „), which is smaller than O(A T ) by a fac-
tor of O(mo/m~z). For hard external on-shell momenta of
O(T), diagrain 3(a) is strictly O(A T ), while diagram 3(b)
is O(g T/m )t[h( O(A T )] due to near-collinear divergences
cut off by the mass, and diagrams 3(c) and 3(d) are O(g /T )
and O(Ag ), respectively. The explicit evaluation of dia-
gram 3(a), at zero external momentum, can be found in Ap-
pendix G.

where the traceless stress tensor

7rr = clif& 4 —,'~i ~~4cl"4 (3.2)

is quadratic in the scalar field. Naively, one would expect
the dominant contribution to come from the one-loop di-
agram shown in Fig. 4. However, in the zero momentum,
small &equency limit, a finite temperature cut diagram
such as this one contains pairs of lines sharing the same
loop momenta. As explained below, a near on-shell singu-
larity appears wherever there is a product of two equal-
momentum propagators. Since the thermal width that
regulates these on.-shell singularities is O(A2), the size of
a diagram is no longer given simply by the number of
explicit interaction vertices.

The in&ared behavior of a cut diagram at nonzero tem-
perature is more singular than at zero temperature. At
zero temperature, lines in a diagram sharing the same
loop momentum do not cause on-shell singularities be-
cause the poles in the &equency plane all reside on one
side of the contour. However, at nonzero temperature,
a propagator has poles on both sides of the contour, as
can be seen in Eq. (2.40a). Hence, products of free prop-
agators sharing the same loop momentum contain poles
pinching the contour, and thus produce an on-shell sin-
gularity.

Inclusion of the finite thermal width, as in Eq. (2.33)
and Eq. (2.40a), regulates these on-shell singularities.
The effect of these cutoff singularities may be illustrated
by analyzing the would-be divergent part of the product
of two propagators, G(k) G(k+b). This product repre-

In addition to the near on-shell singularities regulated by
the thermal width, the soft and collinear singularities regu-
lated by the thermal mass must be also considered at high
temperatures. Fortunately, these soft and collinear singulari-
ties turn out not to affect the power counting in A presented in
this section. Consequently, discussion of this point is deferred
until Appendix: E.
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sents, for example, the two lines connected to the exter-
nal vertex on the right side in Fig. 1 if the small external
momentum leaving the vertex is b.

As explained earlier, the propagator G(k) has poles at
ko = +(Eg —il'I, ) and ko = +(Eg+iI'i, ). Hence, when
b ~ 0, the product G(k) G(k+6') contains poles sepa-
rated by +iI'A, on opposite sides of the &equency con-
tour, as illustrated in Fig. 5. When the &equency inte-
gration is carried out, the contribution &om these nearly
pinching poles is O(1/I'g) = O(l/A2). Exactly the same
argument applies to the case of two cut propagators, or
the product of cut and uncut propagators. Hence, the
product of any two equal-momentum propagators will
contain nearly pinching poles. Consequently, a diagram
with m explicit interaction vertices and n pairs of equal-
momentum lines is potentially O(A /I'") = O(A 2 ).
The naive expectation of one-loop dominance is not jus-
tified when (2n —m) ) 2.

The physical origin of the near-in&ared divergences
caused by nearly pinching poles at nonzero temperature
can be traced to the existence of on-shell thermal ex-
citations. When a small momentum is introduced by
an external operator, an on-shell thermal excitation can
absorb the external momentum and become slightly ofF
shell. The slightly ofI'-shell particle may propagate a long
time before it discharges the excess momentum and re-
turns to the thermal distribution. Inde6nite propagation

( E»+—i r») (E»+&r»)

(-E„-r, ) (E» —&r»)

FIG. 5. Nearly pinching poles in the product G(k) . The
heavy line along the real axis represents the integration con-
tour.

of a stable on-shell excitation causes a divergence, since
the amplitude is proportional to the in6nite propagation
time [14]. But at finite teinperature, excitations cannot
propagate indef]Lnitely through the thermal medium with-
out sufFering collisions with other excitations. Hence,
there are no stable excitations at nonzero temperature.
If an excitation with momentum k undergoes collisions
at an average rate 1/7g, the contribution of that mode
will be proportional to vA, or the inverse of the width I'I, .

This may easily be seen explicitly in the product
G(k) G(k+8) which contains the (nearly) singular piece

[G(k) G(k+~)]pe = ~. . ., "+.' (Ei, )p(~k'~, k)+(k ++ k+8)
~

[1+O(r„/E„)] .
(Ei,+~ k+—8 —2iE~+gF~+~

(3.3)

Here the subscript "PP" indicates the pinching pole con-
tribution. The spectral density with a Bose factor n(EA,.)
in Eq. (3.3) may be interpreted as available phase space
of the initial thermal particle. The rest may be inter-
preted as the Bose-enhanced amplitude for propagation
of a particle after it has absorbed the soft momentum.
When the thermal width is small compared to the aver-
age thermal energy, the single particle spectral density
[cf. Eq. (2.37)] becomes sharply peaked near ko = +Eg.
Near these peaks, the denominator in Eq. (3.3) becomes
O(EA,,I'g). Hence, the contribution of [G(k) G(k+b)] con-
tains an O(1/I'A, , ) factor.

B. Classi6cation

To simplify the presentation, the classification of AP4

diagrams will be examined first. The e8'ect of adding an
additional ggP interaction will be discussed afterwards.

The classification of the diagrams is fairly straightfor-
ward. One only has to count the number of explicit inter-
action vertices in the diagram plus the number of equal-
momentum pairs of lines as the external four-momentum
goes to zero. Since the thermal lifetime in A/4 theory
is O(1/A2), a finite temperature cut diagram with m in-
teraction vertices and n two-particle intermediate states
contributes at O(A 2 ). For exainple, the one-loop di-

agram in Fig. 4 has a single pair of lines with coinci-
dent momenta in zero external momentum and &equency
limit. When cut, one line electively forces the other line
on shell, and the contribution of the one-loop diagram in
the zero momentum limit is O(l/A ).

To determine what diagrams dominate in the calcu-
lation of a bilinear operator spectral density, one must
examine which processes can scatter two-particle inter-
mediate states into two-particle intermediate states. The
minimal way of producing a two-particle state &om an-
other two-particle state is via a single elementary scat-
tering. Diagrams in A/4 theory that consist of only these
processes will be called "chain" diagrams. As illustrated
in Fig. 6, a chain diagram consists of a series of one-loop

FIG. 6. The first few chain diagrams in AP theory. Again,
the black circles at each end represent bilinear external oper-
ators.
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bubbles.
Adding each bubble to the chain introduces one ad-

ditional factor of A &om the interaction vertex and two
inverse powers of A from the (nearly) pinching poles of the
new bubble. Since the lowest-order (one-loop) diagram
is O(l/A2), a chain diagram with n bubbles is poten-
tially O(1/Ai+ ). This suggests that the most significant
contribution with a given number of interaction vertices
would come &om such chain diagrams. However, the con-
tribution of each added bubble actually lacks a pinching
pole contribution. Consequently, as will be shown shortly
in Sec. IlID, the net contribution of chain diagrams is to
modify the contribution of the external vertex by a term
of O(AT2). For the bulk viscosity, this correction is not
negligible since an insertion of 7 = 'P —v2s (where v2 is
the speed of sound) produces an O(AT ) factor for typ-
ical loop momenta of O(T), as shown in Sec. IVE. For
the shear viscosity, chain diagrams do not contribute at
all since the angular integration over a single insertion of

, (kxk —sbx k ), vanishes due to rotational invari-
ance.

The next most eKcient way of causing a transition be-
tween different two-particle states in A/4 theory is via
a second order elastic scattering involving a spectator
particle in the thermal medium, as illustrated in Fig. 7.
In this case, momentum is exchanged between two lines
via a one-loop process as shown in the 6rst diagram in
Fig. 7. When all momenta are on shell, this process may
be interpreted as a second order scattering involving a
physical thermal particle with momentum / that causes
a transition between a two-particle state with a common
momentum k and a two-particle state with a common
momentum p. A diagrammatic representation of this
process is shown in the second diagram in Fig. 7.

Diagrams in AP theory consisting entirely of two par-
allel lines exchanging momenta via such one-loop dia-
grams will be called "ladder" diagrams, and are illus-
trated in Fig. 8. The one-loop subdiagrams connecting
the other two lines are the "rungs" of the ladder. All
ladder diagrams contribute at the same order as the one-
loop diagraxn [i.e. , O(1/A2)] since each rung adds two
more factors of A and one more O(l/A ) lifetime. There-
fore, all ladder diagrams must be summed to evaluate
the transport coeKcients correctly. The explicit forms
of these ladder diagrams will be examined more closely

FIG. 8. The planar ladder diagram with N rungs in AP
theory. The black dot at each end represents an insertion of
an external operator.

when the summation of all ladder diagrams is discussed
in Sec. IV.

The presence of an additional cubic interaction gener-
ates one additional "chain" diagram and a set of simple
"ladder" diagrams whose contribution potentially grows
as more loops are added. The only "chain" diagram
with only cubic interactions is the two-loop diagram il-
lustrated in Fig 9. Other possible "chain" diagrams with
more than two bubbles connected by single lines do not
appear because they are a part of the resummed propa-
gator. Again, for the shear viscosity, the two-loop di-
agram vanishes due to rotational invariance. For the
bulk viscosity, as shown in Sec. IIID, the contribution
of this two-loop diagram is also to modify contribution
of the P vertex by a term of O(AT ) in addition to the
modification &om suxnming up AP chain diagrams. The
set of diagrams that may potentially grow with the in-
creasing number of loops is the set of gPs "ladder" dia-
grams with straight rungs, shown in Fig. 10. Recall that
g = O(~Amex, „,). Hence, superficially a ladder diagram
with n straight rungs could be O(1/A"+2) since there are
n+I factors of 1/A coming from the n+I pairs of equal
xnomentum lines and 2n factors of g (or, equivalently, n
factors of A) &om the explicit interaction vertices. How-
ever, each straight rung actually contributes an O(g4)
suppression rather than O(g2) suppression, and hence all
ladder diagrams with straight rungs can contribute at
O(1/A2), the same as the one-loop diagram.

To understand this suppression, erst consider a ladder
diagram with the cut running through all the straight
rungs. When all loop momenta Howing through the side
rails are forced on shell by the pinching poles, the mo-
menta Howing through the straight rungs are necessarily
highly off shell. Each cut rung contributes a factor of the
spectral density

2~1 (t x+&2) (3.4)

where l» l2 are the on-shell four-momenta Bowing
through the side rails sandwiching the rung. Recall that

FIG. 7. A diagrammatic representation of momentum ex-
change between two lines via a one-loop process in the AP
theory. When all momenta are on shell, this process can be
interpreted as a second order scattering that causes a transi-
tion between different two-particle states. FIG. 9. The two-loop chain diagraxn in a scalar ggP theory.
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77&77F/777 ~l + 7P ~777/772 ~l

FIG. 10. A ladder diagram with N straight rungs in a
scalar gP theory.

the imaginary part of the self-energy at an off-shell mo-
mentum is O(g ) = O(Am &„,). Hence, when the de-
nominator is O(m4h„, ), a cut rung is O(g4/m4&„, ) or
O(A ). At temperatures comparable or smaller than the
physical mass (T & m~~„,), the denominator in Eq. (3.4)
is O(m h, ) since the typical size of loop momenta is

O(T). Consequently, all ladder diagrams with straight
cut rungs can contribute at O(1/A ) when T & m~h„, .
At T = O(m~h„, /~A), the denominator in Eq. (3.4) can
be O(m &„,) = O(mth) when the small loop momentum
contribution cannot be ignored, which is the case when
calculating the bulk viscosity. At much higher temper-
atures (T & m~g„, /A), the contribution of a cut rung is
at most O(g4/mt4&) = O(A4). Hence, the contribution of
a ladder diagram containing such rungs may be ignored
compared to the contribution of the one-loop diagram.

This additional suppression would appear to be absent
when there are uncut rungs. This is correct for indi-
vidual diagrams with uncut rungs. However, as shown
in the next section, the real part of a rung cancels in
the pinching pole approximation when all the cut dia-
grams associated with one original Feynman diagram are
summed. Hence, after summation over all possible cuts,
any straight rung may be regarded as O(A2).

The key result for the above estimate is that when the
loop &equency integrations are carried out, the contribu-
tion of the subdiagram sandwiched between pinching pole
side rails (in this case, the straight rung) can be O(A2) for
T & m~h„, /~A. Note that the sandwiched subdiagram
need not be restricted to the straight rung for the above
estimate to hold. Substituting a straight rung with any
of the other "rungs" shown in Fig. 11 would work just
as well, since they all can be O(A ) when T & m~g„, /~A
without further suppression.

FIG. 11. One-, two-, and three-loop diagrams contribut-
ing at O(1/g ). The thick lined subdiagrarns are all O(g )
"rungs. " Cut lines are not explicitly drawn.

FIG. 12. A box diagram which is a part of a ladder dia-
gram with straight rungs. The heavy lines imply that the
corresponding momenta are put on shell.

One important complication is that, for straight
gPs ladders, it is not sufficient to replace the prod-
uct of propagators representing the side rails by
their pinching pole part. The nonpinching pole part
G(k) G(k+6) —[G(k)G(k+6')]pp can also generate leading
order contributions. Specifically, consider the box dia-
gram shown in Fig. 12. When the &equency integration
is carried out, the residue of the pinching poles contained
in the side rail propagators is O(A ) due to four explicit
factors of g from the interaction vertices and one O(1/A )
thermal lifetime compensated by two O(A) cut propaga-
tors at oK-shell momenta. This is not the only O(A ) con-
tribution contained in the box diagram. Putting the two
cut rungs on shell also produces an O(g4) = O(A2) con-
tribution since no near-divergence cut propagator mod-
i6es the explicit factor of g . It will be convenient to
regard the O(A2) nonpinching pole contribution of the
box diagram as another elementary "rung" which may
be sandwiched between two pinching pole side rails. A
more detailed examination of the nonpinching pole con-
tribution &om the box diagram is contained in Sec. IV
where the summation of all ladder diagrams is discussed.

C. Higher-order rungs in the calculation of the
bulk viscosity

There are other higher-order "rungs" corresponding
to processes more complicated than those shown in
Fig. 11. The processes corresponding to these "rungs"
contain more elementary scatterings than the rungs in
Fig. 11 without the compensating pinching poles, and
are subdominant as long as individual diagrams are com-
pared. However, when an infinite number of diagrams are
summed, the next order diagrams cannot be simply dis-
carded without further analysis of the convergence of the
sum of the leading order diagrams.

For the shear viscosity calculation, no convergence
problem arises. However, for the bulk viscosity calcula-
tion, the sum of the leading order part of the ladder dia-
grams diverges as shortly shown in Sec. IU. However, this
is not a failure of the theory. As explained in Sec. II B, the
bulk viscosity calculation must involve number-changing
inelastic scattering processes. The leading order part of
the simple ladder diagrams contains only the elastic scat-
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l2

q —/1 q —12 q —II q —12

FIG. 14. Cut two-loop chain diagrams in the AP theory
contributing to the Wightman function o~~.

FIG. 13. Typical gP +A/ theory O(A g ) ruugs contain-
ing 2—3 scattering processes.

tering processes. Hence, it is no surprise that they cannot
produce the correct leading order bulk viscosity.

To calculate the leading order bulk viscosity, the next-
to-leading order diagrams containing number-changing
scattering processes must be included. The lowest-order
number-changing process (hence the shortest relaxation
time) in the gPs+AP4 theory is O(Ag) 2—3 scatterings. A
few of such "rungs" containing these processes are illus-
trated in Fig. 13. Other O(A g ) rungs can be obtained
by attaching one more line to the rungs in Fig. 11 in all
possible ways consistent with the theory. Diagrams con-
taining these rungs must be included in the bulk viscosity
calculation in the gqP+AP4 theory.

For the pure A/4 theory, the lowest-order number-
changing process is O(A2). The O(A4) rungs correspond-
ing to these processes can be obtained by attaching two
more lines to the rungs in Fig. 11 in all possible ways
consistent with the AP theory.

The rest of this section completes the classification of
diagrams by showing how the chain diagrams modify the
external vertex contribution.

D. Chain diagrams

Once again, for the sake of simplicity, A/4 diagrams
are examined first. The analysis of the two-loop ggP
chain diagram, diagrams with mixed AP and gP bub-
bles, and the examination of chain diagrams with more
complicated bubbles will follow. For a given number of
interaction vertices, chain diagrams in AP theory, such
as those in Fig. 6, contain the greatest number of pairs of
the lines sharing the same loop momentum. A chain di-
agram with n bubbles is potentially O(1/A + ) because

there are n O(1/A ) thermal lifetimes and (n —1) explicit
factors of A &om the interaction vertices. However, this
is a severe overestimate since the actual contribution of
an added bubble lacks a pinching pole contribution. This
is because (a) the discontinuity of a bubble vanishes in
the zero external four-momentum limit, and (b) the real
part of a bubble does not contain pinching poles. For
example, consid. er the two-loop chain diagrams, depicted
in Fig. 14, contributing to the calculation of the Wight-
man function rr&&(q). Here, the external operator A may
be any component of the stress-energy tensor, and is as-
sumed to be even under a CPT transformation.

The cut bubble is given by

a4&
L~(q)—:—

2 (277.)4
I~(l, q —l) S(l) S(q—l), (3.5)

and the uncut bubble in the unshaded region is

a4r
C~(q)—: I~(l, q l) G(—l) G(q —l),

2 (27r)4
(3.6)

lim lim Lzz (q) = 4AL~(0) [C~(0) + C~(0)']

= 8AL~ (0) Re C~ (0) . (3.7)

In the same limit, the cut one-loop bubble L~(0) is
O(1/A ) as before. To see that ARe C~(0) does not ex-
ceed order 1, consider the following explicit form of the
real part of an uncut bubble at zero momentum:

where q is the external four-momentum, and I~(l, q —l)
denotes the (polynomial) contribution from the external
operator in such a manner that the contribution of P2

Ipm(l, q —l) = 1.
Since the operator A is even under a CPT transfor-

mation, at zero external momentum I~(l, —l) is a real,
even function of the loop momentum l. Hence, the sum
of the two-loop chain diagrams in the zero external four-
momentum limit is

d4&
ReC~(0) = — I~(l, —l) Re [

—iG (l)]2 (277)4

i d4l o f 1
I~ l, —l)coth l P 2

4 (27r)
' ' ( [l +mt2h+Z(l)] [l +mt2h+Z(l)']2 )

(3.8)

Here, I~(l, —l) l2 if A is a stress-energy tensor. Since
the integrand does not contain pinching poles [(i.e., there
is no I/]l +m&h+K(l)~ term], no large lifetime factor
appears when the &equency integration is performed. In ReC~(0) = O(T ), (3.9)

Appendix F, the real part of the uncut one-loop diagram
is shown to be
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using the fact that the integrand is appreciable only when
l is nearly on shell.

Individual higher-order chain diagrams with more one-
loop bubbles strung together may be analyzed in a similar
manner. However, since chain diagrams form a geomet-
ric series, it is also straightforward to sum all cut chain
diagrams with one-loop bubbles and examine the result
of the summation. Of course, one can also perform the
geometric sum 6rst in imaginary time, and then take the
discontinuity of the result of the summation.

The summation of cut chain diagrams with one-loop
bubbles is fairly simple. The only subtleties come from

the cuts involved and the fact that there is an external
operator at each end of a cut diagram. Because of the
cuts, the equation for the resummed chain is a matrix
equation instead of a single component linear equation.
The presence of external operators implies that the bub-
bles at each end are not equivalent to the other bubbles.

Since no additional difBculties than those already
present in the two-loop calculation appear, performing
the actual summation of the cut chain diagram is de-
ferred to Appendix F. The result of the summation of
all chain diagrams with one-loop bubbles is shown in Ap-
pendix F to be

8A Re C~(0) 4 [A Re C~ (0)]

= 4L„-„-(o), (3.1o)

where the 6nite temperature optical theorem

1
Im Cp(q) = ——[L,(q) + I.,(—q)12

(3.11)

I~ (l, —l) = I~ (l, —l) + ARe C~(0)

= I~ (l, —l) + ARe C~ (0) [1 + O(V A)], (3.12)

is used to simplify the result. [The optical theorem (3.11)
can be easily proven from Eq. (3.5) and Eq. (3.6).] Here,
0&g'"(q) denotes the contribution of these chain dia-
grams to the correlation function o'~~(q), L~~(q) corre-
sponds to the contribution of the one-loop diagram with
the external operator 4 at both ends, and L ~(q) denotes
the contribution of the one-loop diagram with A at one
end. Lp(q) and Cp(q) are the cut and the uncut bubbles
with I~ ——1. The modi6ed one-loop contribution L&A
contains the (modified) vertex contribution

where the estimate ARe C(0) = O(~A) is used. This
estimate of AReC(0) is justified in Appendix F. For
the operator 7 = 7 —v, e required for the bulk viscos-
ity, I~ = O(AT ) for a typical O(T) loop momentum, as
shown in Sec. IVE. In the same section, the additional
term ARe Cp(0) is also shown to be O(AT2). Hence, the
correction term ARe C~(0) in Eq. (3.12) cannot be sixn-

ply ignored. For the shear viscosity, Re C (0) vanishes
due to rotational invariance. Hence, no modi6cation is
needed in that case.

When cubic interactions are added, the "chain" dia-
grams also include the two-loop diagram shown in Fig. 9
where each bubble in the diagram now may be regarded
as the sum of all AP chain diagrams. The sum of all
chain diagrams in the gPs+AP4 theory is given by the
suxn of the P4 chain result L&& [Eq. (3.10)] and this
two-loop diagram. As shown in Appendix F, a straight-
forward application of the cutting rules yields the sum of
all chain diagrams as

2 4
lim 0&&

'" '"(q) = 4L&&(0) —8 2 Re C&(0)L&(0) + 4 4 [Re C&(0)] Lp(0)
q-+0 mth mth

—= 4L»(o), (3.13)

where LAA(0) contains the modified vertex contribution I~ given by

q2
~

Re C~ (0) [1 + O(v A)] .
m~b)

Ig(l, l) =—I~(l, —l) ——
2 ReC~(0)g

t}1

= I~(l, l)+
~

A—— (3.14)

More complicated chain diagrams can be produced by
including more complicated bubbles such as ladder dia-
grams. For these more complicated "bubbles, " exactly
the same argument given above will also apply provided

that the generalized 6nite temperature optical theorem
[(cf. Eq. (3.11)]

1
lm Cb bbl (q) = ——[Lb bbx (q) + Lb bbl ( q)) (3 15)

2
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holds for each bubble. However, unlike the imaginary
part, the real part of higher-order contributions, includ-
ing ladder diagrams, to the bubble C~ are suppressed
compared to the real part of the one-loop contribution.
Hence they can be safely ignored. The generalized optical
theorem (3.15) can be inferred from the works of Kobes
and Semenoff [15] and will not be further discussed in
this paper.

IV. SUMMATION OF LADDER DIAGRAMS

As explained in Sec. II8, calculations of the shear and
the bulk viscosities require diferent sets of diagrams.
More specifically, to evaluate the leading order shear vis-
cosity, summation of only the leading order ladder dia-
grams is needed, whereas to evaluate the bulk viscosity,
as shown in this section, O(A ) rungs must also be in-
cluded. In this section, the leading order ladder sum-
mation for the shear viscosity is examined first. A more
complicated analysis of summing the higher-order con-
tributions for the bulk viscosity follows. The results pre-
sented in this section are valid for all temperatures.

iT.) = (1 —K)i17.), (4.2)

with the identification of the "ladder kernel"

(4.3)

geneous term representing the action of the bilinear op-
erator k including the contribution of chain diagrams,
M(k —p) is a 4x4 matrix representing the rungs of the
ladder which consist of cut and uncut one-loop diagrams,
and X(p, q —p) is a matrix representing the side rails of
the ladder and consists of products of propagators. As
shown in Fig. 15, the first component of D (k, q —k) cor-
responds to the efFective vertex where momenta A: and
q —A: enter vertices in the unshaded region. For the second
component, k and q —k enters vertices in the shaded re-
gion. In the third component, the momentum A: enters a
vertex in the unshaded region while the momentum q —k
enters a vertex in the shaded region. The last component
of B difFers from the third component by changing A; to
q —A: and vice versa.

In a more symbolic form, the above equation can be
compactly rewritten as

A. Ladder summation for the shear viscosity
calculation in AP theory As is evident in Fig. 15, only the first component of

the inhomogeneous term X is nonzero and given by
(krak —h~ k /3). Explicit expressions for M and W are
given in Appendix B. Note that all quantities depend on
the external four-momentum q = (~, g).

The integral equation iX ) = (1—K)i'D ) will be solv-
able only if any (left) zero modes of the kernel (1—K) are
orthogonal to the inhomogeneous term iX ). The opera-
tor (1—K) does have four zero modes in the zero momen-
tum, zero frequency limit. These four zero modes, de-
noted (V"i, are related to insertions of energy-momentum
density T",and the existence of these zero modes is a di-
rect consequence of energy-momentum conservation. Ex-
plicit forms of these zero modes are shown in Appendix C.
Reassuringly, iX ) is orthogonal to the zero modes; this
is also verified in Appendix C.

In terms of the resummed vertex i'D ), the Wightman
function of a pair of sr~~ is simply

Cut ladder diagrams form a geometric series, and can
be resummed by introducing a suitable efFective vertex.
Because of the various possible routings of the cut, the
integral equation will involve a 4 x 4-matrix-valued kernel.
Hence, it is convenient to introduce an effective vertex
D (k, q —k) which is a 4-component column vector. The
subscript m is a label for a component of the traceless
part of the stress tensor. The resummed efFective vertex
satisfies the linear integral equation

(4 1)

illustrated in Fig. 15. Here, 2' (k, q —k) is an inhomo-

D (k, q —k) = Z (k, q —k)
d4

+ M (k—p) X(p, q p) D (p, q p)— —
(2') 4

~-(q) = 2 (z-I&I'D-) [1+O(~)l (4.4)

777 z77

k

q —k

/ I'Fl.:;:

q —k--~

+ 0,,)
77

+ 0
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,) +

jt'll/' 777

+ 0...)+

+ ~~:.::::::.::)+

+:::,:::,:::::::::.p +

7II7::::::-t + 7'P7:::'

777 iiiii 777
XA'8l

+

+ Q)
7V.:.:.::: +

g = —lim lim (z iXiD )[1+0(A)] .
10 ~—+o [g]—+0

(4 5)

where z represents the action of the operator m~ in
the same way X represents the action of the operator
sr~ . The only difFerence between z and Z is that z
has its only nonzero component in the second slot while
2 is nonzero in the first slot. The overall normalization
constant 2 is chosen for convenience.

In this notation, the shear viscosity q is given by

177

FIG. 15. The diagrammatic representation of the integral
equation for the efFective vertex function 17 (k, q —k). This
corresponds to Eq. (4.1).

The appropriate inner product is defined by

g4
(flu) =

2
", f(p)'~(p)-
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From now on, the external four-momentum may simply
be set to zero.

In the limit of vanishing external momentum, the lead-
ing weak coupling behavior is generated by the (nearly)
pinching pole contribution to the p &equency integral.

Hence, portions of the side rail matrix T which do not
contain pinching poles may be neglected. Examination of
Appendix 8 together with the explicit form of the cut and
uncut single particle propagators shows that the leading
order part of the remaining pinching pole part is

&pp(p, —p) —= ~(p)~ (p) [1+~(&p)]~(&p) sgn(p') 2~b(p'-&,')/~1(p) (4.6)

where

tU (p) = (1, 1, (1+e " ~)/2, (1+e" ~)/2),
u (p)—:(1, 1, (1+e"~)/2, (1+e "~)/2)

(4.7)

(4 8)

The leading order kernel is given by

&pp = ~0&pp, (4 9)

where Mo contains one-loop rungs evaluated with &ee
propagators, and the self-energy Zl in Wpp contains only
the contribution of the two-loop diagram calculated with
the free propagators. Since the factors of coupling con-
stants &om Mo and Zl cancel each other, Kpp is inde-
pendent of A except for those contained in the thermal
mass. Note that dropping nonpinching pole contribu-
tions reduces T to a rank-1 matrix. This allows one to
greatly simplify the equation.

For the change in the solution of the integral equation
(4.2) caused by the replacement of K by Kpp to be sub-
leading in A, the inhomogeneous term X must be orthog-
onal to the (left) zero modes of (1—Kpp) as well as or-
thogonal to the original zero modes of (1—K). Otherwise
the reduced integral equation lX ) = (1—Kpp)l17 ) would
be singular, implying that the neglected part of K could
not be negligible. The issue of zero modes of (1—Kpp)
does not arise when considering the size of an individual
diagram as in Sec. III, but rather reflects the convergence
(or lack thereof) of the infinite series of ladder diagrams.
Suppose the inhomogeneous term X had a nonzero pro-
jection onto a zero mode y. Then (Kpp) y = y, and
all ladder diagrams would contain an identical O(1/A2)
piece, z&Tppy, as a part of their pinching pole contri-
bution. The infinite number of such terms would make
the sum diverge. Hence, to produce a finite result, the
inhomogeneous term must satisfy

I (k) = D (k)

Kpp(k, p)n(p ) St„,(p)
d'p o D (p)
2m 4 El p

(4.13)
where I (k) is the first nonzero entry of (klan ), the re-
duced efFective vertex is

D-(p) =—u (p)(pl&-) (4.14)

and the reduced integral kernel is

Kpp(k, p) = u (k) Mp(k —p) e(p)
= —(1—e " ~) Io(k —p) (e" ~—1) .

2
(4.15)

Here, 6„'s corresponds to the four-momentum conserva-
tion, and the additional b5 corresponds to the particle
number conservation. Of course the theory does not pre-
serve the number of particles. However, the number-
changing scatterings are O(A ), and hence, do not con-
tribute at the leading order.

As a simple consequence of rotational invariance, the
traceless stress operator involved in the calculation of the
shear viscosity does satisfy Eq. (4.10). When b;(k) is ap-
plied to 2' (k), it vanishes since rotational invariance re-
quires that any rank-3 spatial tensor with two symmetric
indices be a combination of k;k~k and k;b~ . Applying
bo(k) or b5(k) again results in zero because the angular
integration over 2' (k) vanishes.

The well-posed integral equation (4.2), lZ' )
(1—Kpp)l17 ), can now be reduced, since the pinching
pole kernel Xpp [Eq. (4.6)] is a rank-1 matrix, by ap-
plying u to both sides of the vector equation. The re-
sulting linear integral equation is [dropping subleading
corrections suppressed by O(A)]

(4,sl2' ) = o (4.10)

where (b~ sl denotes the five zero modes of (1—Kpp)
whose explicit forms are

b (p) —= (b. lp) = p~ [1+~(p')1 ~f-.(-p) u (p) (4»)
and

b (p) = (b lp) = sgn(p') [1+~(p') I ~-.(—p) ~ (p) .

(4.12)

Actually, there is one more part of T that contains pinch-
ing poles in the zero momentum, zero frequency limit. How-
ever, this part, denoted hj in Appendix B, does not con-
tribute to the leading order calculation for the following
reason. First, hj is orthogonal to the vertex parts since
z&h = 0, and j X~ ——0. Second, hj is orthogonal to the
rest of W in the sense that, if 5' = W—hj, then j MT = 0
and TMh = 0. Hence, the hj part does not afFect the con-
tributions of the ladder diagrams in o'~& ——z~ (%At) WXn
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Here, the explicit form of the &ee cut particle propagator, k —1
778778

Sr„,(p) = [1+n(p )] sgn(p ) 27rh(pp E—„'), (4.16)

is used, and Lp(k —p) is the cut rung given (in A/4 theory)
by

A~ d4l
Lp(k —p) —= —

4 SI„,(l+k p) S—I„,(—l) . (4.17)

&/7F/7F/1
I—k+p

l—k
I

777777

Note that Kpp contains no reference to the real part of
the uncut rung. When u JHOW is calculated, the real
part of the uncut rung cancels. Equation (4.15) is ob-
tained by expressing the remaining imaginary part of the
uncut rung in terms of Lp(k —p) with the help of the op-
tical theorein (3.11).

Because of the b function present in the kernel, p is an
on-shell momentum. Also, since the leading weak cou-
pling behavior of Wightman function is given. by

»7PP(o) = 2(z lxppl'D )

= 2 z (k) t()(k)n(kP) SI„,(k)
2vr 4 I

(4.18)

FjG. 16. A cut three-loop ladder diagram in a scalar ggP
theory. The black dot at each end represents an insertion of
a bilinear external operator.

tional powers of A.
For the future use, we de6ne the inner product of two

functions of on-shell momentum as

(fig) =f, "(&') ~~-.(&) f(t)' g(p . (»»)

In terms of this definition, the integral equation (4.13)
can be expressed as

the final integral over II will be also restricted to on-shell
momenta. Hence, the reduced integral equation (4.13)
need be solved for only on-shell momenta.

To summarize, after summing all ladder diagrams in
A/4 theory, the loop frequency integrals may be per-
formed and the leading weak coupling behavior extracted
&om the pinching pole contribution. The resulting lin-
ear integral equation for the effective vertex reduces to a
single component equation given explicitly by

and

(b. lp) -=b.(p) = p„~.(p)

(bs I
p)—:bs (p) = 'gn(p') ~I (p) .

II-) = (1 —~pp)ID-)

whose five zero modes are

(4.23)

(4.24)

(4.25)

I (k) = D (k) — L()(k—p) p sgn(p )
d4p [1+n(po)]
2vr 4 [1+n(k )]

x 27rh(pp E„)— (4.19)

where k is an on-shell momentum.
The cut rung Lp(k —p) is easily shown to satisfy

Lp(k —p) =.i"' ~'l~Lp(p k) . - (4.2O)

Also, ZI(p) is an odd function of pP. Consequently,
D (—p) satisfies the same equation as does D (p), pro-
vided I (k) is an even function of k. Hence, if I (k) is
an even function of k, so is the solution D (k) Since the.
energy-momentum tensor is even under CPT, the inho-
mogeneous terms for both the shear and bulk viscosities
are even functions of the four-momentum.

In terms of the solutions of the reduced integral equa-
tion (4.19), the shear viscosity is

B. Ladder summation for the shear viscosity
calculation with an additional gP interaction

To start, consider "simple" ladder diagrams only con-
taining the straight single line rungs, as illustrated in
Fig. 10. After summing these diagrams, including the
contribution of the other required rungs will be easy. To
sum these simple ladder diagrams, one again introduces
an effective vertex D„(k, q —k). Before performing any
frequency integration, the effective vertex satisfies

„l—k+p

N JPb'lh7Z7) )77

z~(k) u)(k) n(k ) SI„,(k)
2vr 4 I

I (k) n(k') SI...(k), (4 21)
2~ 4 I

neglecting subleading contributions suppressed by addi-
FIG. 17. A box diagram which is a part of a ladder diagram

with straight rungs.
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d4p
17 (k, q —k) = 2 (k, q k—) + M~;„,(k —p) X(p, q p—)D (p, q —p), (4.26)

where the elements of the matrix Mh„, (k —p) are simply cut and uncut single particle propagators. Before proceeding
with the general analysis, it may be helpful to consider a typical example, such as the three-loop diagram in Fig. 16.
Applying the cutting rules, the contribution of this three-loop diagram (with zero external four-momentum) is

4 4
0 i ' ' l(0) = 2 I (k) S(k) G(k)*Lr u h (p, k) S( p) G—(p)I (p), (4.27)

where

d4&
Lf ]] hox(p, k) = g G(k —l) G(l —k)' S(—l) S(l k+p)—

(27r) 4 (4.28)

is the one-loop box subdiagram illustrated in Fig. 17.
The size of the contributions &om the (nearly) pinch-

ing poles in the complex k, p, and l planes can be
estimated as follows. Each pinch generates a thermal
lifetime of O(1/A ). There are four O(~Amphy, ) factors
of g. When all three loop momenta k, p, and l are on
shell, the momenta Howing through the two cut prop-
agators are well off shell. An off-shell cut propagator is
O(g2) since it is proportional to the imaginary part of the
O(g2) = O(Am~h, ) one-loop self-energy [cf. Eq. (2.33)j.
Hence, when T & mphy p

the pinching pole contribution
is g x O(l/A ) x O(g ) = O(1/A ), or the same as the
lowest-order one-loop diagram. Since the leading order
shear viscosity is insensitive to small momentum con-
tributions, at temperatures much greater than mphy„
the cubic interaction becomes irrelevant compared to the
quartic interaction.

Equivalently, when T & mphy the pinching pole con-

tribution of the box subdiagram is O(gs/A2) = O(g4),
not O(g /A ) ~ 1 as one might have expected if the ad-
ditional suppression &om the ofF-shell self-energy were ig-
nored. Consequently, the nonpinching pole contribution
of the box diagram, which is also O(g ) from the four
explicit interaction vertices, is equally important as the
pinching pole contribution. This complicates the treat-
ment of these diagrams.

The key observation of the above argument is that an
off-shell straight cut rung is O(g4/m4h„, ) = Q(A2) when

T & mphy Hence, the leading weak coupling behavior
of the nonpinching pole contribution is produced when
the two cut propagators in the box are both on shell.
Otherwise, there will be additional suppression &om the
cut propagators which will make the contribution smaller
than O(A ). Consequently, the contribution of the three-
loop ladder diagram in Fig. 16 can be rewritten as

&."."' "(o) = 2 2, 2, 2, I-(k) &p'p(k) Lh-(l —k)&pp(l) Lh-(p —l)&p'p(p) I-(p)

+ 2 I (k) &pp Lh „(p,k)&ppI (p),2vr4 2~4 (4.29)

where Wp~p is the (ij) element of the pinching pole side rail matrix Xpp, and the "rungs" between the pinching pole
side rails are

d4l
Lh „(p,k) = g G(k —l) G(l —k)' Sr„,(—l) Sr„,(l k+p)— (4.30)

representing the O(A ) nonpinching pole contribution &om the cut box subdiagram (where the resummed cut propa-
gators may be replaced by &ee cut propagators), and

n contrast, the bull viscosity is sensitive to small momentum contributions, and therefore the cubic interaction becomes

negligible at much higher temperature T )) mphys/WA.
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[1+n(l —k )] 2 Zi(l k—)

~(l —k)'+ m„'„+ Z(l —k)~

= g [1+n(l —k )] 2 Zl(l —k) GR(l k—) G~(l —k)
4

= —L(l—k) G~(l —k) G~(l —k) (4.31)

representing a single cut straight rung as shown in Fig. 18. The subscripts R and A here indicate the retarded and
the advanced propagators [cf. Eq. (2.34)].

Applying the same argument above to other routings of the cut in the three-loop ladder, it is straightforward to
see that the sum of all cut three-loop ladder diagrams has the form

0~ ' pl(0) = 2 z (k) Epp(k) Mi;„,(k —L)Epp(L) &Hi;„,(L—p)&pp(p) X (p)

+ 2 z (k) Ppp(k) Mb „(k,p)Xpp(p) X (p), (4.32)

where a 4x4 matrix Mb „(k,p) contains nonpinching pole contributions of cut and uncut box subdiagrams. The
previous expression (4.29) is included since, as shown in Appendix B, the (33) component of Mi;„,(k —l) is Li;„,(L—k),
and the (33) component of Mb „(k,p) is Lb „(p,k). [Recall also that 2 = (I,0, 0, 0) and z = (0,I,O, O).] Once
again, merely replacing the side rail matrix T by its pinching pole part Tpp, without changing the rung matrix M~;„,
is not sufhcient to calculate the leading weak coupling behavior of a simple ladder diagram; one must also include the
box subdiagram rung Mb „.

To sum all simple ladder diagrams, note that the first term in Eq. (4.32) can be regarded as the second iteration
of the single-line kernel M~;„,Wpp, and the second term can be interpreted as the 6rst iteration of the box kernel

Tpp. In exactly the same way, it is simple to deduce that the leading weak coupling behavior of a simple ladder
diagram with n straight rungs contains all possible sequences of n —2m factors of single line rungs, ~~;„,Tpp, and m
factors of box rungs, Mb „Epp, for all m ( n/2. Every such sequence can be interpreted as arising from the iteration
of the integral equation

g4p
(k) = 'D (k) —

4 [Mi; (k —p) + Mb (k, p)] Xpp(p)17 (p) . (4.33)

Because the pinching pole kernel Xpp (4.6) is a rank-1 matrix, applying u to both sides of Eq. (4.33) reduces the
equation to

where

I (k) = D (k) —
4 Ksimpie iadd„(k, P)n(P )Sf„,(P)

0 D-(p)
2 ~I p

(4.34)

—A."P 0
Itsimple ladder (k& P) = (1 e )Lsimple ladder(k, P) (e" —1)

2
(4.35)

with

d lg d l2
L»mpie & add(eke P) (2~) ~(Li L2+P k) Sfr«( i) Sfr«( L2)

27r 4 2~4

x
~

G'z(k p) Gz(k——p) + ——Gz(k —l, ) G&(k—l, ) + —Gz(k+L2) G&(k+L2)
l

(g4 g g'
2 — — 2 2

(4.36)

In obtaining Eq. (4.34), the following relation for the box rung is used:

u (k)Mb „(k,p)Co(p) = (1—e ~) [Mb „(k,p) —e" PMb „(k,p)](e" ~ —1)/2, (4.37)

together with an analogous relation for MI;„and L~;„.
Verifying Eqs. (4.36) and (4.37) is a straightforward but
tedious exercise in the application of the generalized op-
tical theorexn. In short, to prove Eq. (4.37), one must
show that all cut box diagram contributions in u JMb „Co

other than the (44) and (34) contributions are canceled
by the imaginary part of the uncut box diagram. The
final expression (4.36) in terms of the retarded and the
advanced propagators results &om the particular com-
bination of (44) and (34) components in Eq. (4.37). A
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7 i/7i~v'7 72&77FZV

(c) (e)

FIG. 18. Diagrammatic representation of a cut line rung
corresponding to Eq. (4.31). The heavy line in the unshaded
region represents a retarded propagator GR, and the heavy
line in the shaded region represents an advanced propagator
Gw.

(h)

sketch of the proof is given in Appendix B.
The above summation of simple ladder diagrams il-

lustrates the general principle: To determine whether a
diagram contributes to the leading weak coupling behav-
ior, Grst carry out the &equency integrations. Then, if
the contribution of each subdiagram sandwiched between
two pinching pole side rails is O(A2), the diagram as a
whole will contribute to the leading weak coupling behav-
ior. Hence, to identify all diagrams in the ggP+AP4 the-
ory contributing to the leading order behavior, one must
identify all O(A2) subdiagrams ("rungs") which may be
sandwiched between two pinching pole side rails. In the
simple ladder diagram, two of such "rungs" were iden-
ti6ed, the single line "rung" and the box subdiagram
"rung, " illustrated in Fig. 19 labeled (b) and (c).

With cubic and quartic interactions, there are a total of
ten different O(A2) "rungs" as shown in Fig. 19. These di-
agrams exhaust all possible O(A ), O(Ag ), O(g ) rungs
in gP +A/ theory in those temperature ranges. The
particular cuts shown in the figure correspond to the
(44) components of the rung matrices. Consequently, the
dominant set of "ladder" diagrams in gPs+AP4 theory
may be described as iterations of pinching pole side rails
Wpp and a combined O(A ) rung matrix Mf„&&, whose
components are the sum of contributions of all possible
cuts of the underlying diagrams of Fig. 19. The sum-
mation of all such ladder diagrams is generated by the
integral equation

d4p2' (k) = 17 (k) — Mf u(k, p) Xpp(p)17 (p),

(4.38)

FIG. 19. The O(A ) "rungs" in the gP +A/ theory. The
cuts shown correspond to (44) components of the rung matrix.

where the previous relation between the rung matrix
Mf„u and its (44) and (34) components continues to hold,

Kf u(k, p) = u (k)Mf u(k, p)Co(p)

= —(1—e "
) Lf„u(k, p) (e" ~ 1), —

2
(4.4G)

with

Lf„u(k, p) = [Aff„&& (k, p) —e" Mf Q (k, p)], (4.41)

as a consequence of the generalized optical theorem. The
proof of Eq. (4.4G) is discussed in Appendix B.

Noting that all the diagrams in Fig. 19 have two on-
shell cut lines, a straightforward application of the cut-
ting rules yields the sum of all the cut "rungs":

where Mf„u(k, p) consists of all cut and uncut O(A2)
rungs in the gPs+AP4 theory, i.e. , those in Fig. 19. Once
again, applying u to both sides of Eq. (4.38) reduces
the equation to

I (k) =D (k) K—f„u(k, p) n(p ) Sf„,(p)
o D (p)

2vr 4 I p

(4.39)

d4/i d4/2
full( ~P) = free( i) free( 2) ( &) ( & 2+P )

2vr 4 2vr 4

fA' g4 g4 g4
x —+ —GR(k —p) Gx(k —p) + —Gft(k —lj ) G~(k l&) + —Gft—(k+l2) Gx(k+l2)

2 2 — — 2 2

+g Re Gff(lg+p) G~(lg —k) + g Re Gft(lg+p) G~(lg —lg) + g Re Ga(lg —k) G~(lg —l2]]

—Ag Re Gft(lq+p) —Ag Re G~(lq —k) —Ag Re Gft(lq —l2)
~

(4.42)
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1 d4l, d'l,
2 2' 4 27r 4 fg~~( 1) fp~~( 2) ( ) (l1 2+p )

x A —g GR(l1+p) + GR(l1 —k) + GR(l1 —l2) (4.43)

Each term in (4.42) arises &om specific diagrams of Fig. 19. For example, consider the term
g4 Re GR(l1+p) GA(l1 —k) j. This term corresponds to the "cross" diagram labeled as (d) in Fig. 19, and redrawn in
Fig. 20 with momentum labels. The cutting rules produce

1„„(k,p) = M(, ).(k, p) —e" ~M(, ), (k, p)
g4 d4l, d4l,' (2~)'S(l, —l,+p—k)
2 (2vr)4 (2')4
x [Sf„,(l1) Sf„,(—l2) G(p+l1) G(l1 —k)' —e Sf„,(—l1 —p) Sf„,(l1—k) G(l2) G(l1)']
g4 d4l d4l ' (2~)'b'(l, —l,+p—k)
2 (2n-)4 (2vr)4

x [Sf (ll) Sf ( l2) GR(p+ll) GA(ll k) e Sf ( ll p) Sf (ll k) GR(l2) GA(ll)] (4.«)
where to obtain the last expression the relation between propagators,

G(k) = —iGR(k) + S(—k) = iGA(k—) + S(k), (4.45)

and the fact that S(l1 —k) and S(p+ l1) can be neglected since l1, l2, p, k are all on shell are repeatedly used. Noting
that the effective vertex D (p) is an even function of p, the sign of p in the second term of Eq. (4.44) may be changed
inside the integral equation (4.38). Then changing the label l1 ~ l1+p and replacing full cut propagators by the free
cut propagators [and dropping subleading corrections suppressed by O(~A)] yields

1„„(k,p) = g (2m) b(l1 —l2+p —k)Sf„,(l1) Sf„,(—l2) Re GR(l1+p) GA(l1 —k)
27r ~ 2' ~ (4.46)

All other terms are produced similarly.
The xnost important point to notice in Eq. (4.43) is that the various terms combine to produce the square of a

single factor

7 (l1,p; l2, k) = A —g [GR(l1+p) + GR(l1 k) +. GR(—l1—l2)], (4.47)

which obviously resembles a tree level two-body "scat-
tering amplitude. " Strictly speaking, at nonzero temper-
ature, one cannot de6ne scattering amplitudes since no
truly stable single particle excitations exist. However, ex-
pression (4.47) may be regarded as an approximate scat-
tering amplitude characterizing the dynamics of the 6nite

temperature excitations on time scales short compared
to their lifetime. The only difference between the result
for ggP+AP theory and that for the AP theory is the
replacement of the constant tree level scattering ampli-
tude A in the A/4 theory by the momentum-dependent
tree amplitude 7 (l1,p;l2, k). Note that 7 contains re-
tarded propagators in place of the usual time-ordered
propagators. At zero temperature, the scattering ampli-
tude can be expressed both in terms of the time-ordered
Green function or the retarded Green function [16]. At
nonzero temperature, it is the retarded Green function
which gives the correct amplitude.

The arguments of the propagators in Eq. (4.47) are all
combinations of two on-shell momenta. A short exercise
in kinematics shows that the four-momentum squared
of the sum of two on-shell momenta is always less than
—4m~h, while the four-momentum squared of the difFer-
ence of two on-shell momenta is always greater than 0.
Hence each propagator in (4.47) is bounded by 1/mt& so
that

FIG. 20. The (44) and (34) components of the "cross" sub-
diagram rung. ~7 (l1,p;l2, k)~ = O(A) +O(g /mt', ) = O(A), (4.48)
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since g = O(Am &„,) and (m h„,/mth) ( 1. Conse-

quently, the size of the efFective vertex D (p) with the
gps+A$4 kernel does not difFer (by powers of couplings)
from the solution with only the AP kernel. Further-
more, formula (4.21) for the shear viscosity continues to
hold in the ggP+AP theory (with the self-energy now
given by the full gPs+AP self-energy). Hence, in both
theories, the shear viscosity is O(1/A2); only the numer-
ical prefactors will differ. Note also that at tempera-
tures T )) mphy the typical size of a propagator is
O(1/T2) and hence the contribution of the cubic inter-
action g Gxx = O(g /T2) xnay be ignored compared to
A.

For the comparison with the kinetic theory in the next
section, it is helpful to note that the imaginary part of the
on-shell two-loop self-energy ZI(k) (cf. Fig. 3), used in
Eq. (4.39), can be expressed in terms of the same "rungs"
of Fig. 19 by joining two of the external lines by a cut
propagator:

d4
&1(k) = —(1—e i —"

) Lx„xx(k—p)Sx„,(p) . (4.49)

For instance, the contribution of the AP self-energy di-
agram can be obtained by attaching a cut line to the
A/4 rung labeled (a) in Fig. 19 and dividing by 6. Since
the diagram (a) has a symmetry factor of 2, this cor-
rectly reproduces the overall factor of 1/12 associated
with this self-energy diagram (six from the symmetry fac-
tor for this two-loop diagram, and two &om the relation
between the imaginary part of a diagram and the discon-
tinuity). The gPs theory two-loop self-energy diagram
labeled (b) in Fig. 3 is similarly obtained by attaching a
cut line to the rungs labeled (b) and (c) in Fig. 19 and
dividing by 6. Since the diagram (b) has a symmetry
factor of 2, and the box diagram (c) has a symmetry fac-
tor of 1, this again correctly produces the overall factor
of (1+1/2)/6 = 1/4 associated with this self-energy dia-
gram. All other two-loop self-energies can be reprod. uced
&om the rung diagrams in a similar manner.

the value of a single free parameter v in 'P. Since energy
xnomentum must be conserved, the condition (bolXp) = 0
must; be enforced by choosing

d3k
, n(Ex, ) [1+n(Eg)] I~(k)

n(Ex,.) [1+n(Eg)]I, (k)

(~&/»)
(Os/BT)

(4.51)

Here, I~(k), and I, (k) represent the efFect of the pressure
and the energy density insertions including the contribu-
tion from chain diagrams [cf. Eq. (3.14)], and v, is the
speed of sound. Note that the condition v = v, is a fa-
miliar result &om the Boltzmann equation. In Sec. IV E,
it is shown that with this choice of v, , Xg oc mphys The
(leading order) bulk viscosity vanishes if the mass is zero
since Zp = 0 in that case [9].

When O(A ) rungs are included in the ladder kernel,
b5 is no longer a zero mode since the kernel now con-
tains 2—4 number-changing processes. Since the condi-
tion (bslZp) = 0 need no longer be satisfied, the result-
ing integral equation is well posed, and hence the leading
order bulk viscosity can be evaluated as follows.

The integral equation for the effective vertex including
O(A ) rungs may be written as

le) = (1—K, „,—bK,h)l17p), (4.52)

where K, „, is the number-conserving part of the kernel,
and bK,h is the number-changing part of the kernel. In
terms of the solution l17p), the leading order bulk viscos-
ity is given by

& = &(z~ l&ID~) . (4.53)

As will be shortly shown, b5 is no longer a zero mode of
the kernel due to the number-changing bK,h part. How-
ever, bs is still a zero mode of the number-conserving part
of the kernel so that

C. Ladder summation for the bulk viscosity
calculation in AP theory

lz~) = (1 —~~-»&pp) l&~) (4.50)

As explained in Sec. IIB, when the volume of a sys-
tem changes (or equivalently when the density changes),
number-changing processes are ultimately responsible for
restoring equilibrium. Hence, the calculation of the bulk
viscosity must include the effect of changing particle
number. The leading order equation

(bsl(1 —iC. „,—bK.b) = (bslbK—. (4.54)

Since this vanishes as A ~ 0, the kernel (1—K, „,—bK,h)
has a very small eigenvalue in the weak coupling limit.
Hence, the solution of the integral equation (4.52),

1
l&~) = lz~)

cons cb
(4.55)

is totally dominated by the small eigenvalue component.
To see this, the unit operator

where Mf„xx and Ppp are given in Eq. (4.38), contains
only the effect of elastic binary scatterings, and therefore
is not suitable for the calculation of the bulk viscosity.

Mathematically, the integral equation (4.50) is not well
posed because only one of the consistency conditions
(be le) = 0 and (bs lZp) = 0 can be satisfied by adjusting

To see that the second expression does produce the right
speed of sound, one must know the explicit forms of I~ and
I, up to Q(AT ) Since these form. s are not essential to the
present discussion, evaluation of the inhoxnogeneous terms I7,
I, and the speed of sound v, are deferred to Sec. IV E.
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1 = ) .I&') (f'I (4.56)

where
I
f;)'s are the eigenvectors of (1—K, „,—bK,~) with

eigenvalues a, , may be inserted in Eq. (4.55) to yield

ID~) = ).—If') (f'l&~)

1= —l&s) (&s l&~) [I + O(A)1 ~ (4.57)

In the last line, the eigenvector
I fs) = Ibs) + O(A) corre-

sponds to the eigenvalue n5 which vanishes in the A ~ 0
limit. The leading order value of n5 can be obtained by

FIG. 22. O(A ) and O(A ) corrections to the simple
one-loop rung. The first two diagrams correspond to a part
of the quartic vertex correction; the third one corresponds to
the finite width correction.

o.5 ——(f5 I (I—K, „,—b K,t, ) I f5)
= —(t, ISK.,lt, ) II + O(A) j . (4.58)

& = &(~~l&ID~)
P~l&pplts)(bsl&~) I+ o A

(tsl~K ~15s&
(4.59)

At high temperature, the bulk viscosity explicitly con-
tains mph+ provided by two factors of Xp.

To obtain the explicit form of the ladder kernel includ-
ing O(A ) rungs, note that when the external operators
are bilinear, any diagram contributing to the Wightman
function calculation can be regarded as a ladder diagram.
The side rail part, as before, consists of two-particle in-
termediate states, and the rung part consists of the two-
particle irreducible subdiagrams between two side rails.
Hence, if the rung matrix M contains all possible rungs,
and the propagators in W are the full propagators, the
integral equation

d4p
Z~(&, q —k) = r~(k, q —k)+,M(A:, p)

x X(p, q —p) 17~(p, q p) (4.60—)

As is shortly shown, due to the statistical factors, the
eigenvalue us ——O(A).

Using the leading order solution (4.57), the leading or-
der bulk viscosity is

may correspond to the sum of all diagrams contributing
to the correlation function of the bilinear part of the op-
erator 7 . The exact solution of this equation. , of course,
is impossible to obtain. However, as shown in Eq. (4.59),
the integral equation need not be solved; only the lead-
ing order number-changing part of the kernel and the
zero modes of the number-conserving part are needed to
evaluate the leading order bulk viscosity.

To extract the relevant terms in the kernel, it is con-
venient to include in the "pinching pole part" the rungs
up to and including O(A ) corrections all calculated with
&ee propagators:

Kpp = (JH p + Mg) Xpp . (4.61)

Here, Mo includes only the one-loop rung, and M~ in-
cludes O(A ) rungs that can be obtained by adding two
more lines to the diagrams in Fig. 19 or, equivalently,
rungs that can be obtained by squaring the 2—4 amplitude
shown in Fig. 21. Mq also contains various corrections to
the simple one-loop rung shown in Fig. 22. Among these
rungs, only those containing a number-changing process
are important in calculating the leading order bulk vis-
cosity. The form of the pinching pole side rail matrix Tpp
is the same as in Eq. (4.6) except that the self-energy Zl
now includes contributions of O(As) and O(A4) diagrams
shown in Fig. 23. With these definitions, the deviation
from the "pinching pole part" arises only &om the side
rails.

Rewriting the integral equation as

I&~) = (1 —K» —bK)l&~) (4.62)

E1 l6
multiplying it with bK, and adding the result to the orig-
inal equation produce

l4 l5 l3 /4

(1 + bK) IXp) = (1 —K —bK Kpp) I Dg ) + O((hK) ) .

(4.63)

FIG. 21. Diagrams corresponding to the O(A ) 2—4 scat-
tering processes. Mirror images and difFerent permutations
of l,. 's are not explicitly shown. Combining any two of these
diagrams, including the square of a diagram, and integrat-
ing over /; (i = 2, 3, 4) produce O(A ) rungs. Because of the
four-momentum conservation, Ls ——lq+l6 —lg —l3 —l4.

FIG. 23. O(A ) and O(A ) diagrams contributing to the
imaginary part of the AP theory self-energy.
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Here

bK Kpp = JHe happ MQ happ [1 + O(A )], (4.64)

where happ is the O(A ) correction to the free single
particle spectral density in Tpp. The nonpinching pole
part does not contribute when sandwiched between two
~0's as can be inferred &om Appendix B.

The integral equation (4.63) is difFerent from Eq. (4.52)
in two ways. First, the inhomogeneous term in Eq. (4.63)
is not purely Zp, and the kernel is not yet separated into
the number-conserving and the number-changing parts.

I

Since only the leading order calculation is considered,
the extra term in the inhomogeneous term is unimpor-
tant. For the separation of the number-conserving and
the number-changing parts, it is more convenient to eval-
uate directly the needed matrix element

(b5 [8K h[ by) = —(bs [ (1 —Kpp —bK Kpp) [b5), (4.65)

rather than separating the two parts.
Applying u and using the same procedures as before,

the integral equation (4.63) is reduced to

I~(k) = Dp(k) — Kb„ig(k, li) n(li) Sf„,(li)0 D~(&i)
27r 4 I 1

(4.66)

where

I~(k)—:u (k)(l + bK)Zp(k) (4.67)

and

', ~r-. (—4) I
(2~)'b ) &'+ k [17s((&') k)I'+ Ts(4&'k k)]

1 t' d4l;

24

+—
i

* Sr„,(—l;) i (2') b ) I, + k i74((E,), k)i'r (4.68)

In the AP case, the scattering amplitude involving four particles, 74((l;), k), includes the lowest-order ainplitude A,
and O(A2) and O(As) corrections. Since this part of the kernel conserves the particle number, the explicit form of
74((l, ), k) is not important in the bulk viscosity calculation.

The lowest-order scattering amplitude involving six particles is given by

7s((l, ), k)—:A' ) G "'(l;+l,+ly), (4.69)

where the sum is over all ten difFerent combinations of three momenta from the set (l;). The square [7s~ contains
singular terms of the form ~G&"(l;+l~+li, )~2 which produces an ill-defined product of b functions. However, these
products of b functions are removed by an additional term T3 given by

W4
2= —) pf„,(l,;+l~+li ) (4.70)

The O(A ) rung diagrams corresponding to the terms in ~7s[2 can be obtained by attaching two more lines to the
O(A ) rungs in Fig. 19 in all possible ways consistent with the A/4 theory. The prefactor 1/12 accounts for the
symmetry factors of the diagrams.

To see the connection between the terms in ~7s~2 and the diagrams, consider, for example, the ten squared terms
in ~7s((l, ), k) [2 + Ts. Using the syznmetry in / s under the integral, these terms can be reexpressed as

T.g((l;), k) —= 4A [~G~ '(l2+lg+l4)
~

+ pf„,(l2+13+/4) /2]
+6A [~G~"'(li+l2+lg)~ + pfp„(l, +l2+lz) /2] . (4.71)

The erst term does not contain external momenta lq and k. Hence, the cut lines corresponding to l2, l3, l4 form a
cut self-energy diagram (together with the four-momentum-conserving b function) corresponding to the finite width
correction to the one-loop rung shown in Fig. 24(a). The symmetry factor associated with this diagram is 1/6. Factors
in Eq. (4.68) combine to yield 1/12 including an extra factor of 1/2 from the relation of the form (4.40) used to obtain
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Eq. (4.66). The remaining term containing li, lz, l3 corresponds to the once-iterated one-loop rung shown in Fig. 24(b).
The symmetry factor associated with this diagram is 1/4. Factors in Eq. (4.68) combine to yield 1/8 again with the
extra factor of 1/2.

Using the definition (4.22) the above integral equation can be expressed symbolically as

IIp) = (1 —Kb-») ID~) . (4.72)

The self-energy Zl and the kernel Kb„~k have the relationship

d4)
4

I"n(l ) Sfr„(l)Kbu»(l, p) = p" El (p), (4.78)

which can be proved by a similar argument used to obtain Eq. (4.49). Prom this relation, it is simple to see that the
zero modes b~(l) = l„ZI(l) of the leading order ladder kernel (1—Kpp) are still the zero modes of the modified ladder
kernel (1 —Kb„»). However, a previous zero mode corresponding to number conservation, b5(l) = sgn(l ) Zl(l), is no
longer a zero mode since

4

sgn(l ) n(l ) Sq„,(t)Kb„»(/, p) = sgn(p ) Zl (p) + bC(p), (4.74)

or, symbolically,

(bsl(1 —Kb-») = —(bCI (4.75)

where bC(p) contains only the number-changing part of the kernel. Only the overlap (bClb5) is needed to calculate
the bulk viscosity since the leading order bulk viscosity is, ignoring corrections suppressed by O(A),

& = &P~l&l Dv )= &(I7- IDp-)-
= /3 = /3—(Iv- lb5) (b5II~) (Ig lb5) (bs lIp)

(b51(1 —Kb-») lb5) (~Clb5)

Straightforward calculations yield

d3L
(bs le) =, [1+n(E))]n(Ei) I~(Ei, l)

2ir 3Ei

(4.76)

(4.77)

and

—(~Clb5) = (b51(1 —Kb-») lb5)

d L;= 2 dcri2~3455 vi2 n(Ei) n(E2) [1+n(E3)] [1+n(E4)] [1+n(E5)] [1+n(Es)]
i=i

(4.78)

where the difFerential scattering cross section of 2 —4 scatterings is given by [17]

d~12+3456 =
6

l7s((l, )) l
(2ir) h(l, +l2 —l3 —l4 —l5 —ls) /(4EiE2vi24. ),

,=3 ' (4.79)

where v12 is the relative speed between l1 and —l 2.

L1 l2
V12 =

@
+ (4.80)

In Eq. (4.79), all underlined momenta have positive en-
ergy. In the 2—4 scattering amplitude, products of b
functions do not appear since combinations of on-shell
momenta in the propagators cannot be on shell due to
kinematic constraints. Hence, the T3 term is irrelevant
here.

Using Fermi's golden rule [17],the expression —(hClb5)
in Eq. (4.78) may be interpreted as (2 times) the total

(b)

FIG. 24. Diagrams corresponding to the squared terms
in

l
jul . (a) corresponds to the finite width correction the

one-loop rung, and (b) corresponds to the finite width correc-
tion to the pinching pole part of the side rail.
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2—4 reaction rate per volume in a thermal medium. Be-
cause of the statistical factors, O(mph) momenta domi-
nate the integral in the expression (4.78). Hence, when
T = O(mpqr, /~A), (hClbs) = O(A T ). Then since

(bald) = O(m &„,T ) = O(AT ), the viscosity (
O(Pm4&„, /A ) = O(T /A) which is O(A) smaller than
the shear viscosity. Note that even at very high temper-
ature, the bulk viscosity is a nontrivial function of the
order 1 ratio mt&/AT . Hence, even at high tempera-
ture, the distinction between the thermal mass and the
physical mass is important.

l2 l3 l4

lI ~~ l5

l2 l3

l2 l3 l4 l2 l3

l1 ~~ l5

l2 l3 l4

D. Ladder summation for the bulk viscosity
calculation with an additional gqP interaction

In the gP +A/ case, the lowest-order number-
changing process is O(Ag) = O(gs) corresponding to
two particles colliding to produce three particles. A few
O(A ) rungs containing the effect of these scatterings are
shown in Fig. 13. Other rungs may be constructed by
combining. two diagrams among those in Fig. 25 corre-
sponding to the 2—3 scattering processes, or equivalently
adding one more line to the rungs in Fig. 19 in all possible

FIG. 25. Diagrams corresponding to the O(A ) 2—3 scat-
tering processes. Mirror images and difFerent permutations of
l, 's are not explicitly shown. Combining any two of these dia-
grams, including the square of a diagram, and integrating over
l, (i = 2, 3) produce O(A ) rungs. Because of four-momentum
conservation, l4 ——l~+l5 —l2 —l3.

ways consistent with the theory.
With these rungs, the procedure used in the AP case

can be again used to produce the reduced integral equa-
tion (4.66) now with

r~b lk(k, l.) =—-- (1-e — ) (1—e ' ) —
I

' Sr- (-l')
l

(2~)'~ ).l' + k l&4((l') k) l

1 ~op )op 1 ( d l;
2 2 ..". (2z.)'

(4.81)

The scattering amplitude involving four particles, T4((l, ), k), includes the lowest-order amplitude A and O(Ag) and
O(A ) corrections. Since this part of the kernel conserves number, the explicit form of 74((l;), k) is not important in
evaluating the bulk viscosity. The lowest-order scattering amplitude involving 6ve particles is given by

7s((l') k) = Ag) G~ (l'+.lq) —ig ) G~ (l ~l~ )G~ (l +l ') (4.82)

where the Grst sum is over all 10 difFerent combinations
of two members from the set (l;, k), and the second sum
is over 15 difFerent combinations of four members of the
same set. Since all the momenta in the set (l;, k) are
on shell due to the b function in Sr„,(—l, ), the combi-
nation I,;+l~ cannot be on shell. Hence, the ill-defined
b-function products do not appear in l7s((l, ), k)l . Also
for the same reason, it makes no difference whether the
retarded propagators are used or the time-ordered propa-
gators are used. For the sake of consistency, the retarded
propagators are chosen here. The prefactor 1/3 accounts
for the symmetry factors of the diagrams.

The self-energy ZI and the kernel Kb„~k again have the
relationship

l" n(l ) Sr„,(l)Kb„u, (/, p) = p" ZI(p), (4.83)

which can be proved by a similar arguxnent used to obtain
Eq. (4.49). Again, the zero modes b„(l) = l ZI(l) of
the leading order ladder kernel (1 —Kpp) are still the
zero modes of the modified ladder kernel (1 —Kb„g,); the
remaining zero mode bs(l) = sgn(l ) ZI(l) is no longer
a zero mode due to the number-changing term in the
kernel. The previous leading order bulk viscosity (4.76)

(I~lb, )(b, lr~)
(bClbs)

still holds with the same (bslr~) in Eq. (4.77) but with
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—(~&l~s) = [lsl(1 —I~b ik)lbs]

1 dsl,
do.x2~s4s vx2 n(Ei) n(E2) [1+n(Es)] [1+n(E4)] [1+n(Es)] .

i=i
(4.85)

Here the differential scattering cross section of 2 —3 scatterings is given by

do&2~345 =
5

17s(B;))l'(2&)'~(&x+&2 —4—
&4

—&s) /(4ExE»»3')
=3

(4.86)

where v~2 is the relative speed between lq and —I2. All
underlined moxnenta in Eq. (4.86) have positive energy.
In the 2—3 scattering amplitude, the products of b func-
tions do not appear since combinations of momenta l,+l .

in the propagators cannot be on shell due to kinematic
constraints.

Again, the expression —(bClbs) can be interpreted as
(1/2 times) the total 2—3 reaction rate per volume. Be-
cause of the statistical factors, O(mt') momenta dom-
inate the integral. Hence, when T = O(m~k„, /~A),
(hClbs) = O(As~2T ). The bulk viscosity is then ( =
O(T /y A) which is O(A ~2) smaller than the shear vis-
cosity. Note that since the contribution of O(mth) xno-

menta dominates the integral, the bulk viscosity is a
nontrivial function of the dimensionless order 1 ratio
g2/Amt2&. Hence, even at high temperature, the distinc-
tion between the physical mass mphy and the thermal
mass mph is important. As shown in Sec. IVE below,
the only place where mphy appears is in Ip. The prop-
agators elsewhere must contain the thermal mass mth.

separates into the "kixietic" part 0"$0"P and the La-
grangian part g~"8, the inhomogeneous term for a pres-
sure insertion may be separated into three parts:

I = I~'"'+ I + I'" '",

I =I a —I +I ann
)

(4.89a)

(4.89b)

Ikia. (I,)

Ikin. (y) E2

(4.90a)

(4.90b)

To determine the contribution of a Lagrangian insertion
Ir, , it is convenient to rewrite the Lagrangian (1.1) using
the equation of motion as

with the obvious notation. The sign difference in the La-
grangian term is due to the metric g„„=diag( —1, 1, 1, 1).

The contribution &om the "kinetic" part of 7 and e in
the zero external momentum limit is simply

E. Inhomogeneous terms & = -E[4']+ 4'+ —4"
2 2x3I 4! (4.91)

The explicit forms of the inhomogeneous terms I (Ic)
and Ip(k) to leading order in weak coupling will be re-
quired in the following sections. For the shear viscosity,
I (k) corresponds to an insertion of the traceless stress
tensor vri given in Eq. (2.9). Hence,

I~(k) = Ici&~,'~i~k' . (4.87)

For the bulk viscosity, Ip(k) corresponds to an inser-
tion of the operator 7 = 7 —v2r, and includes, as shown
in Sec. IIID, a one-loop "renormalization" contribution
&om chain diagrams. Since the standard form of the
stress-energy tensor,

where

E[0']—:0' & = 4'
I

o ~o 0' 0'————0 f, 2 g A

2I 3! (4.92)

N

G(xx, . . . , xxv, E[P(x)]) = ) 8(x—x ) G(zx, . . . , xN ),

(4.93)

is P times the equation of motion. An insertion of the
operator E[P] in a time-ordered N-point correlation func-
tion simply produces an overall multiplicative factor [18]

T""= 8"$8"p+ g""L, (4.88) provided an irrelevant disconnected contribution is suit-
ably subtracted (most simply by using dimensional reg-
ularization). To evaluate Ic, consider the correlation
function of the Lagrangian 8 with some other bilinear
operator, such as P . In Euclidean space,

Renormalization requires the counterterm of the form
6T„= A(8„8 g„„B)P where —A is a (infinite) constant
[18]. However, this term does not concern us because its
contribution to the inhomogeneous term is bI„= (g„„q
q„q )A where q„ is the external four-momentum which is set
to zero in the viscosity calculations.

Alternatively, one can, of course, perform a straightfor-
ward diagrammatic analysis of the various terms arising from
a Lagrangian insertion.
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Gy c(~, v) = (&[&'(*)&(&)1)

= -P (0'(*)E[0 (u)1)) +,„3,(&[4'(*)&'(~)]) + 4, (&[&'(*)&'(~)])

= ~( —&) (&'(*))+ „,(&I&'( ) &'(&)]) + —,(&[&'(*)&'(u)1) . (4.94)

1Ic = —bm, „.
2

(4.95)

To determine the chain diagram part of the inhomoge-
neous term, evaluation of Re C~(0) and Re C, (0) is re-
quired [cf. Eq. (3.14)]. The details of this evaluation are
given in Appendix D. The result, neglecting subleading
corrections suppressed by O(~A), is simple:

~

Rec&(0) = --am, „,( g'l 1

mai, & 2
(4.96a)

The lowest-order diagrams for G~2~ are shown in Fig. 26.
The one-loop diagram in the 6gure is independent of ex-
ternal momentum. Hence, when the external &equency
is analytically continued and the discontinuity taken, the
contribution of this simple one-loop diagram is zero. The
other 2 two-loop diagrams represent insertions of half the
O(AT2) one-loop self-energy. Hence, to lowest order in
the weak coupling limit, a Lagrangian insertion merely
produces a vertex factor of

I; '"=
~

A —
2 ~

ReC, (0) = ——bm, i, .
g'& 1

mt„) 2
(4.96b)

Ip(k) = sik2,

I,(k) = E„—bm, „=k + m2„„. ,

(4.97a)

(4.97b)

where m h, is the physical zero temperature mass.
Note that to lowest order mp},ys is equivalent to mth-
(TBmt2„/OT) /2.

Using these explicit forms of the inhomogeneous terms,
the integrals in Eq. (4.51) can now be performed to show
explicitly that the parameter v in P = P—v'& is equal
to the speed of sound v, —:0'p/Ds:

Combining all three parts (and ignoring subleading
corrections), the inhomogeneous terms for the pressure
and energy density insertions are

f
d3k

n(Eg) [1+n(EJ,)] (k +mph'. )
d3k

v2 = n(EI, ) [1+n(Eg)] sk'
27r s

}, S&"&' + O(As/2) —v2 + O(A / ) .
12m 2T2

(4.98)

The details of evaluating the speed of sound and the vari-
ous integrals involved are given in Appendix D. Note that
even though the energy Ep is de6ned with the thermal
mass mt', the speed of sound approaches 1/3 as the zero
temperature mass m~},y, goes to zero, not as mt}, goes to
zero. In the massless limit mp},y + 0, the stress-energy
tensor is traceless due to scale invariance. In terms of
equilibrium thermodynamic quantities this implies that
s = 3'P, and the speed of sound is v2 = 1/3.

Combining the results of I~, I„and v, , the inhomo-

Ip (k)—:I~ (k) —v,'I, (k)

Ao (mt'„T) k —A2 (mti„T)
3 (A2(mt', T) + m~&„,Ao(mt' T) )

5l'
T2 3) (m, &„./T « 1),

(4.99)

geneous term for 'p insertion is (ignoring subleading cor-
rections)

Scale invariance is, of course, broken quantum mechani-

cally, and this leads to a trace anomaly. This implies that the
relation between the pressure and the energy density is modi-

fied to 3'P s= P(A)T /(24 x 48—) where P(A) = (TBA/BT) =
3A /16' [13] is the renormalization group P function. (The
explicit forms of 'P and s are given in Appendix D.) Conse-

quently, the speed of sound also receives an O(A ) correction
of hv, = 5P(A)/576m. .

FIG. 26. The lowest-order diagrams contributing to G4,~&.
Crossed circles indicate gP insertions.
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where

d3
A„(m,h, T) —= n(Ep) [1+n(E„)jIpI" . (4.100)

Note that the inhomogeneous term is directly propor-
tional to the zero temperature mass squared mphy, .
Hence, I&(k) vanishes in the massless limit m~h~, = 0,
and consequently, so does the leading order bulk viscosity
(4.21) ( 'v

V. HYDRODYNAMICS AND THE BOLTZMANN
EQUATION

Kinetic theory and the Boltzmann equation have tra-
ditionally been used to calculate transport properties of
dilute many-body systems when (except during brief col-
lisions) the underlying particles can be treated as classical
particles with well-defined position, energy, and momen-
tum.

For this classical picture of particle propagation to be
valid, the mean &ee path must be large compared to
the Compton wavelength of the underlying particle. At

extremely high temperature, the mean &ee path scales
as 1/T. Hence, at high enough temperature, a Boltz-
mann equation describing the fundamental particles can-
not be readily justified. However, as noted in previous
sections, at high temperature the typical O(1/A T) mean
&ee path of thermal excitations is always larger than the
O(l/~AT) Compton wavelength of slowly varying ther-
mal excitations. Consequently, as will be discussed, a
Boltzmann equation description of effective thermal exci-
tations with a temperature-dependent thermal mass and
thermal scattering cross section can be consistent at any
temperature.

However, there is a fundamental complication when at-
tempting to formulate a Boltzmann equation for effective
excitations. In a nonequilibrium situation, the tempera-
ture may vary in space and time. Since the thermal mass
depends on temperature, this implies that the mass of the
effective excitations also varies in space and time. The
correct treatment of this will be described shortly. As
a warm-up, first consider the usual Boltzmann equation
with constant mass particles. It can be formulated &om
the statement that the rate of change in the comoving
density of particles with an on-shell momentum k at po-
sition x equals the difference between the rates at which
particles in this phase space region are generated or lost
due to collisions, or

f O k E;„O i f'Of(x k) ) /Of(x k) i
(Ot Ei, p Ok') ( Ot ),.„( Ot

Here f(x, k) is the single particle density function, (Of(x, k)/Ot), .„ is the rate of increase of the density of particles
with momentum k at x due to collisions, and (Of(x, k)/Ot)& „is the corresponding rate at which particle density
is lost. Here, F „represents whatever single particle external force or proper time derivative of three-momentum,
F,'„= dk'/dw, is present, and p is the usual Ei, /m. In this section an underlined momentum signifies an on-shell
momentum with only positive energy. The collision terms on the right-hand side may be expressed in terms of
scattering cross sections and distribution functions. For instance, the gain of particles with k at 2: due to scattering
is given by

(5.2)

Here, 7 is a multiparticle scattering amplitude describing a process in which a particle with momentum k is produced
in the final state. The initial probability density to find n particles with momenta fp. ) at position x is given by the
product of single particle densities

in

This is another consequence of (classical) scale invariance. Using the constitutive relation (2.1), the thermal average of the
trace of stress-energy tensor may be expressed as (ignoring higher derivative terms)

(T„")= 3'P —s —(V u,
in the comoving [u(x) = 0] frame. Classically, T„vanishes in the massless limit, and so does its equilibrium average 3P s'—
Hence, the leading order bulk viscosity ( must also vanish in the massless limit [9]. Again there sre higher-order corrections
because scale invsriance is broken quantum mechanically, and 3'P s= O(P(A)). Conse—quently, in the massless limit, the bulk
viscosity is ( = O(AT ). Note that when T )) m~q~, /A, the massless limit estimate O(AT ) csn be larger than the massive
theory estimate O(m h„,/A T).

Here the momentum k is the canonical momentum, not the kinetic momentum. This choice is necessary for the measure
d x d k to be invariant along particle trajectories.
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under the assumption of molecular chaos. The factor F (x; (p j, k) is the Bose or Fermi statistical factor for an—out
m-particle final state with momenta (p ) and k, and is also given by a product of single particle statistical factorsmut
[1+f(z,p)] (with the upper sign for bosons, as considered here). Implicit in Eq. (5.2) is the assumption that the
duration of scattering and the Compton wavelength of particles are short compared to the mean free time (and the
scale of variation in the external force), so that the densities of particles participating in the scattering are accurately
represented by the densities at a single position x. The loss rate (Bf(x, k)/Ot)i „has a similar expression but with
the particle with momentum k among the incoming particles.

For simplicity, consider the AP theory. If the interaction strength is weak, only the first few terms in the sum in
Eq. (5.2) are important. The included terms must contain the leading order number-changing scattering processes
since, as discussed in earlier sections, the bulk viscosity calculation requires such scatterings. In that case, Eq. (5.1)
combined with Eq. (5.2) becomes the basic relativistic Boltzmann equation

dp3 dk
( )3 ( )3 12~3k V12

x[f(z, p ) f(x, p ) F(x, p ) F(x, k) —F(x,p ) F(z, p ) f(x, p ) f(z, k)]

d pl d p2

x[f(z, p ) f(x, p ) F.(x,p ) F(z, p ) F(x,p ) E(x, k)

F(z p—,) F(»p, ) f(z p, ) f(»p, ) f(z p, ) f(»k)l
p5 cL k

x[f(* p, ) f(* p, ) f(* p, ) f(* p,)F(*p, )F(* k)
—F(*,J,) F(z, p, ) F(*,p, ) F(»p, ) f(»p, ) f(»k)] (5.4)

where, for a convenient presentation, the momentum space volume element d k/(2n) is included in the formula,
and a shorthand notation F(x,p):—[1+f(x,p)] is used. The subscripts of the integral signs indicate that k is not
integrated. Here, do]2~3/ is the usual two-body differential cross section:

pi
dcri2~3i, = 3 (2'Ir) b(p +p —p —k) [74(p, p; p, k)] /(4E3Ei, vi22),

i=1,2
(5.5)

where vl2 is the relative speed between particles with momenta p and —p, and the symmetry factor of 2 in the
denominator arises &om the nondistinguishability of the 6nal particles. The 2—4 diR'erential cross section dol2~3456
is given by Eq. (4.79). The factor of 2 difFerence in the second and the third terms is due to the fact that the second
term is symmetric in pl, p2 and p3, p4, p5 while the third term is symmetric in pl, p2, p3, p4.

The scattering interaction at a given point z still conserves energy and momentum even in the presence of a (slowly
varying) external force which changes the four-momentum of an excitation during the free flight between collisions.
Hence, when multiplied by k" and integrated over k, the right-hand side of the Boltzmann equation (5.4) vanishes.
This implies, for the left-hand side,

0 = k"k"B„f(z,k) +m k"F;„.f(z, k)
d3k d3k „, 0

= 8„ f(x, k) k"k +m k E,'„f(x,k) . .
d3k d3k i 0

In the absence of any external force, this would become the local conservation equations for energy and momentum
with the usual kinetic theory stress-energy tensor:

d3k
T~"„(z) = k"k"f(x, k) . (5.7)

With an external force, one instead 6nds

where the source 8,"„is given by

~P'f;".(x) = ~:.(z)

8."„(z)= —m, k"F:„.f (x, k) .
d3k „, 8

2K Jg

(5.8)

(5.9)
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Now consider the case of excitations with a space-time-dependent mass m(z). Following the usual derivation of the
equation of motion for a relativistic point particle, one finds

P;„(z) = —k' = —8'm(z), (5.10)

where z is the proper time. Since the energy in this case, E& = gk2+m2(z), is space-time dependent, the partial
derivatives in Eq. (5.6) cannot be simply taken outside the integral. Including additional space-time derivatives of
energy changes the external source term (5.9) to

d'k I'k" k" i
8,"„(z)= f(x, k)0„~ ~

—m(x) k"I';„.f(x, k)
2vr sEr, c)k'

1- „2 - d3k= —— 8"m2(z) f(x, k) .
2 21I /g

(5.11)

Finally, consider the situation of real interest where the
mass of the effective excitations depends on the presence
of other excitations in the medium. In the particular
case of scalar interactions, relevant for AP theory, the
effective mass m(x) (to the lowest order) will be

where

m'(x) = m2„„.+ bmz(z),

A d3k
hm2(z) =— — f(x, k) .

2 27r

(5.12)

(5.13)

d3kT""(z)= f(x, k) k"k"+ 'g""bm (x)-
(27r)st, ' = 4

(5.14)

At first sight, it may seem surprising that a conserved
stress-energy tensor can be defined when the efFective
mass is space-time dependent. However, the underly-
ing scalar theory does conserve energy and momentum.
Hence, when the stress-energy tensor is correctly defined,
the result must still be a conserved tensor regardless of
whether the system is in or out of equilibrium. Ap-
pendix D shows that the form of T"" in Eq. (5.14) is
identical to the equilibrium expression of the field the-
ory stress-energy tensor up to O(A). Hence, the Boltz-
mann equation (5.4), with I",*„(z) = —8'mqi, (z), may
be regarded as a kinetic theory description of effective
temperature-dependent excitations.

A. Hydrodynamic limit of the Boltzmann equation

This is simply a rewriting of the one-loop result for the
thermal mass m~2& when f (x, k) is identified as the usual
Bose factor. The gPs+AP4 theory result can be obtained
by replacing A ~ A —gz/mz(z). From now on, bm2(z)
is assumed to have the form shown in (5.13). In this
case, one can define a modified energy-momentum tensor
which satisfies the conservation equations ignoring O(A )
corrections:

f(z, k) = f( )(z, k) + f( )(z, k), (5.15)

where the local equilibrium distribution f (0) (x, k) is char-
acterized by a local inverse temperature P(z) and unit
local four-velocity u„(x) (satisfying u„u" = —1),

f (0) ( k) 1]( —P(e)u„(z)k" 1) (5.16)

To make the decomposition (5.15) unique, one must
specify four conditions which serve to define the choice
of local temperature and velocity. The most convenient
choice is the Landau-Lifshitz condition [6,19], which fixes
the local temperature P(z) and the local four-velocity
u„(x) by requiring that f ( ) (x, k) produce the complete
energy How of the 8uid [19]. This means that

equilibrium behavior of interacting Quids. Consider de-
scribing the relaxation of a many-body system after a
small initial disturbance. In a few mean &ee times, vir-
tually all particles will have suffered numerous collisions
with other particles in the medium. Hence, Quctuations
in most degrees of &eedom will relax in a few mean &ee
times. However, an excess of a locally conserved quan-
tity cannot simply disappear locally; to smooth a long-
wavelength Quctuation in a conserved quantity, the con-
served quantity must be physically transported over a
distance comparable to the wavelength. For an arbitrar-
ily large wavelength, this will require an arbitrarily long
time. Consequently, for times long compared to the mean
free time, the relaxation of the system may be described
solely in terms of very long-wavelength, long-lived fluc-
tuations in locally conserved quantities. These are the
hydrodynamic Quctuations of the system. For a simple
Quid without an additional conserved charge, the only
locally conserved quantities are the energy and momen-
tum.

To solve the Boltzmann equation (5.4) in this near-
equilibrium hydrodynamic regime, the single particle
density f(x, k) may be expressed as a small perturbation
away from a "local equilibrium" distribution

Hydrodynamic excitations are arbitrarily long-lived,
long-wavelength Quctuations that characterize near-

&""(z)u-(z) = T(e)(z)u-(z)
X Vl X (5.17)
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d3kT""(x)—: fi l(z, k) k"k"+ g-""bm (x)(2') sEg
= [s(z)+'P(z)lu" (*)u"(*)+ P(z)g"" (5.18)

where T""(x) is the conserved kinetic theory stress-
energy tensor which is defined in Eq. (5.14), and

fi &(z, k) = n(z, Ei, ) = (5.20)

Here tg„, 1/na is the mean &ee path.
To produce an equation for the first order correction

f&~i(z, k), it is convenient to choose the frame where
u(x) = 0 at some particular position x, so that

is the "local equilibrium" contribution to the stress-
energy tensor, characterized by an energy density s(z)
and pressure 'P(x). In other words, the correction
f ~ l(z, k) to the distribution is required to make a van-
ishing contribution to T" u .

By itself, the local equilibrium density function
f ~ l (x, k) is not a solution of the Boltzmann equation. It
makes the binary collision term in the Boltzmann equa-
tion (5.4) vanish, while the convective derivative on the
left-hand side is nonzero (unless s and u„are constant).
However, if s(z) and u„(z) vary on macroscopic scales,
the size of the derivative IV'fi l(z, k)I/fi l(z, k) will be
small compared to any microscopic inverse length scale.
Hence, by adding a correction fill to the local equilib-
rium distribution function, one may find a solution to the
Boltzmann equation in which the size of the correction
fill(z, k) is small:

If"(* k)I - &r-.l&f"(»k)I « If'"(* k)I (5»)

and. to express the first order correction as

f i'i (x, k) = —n(x, Eg) [1+n(x, Eg)] P(z, k) . (5.21)

where P(z, k) is a slowly varying function to be deter-
mined by the (linearized) Boltzmann equation. Also, the
lowest-order temperature-dependent part of the mass can
be evaluated as

1 d3k
bm (x) = A — n(z) Eg)

2 27I

=A —T (x),24
(5.22)

ignoring subleading terms.
By equating the derivatives of the local equilibrium

density function f& )( zk) &om the left-hand side of
Eq. (5.4) with the terms linear in P(z, k) &om the col-
lision term, the following equation for P(z, k) in the
u(x) = 0 &arne is obtained:

d p'I(* R) =
4 f 2~ 2', l&4(p, s, p, 1)l'(2~)'&(p, +r, u, I)——

i=1
x[1+n(»E~)1 I.l+n(» E2)] n(» Es)/[1+n(z El )] [&(z k) + &(z p, ) —0'(z p, ) —&(»&,)]

5

+—
3 6 p. , k ' 2~ 'b p +p -p -p -p -k

i=1
x [1+n(x,Ej )] [1+n(x, E2)] n(x, E3) n(z E4) n(z E5)/[1+n(x, Ei, )]
x[&(»k)+&(»p, )+&(z &,)+&(z J,) —&(z J,) —&(z p, )]

5

p. , k 2' b p +p +p +p —p —k
i=1

x [1+n(x, E&)] [1+n(x, E2)] [1+n(x, Es)] [1+n(x, E4)] n(x, E5)/[1+n(x, EI,)]
x[4(* k)+&(z p, ) —&(z p, ) —4(* J,) —&(»p, ) —&(z &,)]. (5.23)

The inhomogeneous term on the left is a polynomial in momentum and derivatives of the fiow velocity u(z):

I(x, k) = p(z) —k —v, (z)(k +m h„,) V' u(x) + (k;k~ —b,~k ) [V';u—, (z)+'|7~u;(z) —sb;~V'. u(z)] .
2

(5.24)

Note that choosing the u(x) = 0 &arne does not imply that the gradient at x, V';u~ (x), is zero [but (9„u (z) = 0 since
u„u" = —1]. Also note that I(z, k) contains m2h„„not the thermal mass mz(z) = mz&„,+bm2(z). This agrees with
the result of the previous section [Eq. (4.99)] where the inhomogeneous term also lacked the thermal mass correction.
In simplifying the left-hand side (the inhomogeneous term), the equilibrium thermodynamic identity

dT/T = d'P/(s+'P),

for the local thermodynamic quantities, and the lowest-order energy-momentum conservation equations

(5.25)

This is a direct consequence of the form of the local distribution function f( ) IEq. (5.20)].
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0—&(z) = —[&(x) + &(x)]&.u(z)
Ot

(5.26a)

(5.26b)

in combination with the definition v2 = (OP/t9s) are used to rewrite the time derivatives of P(x) and u(x) in terins
of the spatial derivatives.

Given the form of the inhomogeneous function I(x, k), rotational invariance [in the u(x) = 0 kame] requires that
P(x, p) have the form

p(x, p) = p(x)A(x, p)|7 u(x) + (p p~ 3b;~)—B(z,p) V';u, (x)+V'~u;(x) 3b;, V—
' u(x) (5.27)

where p is the unit vector in the direction of p. Here, A(z, p) is the amplitude of the spin-0 (divergence) perturbation,
and B(x,p) is the spin-2 (shear) perturbation ainplitude. The solution in any other frame is, of course, related to the
given solution P(z, k) by a Lorentz boost. The linearized Boltzmann equation (5.23) is completely local in position;
the parameter x is simply a label and henceforth will be omitted.

The scalar process and the tensor processes decouple and can be studied separately. For the spin-0 component, the
integral equation for A is obtained by replacing I(x, k) in Eq. (5.23) by

Ip(k) = -'k —v, (k +m „.), (5.28)

and P(x, p) by A(p). For the spin-2 component, Eq. (5.23) simplifies to the inhomogeneous linear integral equation

p
k(k —3b) k ——,2~ ~ p +p —p —& 4 p, p, p, A:

i=i
x [1+n(El)] [1+n(E2)]n(E3)/[1+n(Ei, )] [Bi (k) + Bi (p3) —B~ (p2) —Bi (pl)], (5.29)

where Bi (p)—:(pip —3bi )B(p), since, as discussed earlier, the 2—4 scattering terxns are unnecessary for the leading
order shear viscosity calculation.

After solving these linear equations to find the first order correction P(z, p), the viscosities can be evaluated by
computing the first order correction to the stress-energy tensor and comparing it to the constitutive relation (2.1).
One 6nds

T(i) (z) = f ~ l (x, k) k"k"+ l g""bm2 (x)
CL k

d k= —P, n(Eg) [1+n(Eg)] k"k"~-'g""b m( )x
27C Jg

x
i

A(k)V' u(x) + — k;k, ——3'b;, B(k) )7;u, (x)+')7,u;(x) 23b;, V' u(z)—-
2

(5.30)

and [using the lowest-order result V';T~~~~(x) = (s+'P) |7;u~ (x)] obtains

)7 = — k n(Ei, ) [1+n(Eg)] B(k), (5.31a)

C =) f '." ]-'.k*+4&- (v)]v(~v))&+v(~v)I&(k)

d3k

= If [vk —v, (k +vv v„,)] v(Ev) )1+v(Ev)]A(k) . (5.31b)

In the last expression, the Landau-Lifshitz condition [Eq. (5.17)] Till(x) = 0 has been used to express the bulk
viscosity in terms of the same source term that defines the amplitude A(k) [cf. Eq. (5.29)].
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B. Equivalence of the Boltzmann equation to the field theory result

The Boltzmann equation result for the shear viscosity calculation, Eq. (5.29), and the formulas from the finite
temperature field theory, Eq. (4.39), are remarkably similar. In fact, once the free cut propagators are used to force
all momenta on shell, Eq. (5.29) will have exactly the saine form as Eq. (4.39), provided that the thermal dispersion
relation is used, and the scattering amplitude for temperature-dependent efFective excitations (4.47) is used in the
collision term.

With the identification of

D„(k) ++ (krak —shi )Zi "'(k)B(k) (5.32)

mg} M m h + 87K2 2 2

Eq. (5.29) for the spin-2 amplitude H(k) can be rewritten as

(5.33)

4
I =D (k) —(1— ")

(2 )
L o (k—p)~„,(p (5.34)

where Si„,(p) is the "free" phase space amplitude for an efFective single particle thermal excitation,

Sr„,(k) = sgn(k ) [1+n(k )] 2~b(k + m,„), (5.35)

and the kernel I.Bo}&, and the "self-energy" Z&
' are

LBoia. (k, p, ) = — 2, 2, &~(», , p2; ps, k) (2~) b(p, +p2 —ps —k)~r-. (p2) ~f-.(—ps), (5.36)

E1 '(k) = —(1—e ') f eLB e (k P)Sf .(u) (5.37)

These are identical to the kernel Lg„ii(k, p) and the self-energy Zy(k) in the previous section. To write the equation in
terms of a single function D (x,p), an exchange of labels 3 ++ 1 and 2 ++ 1 has been used, together with the fact that
the scattering amplitude squared l74l is symmetric under the time reversal Th.e only subtlety in deriving Eq. (5.34)
is that it is written in terms of on-shell momenta with both positive and negative energies while the Boltzmann
equation is written solely in terms of on-shell momenta with positive energies. The equivalence is possible because
the negative energy contributions vanish due to the kinematic conditions enforced by energy conservation.

With the use of the thermal mass in place of the zero temperature mass, Eq. (5.34), with the scattering amplitude

7(p, , p, », , k) = & —g'[&~(p, +p, ) + G~(», p, ) + &z(p—,—k)], (5.38)

Dp(k) m ZB~ "'(k)A(k) (5.39)

is made, @(x,p)'s on the right-hand side of Eq. (5.23) are
replaced by 2 (to account for both the positive and the
negative energy on-shell momenta), and integrated over
dskn(Ei, )[1+n(Ei,)]/(2')sEi„ the result on the right-
hand side is identical to (bsl(1 —Kb„ig)lb5) = —(hClb5)
in Eq. (4.78). The integral equation (5.23) itself is not
strictly identical to Eq. (4.66). Equation (4.66) includes
additional pieces in the number-conserving parts of the
kernel. However, the number-changing parts of the two

has exactly the same structure as Eq. (4.39).
For the bulk viscosity, the equivalence can be shown

by first noting that the right-hand side of the integral
equation (5.23) also has a near zero mode-correspond-
ing to letting P(x, p) be a constant, or integrating over
d kn(E~) [1+n(Ei,)]/(2m. )st, . In particular, if the iden-
tification

d3k( = P Ip(k) n(Eg) [1+n(Ei,)] A(k)

(I~ lb, ) (b, II~)
(bClb5)

(5.4O)

where (b5
l
Ig ) and (h C

l
b5 ) are again given by Eq. (4.77)

and Eq. (4.78).
As stated earlier, the Boltzmann equation for the fun-

kernels in Eqs. (4.66) and (5.23) are the same.
The existence of the near-zero mode implies that the

integral equation for the spin-0 component A is again
dominated by this near-zero mode component. By us-
ing the same arguments as in Sec. IVC, the leading or-
der bulk viscosity can be again written in terms of the
near-zero mode matrix element. Since Ip(k) is an even
function of k, the definition of the inner product of two
functions (4.22) can be used to express the bulk viscosity
as
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damental particles ceases to be valid at temperatures
high enough to make the mean &ee path smaller than the
Compton wavelength of the underlying particle. Thus, it
may be surprising to 6nd that a form of the Boltzmann
equation remains valid at all temperatures, provided the
mass parameter is interpreted as the mass of the effective
thermal excitation and a temperature-dependent scatter-
ing amplitude is used.

It is interesting to consider the effect of using the ther-
mal mass and the thermal scattering amplitude in various
temperature ranges. At low temperatures {T«m~b„,),
the thermal correction to the mass [cf. Eq. (5.13)] is com-
pletely negligible. Consequently, for the leading order
calculation, thermal quantities are unnecessary and the
viscosities may be calculated by using the kinetic the-
ory of the nonrelativistic particles. If the temperature
is in the range m~b„, & T&&m~b„, /~A, most particles
are highly energetic, but the thermal corrections to the
mass and the scattering amplitude are negligible. Conse-
quently, the viscosities at these temperatures can be cal-
culated. by the kinetic theory of relativistic particles with
the zero temperature mass and the scattering amplitude.
At very high temperatures T)&m~b~, /A, all mass scales,
including the cubic coupling constant, other than temper-
ature may be ignored. Hence, both the shear and bulk
viscosities may be calculated. &om the kinetic theory of
massless excitations with only the quartic interaction.

The most interesting region is at intermediate temper-
atures T = O(mob„, /~A). Since this is much larger than
mphy and the typical size of loop momenta at high tem-
perature is O(T), one might expect that the replacement
of zero temperature mass by the thermal mass should
have a negligible efFect. This is true for some observ-
ables, such as the shear viscosity. However, for the bulk
viscosity the contribution &om momenta of O(mob) is not
negligible compared to the hard momentum contribution.

To understand the behavior of the bulk viscosity, erst
note that the classical scale invariance requires the clas-
sical bulk viscosity to be proportional to m4b, /T [9].
When T = O(m~b„, /v A), the effect of quantum me-
chanically broken scale invariance is negligible compared
to the m~b~, . In a scalar gp +A/ theory, the 2—3 am-
plitude for soft momenta is 7s ——O(Ag/mt2b). Hence,
the expression (b'Clbs) above is a nontrivial function of
the dimensionless order 1 ratio g2/Amt2b. As discussed
in Sec. IVD, (hClbs) = O(A5~ T4) in this temperature
range. Consequently,

where db„~g is a dimensionless function of order 1. The
coeKcient function db„~g cannot be calculated &om the
massless scalar theory. Thus, including the thermal cor-
rection to the mass is essential to calculate the correct
lead. ing weak coupling behavior of bulk viscosity when
T = O{mpby, /~A).

If the temperature is high enough, T » m~b„, /A, the
quantum scale anomaly dominates the effect of the phys-
ical mass term, and the leading weak coupling behavior
of the bulk viscosity is identical to that of the mass-
less theory with only the quartic interaction. Because
of the scale anomaly, (bs le) is nonzero but proportional
to the O(A ) P function, (bslI~) = O(P(A)). Then since
(hClbs) = O(AsT ), ( = O(ATs) when T )) m~b„, /A.
Note that at this temperature, O(ATs) is larger than
O(m', „„./A' T).

In contrast, the shear viscosity is insensitive to the
soft momentum contribution. For the typical momentum
k = O(T), g G(k) = O(g2/T ) & O(A ). Hence, in this
case, the scattering amplitude is dominated by the quar-
tic interaction term or 7 A. Then, the'dimensional
analysis demands that

(6.42)

where d,h, , is a pure number of ord.er 1 which can be
calculated &om the kinetic theory of massless excitations
with only the quartic interaction.

VI. CALCULATION OF VISCOSITIES

(I~ Ibs) (bs II~)
(bClbs)

(6.1)

Among the factors in Eq. (6.1),

d3l
(bs lIp) = [1+n(E))]n(E)) Ip(E), I) (6-2)

The purpose of this section is to apply the results of
previous sections to the calculation of the bulk and the
shear viscosities in the AP and the gP +A/ theory.
We begin with the bulk viscosity. Recapping the result
(4.76), the leading order bulk viscosity is given by

, , '
db„u, (g /Am, '„)[1+O(mob/T)], (5.41)

reduces to a one-dimensional (1D) integral over the mag-
nitude of the momentum, and can be easily evaluated
numerically. The denominator for the A/4 theory,

d3l;
(hClbs) —= 2 s dcrq2~345s 'v]2 n(Ey) n(E2) [1+n(Es)] [1+n(E4)] [1+n(Es)] [1+n(Es)]

i=1
(6.3)

The power counting performed in this paper is also valid for the massless scalar theory since the excitation in this case
develops nonzero thermal mass of O(~AT) at nouzero temperature.
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with the differential cross section

d~12-+3456 =
6

~ 6((&;))~'(2~) ~(&1+&2—&3
—

&4
—&,—&,) /(4E182~124 ~ )

'=3
(6.4)

has a coxnplicated angle dependence through the scattering cross section 7q. Using the energy-momentum-conserving
h function and rotational invariance, 4 of the 18 dimensional integrals involved in calculating (hC~bs) can be done.
The remaining 14 integrals involve 5 integrations over the magnitudes of momentum and 9 angle integrations. Because
of rotational invariance, one of the solid angle integrations can be trivially done, reducing the expression to a 12-
dimensional (12D) integral which must be evaluated numerically. The denominator for the g$3+AP4 theory is similarly
given but with the more complicated 2—3 scattering amplitude [cf. Eq. (4.85)]. In this case, a 9-dimensional integral
must be carried out numerically.

In contrast to the bulk viscosity calculation, the shear viscosity calculation requires solving an integral equation.
Here, the integral equations derived in Sec. IV for the effective vertices are further reduced to one-dimensional integral
equations, and the explicit form of the A/4 theory kernel is evaluated and briefiy examined. The shear viscosity in
terms of the effective vertex D is given by

g = — I (k) n(k ) Sx„,(k) (6.5)

where D satisfies

4
I (k) = D (k) —(1—e —"

) Lx„xx(k, p) Sx„,(p) (6.6)

The kernel Lf„~~ is

Lx„xx(k, p) = — Sx...(lx) Sx„,(—l2) (2~) h(tx —l2+p —k) 7 (L„p;/2, k) (6.7)

and involves the gP +A/ tree level scattering amplitude

~(Lx, p; L2, k) = & —9' &"(&1+p)+&"(&1—k)+ G"(&1—&2). . (6.8)

The imaginary part of the self-energy Zx(k) is

4

Zx(k) = —(1—e -"
) Lx„xx(k p)Sx„,(p—), (6.9)

where the &ee cut propagator contains the thermal mass,

(p) (1+n(p )] sgn(p ) (2~)h(p +~th) (6.10)

The inhomogeneous term I (k) = kxk- ——bx k2 represents an insertion of the traceless stress tensor

=0~$8 P —'bx BqgO"P. - (6.11)

Equation (6.6) is a set of five independent (due to the traceless symmetric spatial indices) three-dimensional (3D)
(since all xnomenta are on shell) linear integral equations. Using spatial rotational invariance, this may be further
reduced to a single one-dimensional linear integral equation. In Sec. IV, the efFective vertex D (p) was shown to be
an even function of the momentum. Isotropy then requires that D (p) have the structure

D-(p) = (pxp- ——,'hx-)D "-.(]pl) (6.12)

A

where p is the unit vector in the direction of p. Contracting Eq. (6.6) with kxk and carrying out the &equency
integration with the help of the on-shell h function yields a single one-dimensional integral equation for ,Dh(] ])p:

(6.13)

where the kernel N,h, is an angular average of the 3D kernel L f



3626 SANGYONG JEON 52

))'. ,s, (()(c, )p() = ()—e ~ ') /dgidc osd (cos 8 —s)

x Lf)dii(Eid) k; E„,p) (e~ "—1) —Lf„ii(Ei)) k) E—I)) p) (1 —e ~ ~) (6.14)

Here, 0 is the angle between the vectors k and p. As before, the on-shell thermal width I„is de6ned as

~1(E~ p) (6.15)

N.i-.(lkl Ipl) N.h-. (lpl Ikl) If n(E)„k; E„,p)sincesymmetric,Note that N, g, , is
= e~~@" + ~)L „(E„,p;E, k).

Finally, in terms of the scalar function D,i, ,(lkl), the shear viscosity is given by the simple integral

)7=, dlkl, n(E), ) [1+n(E),)] D.h, , (lkl) .
60vr2

A:

(6.16)

The final one-dimensional integral equation (6.13) must be solved numerically. Clearly, one must first evaluate
the full gg +A/4 theory kernels N,i„, [Eq. (6.14)]. With both cubic and quartic interactions, the full "rung" L~„)i
[Eq. (6.7)] is too complicated to compute analytically. However, in a pure AP theory, the integral is reasonably
straightforward and one Gnds

d4/
ii(k p): 4 Si'z) ) ( 1) Sfpe) (l+k p)

A2[l+n(k —po)] 1 —exp[ Pr+(k —p)]-
8~Plk —pl

— 1 —exp[ —Pr (k —p)]
8((k-p)') ln

sinh[Pr+ (k—p) /2]+ 8( (k p) 4m, „)ln (6.17)

where

1
r~(k —p)—:— Ik—pl 1+4m'&/(k —p)2 6 (k —p ) (6.18)

The term involving 8((k —p) ) in (6.17) represents the result of integrating over two on-shell b functions with Bose
factors n(Ei)[l+n(Ei+i, „)]. These statistical factors indicate that this term describes the transfer of an incoming
momentum k —p to a thermal excitation with momentum l, producing another on-shell excitation with four-momentum
(Ei+i, „,1+k—p) with a stimulated emission factor of [1+n(E(+i, „)].

The second term involving 8( —(k —p)2 —4m~h) describes the usual process of creating two propagating on-shell
particles with total invariant mass larger than twice the mass of the initial single particle excitation. It di8'ers &om
the zero temperature result

y4
lliil Lg ii(k p): A 8(k p ) 8( (k p) 4m&h& ) 1+4m h /(k p) /167I' (6.19)

only because of the stimulated emission in the 6nal state.
To solve the integral equation (6.13) numerically, the magnitudes of momenta Ikl and Ipl need to be discretized

in order to turn the integral into a finite number of coupled linear equations. Given the explicit form of the AP4
4

theory kernel L&„&&(k
—p), evaluating the coefficients of the linear equations requires numerically computing 2 one-

4
dimensional angle integrations, one for the angular averaged kernel N~&, ,(lkl, lpl), and the other for the self-energy

y4
Zi (p) [cf. Eq. (6.9)]. In contrast, for the ggP+AP theory calculation, evaluating each coefficient of the final matrix
equation requires first computing 2 two-dimensional angular integrations since Li„ii(k, p) is no longer just a function
of k—p due to the nontrivial structure of the scattering amplitude.

4
Although the angular integrations involved in N, h, , are too complicated to carry out analytically, some qualitative

behaviors of the kernels can be easily found. One property of the kernels, important in carrying out numerical analysis,
4

is that N, &, ,(lkl, Ipl) has a discontinuous first derivative across Ikl = Ipl. To see this, consider, for example, the
y4expression of N, h, ,(lkl, lpl) in Eq. (6.14). If the angle 8 is defined to be the angle between two vectors k and p, the

azimuthal angle integration in Eq. (6.14) is trivial. For the cos 8 integration, it is convenient to chaiige the variable to
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y—:lk —pl. The Jacobian of this variable change cancels an explicit 1/lk —pl factor contained in L& . Then Eq. (6.14)
may be rewritten as

I~I+la I

~.~...(lkl Ipl) = du[I" (E-I, E,u) —F+(Ea, E y)]
ll~l —I~i l

(6.20)

4
where I' (EI„E„,y) contains the logarithmic part multiplying 8((k—p) ) in Lf„ii with (cos 8—s), and I"+(Ei„Ep,y)

4
contains the logarithmic part multiplying 0( —4m~2& —(k —p)2) in L&@„ii with (cos2 0—si).

DifFerentiating with respect to lkl yields

~ k ~.i,...(lkl Ipl) = [F' (E~ -E, Ikl+II I) —I"+(E~,E, Ikl+Ipl)3

—sgn(lkl —
Ix I) [&-(E~ Ep llkl —

Ix II) —I"+(E~ Ep, llkl —lpll)]
I~i+ fr I

+ du [I" (E~ E-p &) —I"+(EI Ep &)].
I l~l —

lx I I

(6.21)

Note that in the second line the signature of Ikl —Ipl explicitly appears as a result of differentiating the lower limit
of the integral. Since F~(Ei„E„,Ilkl —lpll) is nonzero in the Ikl —+ lpl limit, this implies that the first derivative of

44
K,&, ,(lkl, Ipl) has a discontinuity across lkl = Ipl.

VII. NUMERICAL RESULTS

A. Choices of parameters and discretization method

In this section, the 1D integral equation (6.13) reproduced here for convenience,

D i- (Ikl) = k'+
6 2, E,q ~(Ep) [1+~(Ep)l~i- (Ikl IPI) D i*- (IPI)

is numerically solved to obtain the shear viscosity in the A/4 theory, and the integrals involved in the bulk viscosity
calculation,

(i~lb. )(b. li~)
(~bulbs)

(7.2)

are numerically carried out. First consider the shear viscosity calculation. By discretizing the magnitude of momenta,
the integral equation can be turned into a finite set of linear equations which can be straightforwardly solved by
computer.

The discretization method chosen is the lowest-order two-point Newton-Cotes formula [20]

+N+1 =3 N —1

d*f(*) = 2I:f(*i)+ f(~~)]+ ).f(*') + &((»)')
0 a=2

where Lx is the distance between two data points. The
reason behind choosing this simple discretization is fol-
lowing: Because of the discontinuity in first derivatives
of the kernel (a kink), second derivatives at Ipl = Ikl
are not well defined. Hence, in choosing a discretization
method, higher-order formulas are not necessarily more
useful than the lowest-order formula.

To successfully implement the numerical analysis, a
suitable parametrization must be chosen so that the im-
proper integrals in the integral equations become proper
ones. The parametrization used here is basically a log-

in(el~ —f(IPI)1& + 1)
in(eM~ + 1)

(7.4)

f(lpl) = Ipl — + c&.
lpl+ s

The new parameter z varies from 1 to 0 as Ipl varies
Rom 0 to oo. The constants c, M, and p are adjustable

arithm of a Fermi distribution with chemical potential
M:
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FIQ. 27. A typical form of the Jacobian Ida/dIpll Here,
the parameters are M = 50T, p = T.

FIG. 29. The fit for the upper curve, which rep-
resents numerical results for th he s ear viscosity, is
g(mth/T) = 3040(T /A )(1.0+ 0.596m g/T + 0.310m /T ).
The fit &ore t for the lower curve, which represents the one-loop cal-
culation result, is go(mfa'/T) = 733(T /A )(1.0+ 1.33mqh ~T

parameters.
The parametrization (7.4) is chosen for the following

two reasons: (a) to account for the soft-momentum con-
tributions there must be enough data points near IpI = 0;
(b) the kink in the kernel implies that the contribu-
tion from the momenta IpI IkI cannot be ignored
even for large IkI. This implies that a discretization
that sparsely samples large momentum values is not suit-
able since it will miss the nonnegligible wiggles in those
regions. One must choose a parametrization that dis-
tributes data points more or less evenly in momentum
space until the cutoff is reached. As shown in Fig. 27
the Jacobian (which may be interpreted as the density of
sampled points when Ax is constant)

(A4T

(10g 4
phys

22

18

1e

14

10

8
0 1.5 2.5 3 3.5 4 4.5 5

1+cl"/(Ipl+ p)'
dIpI (1+ e[~(lz 1)—MjP) ln(1+ eM~)

shows that these two conditions are satisfied by the
parametrization given in Eq. (7.4). The positive param-
eter c controls the height at IpI = 0, and thus controls
the percentage of data points sampled below IpIP =P)
where p is usually chosen to be O(mth). In the present

mth/T

FIG. 30. The plot of the numerical results for the bulk
viscosities from resummed ladder diagrams. The fit is
h((A /m h, ) = 12.9+ 1.43(mth/T) + 1.36 ln(mug/T). The
error bar is typically about 1% of the value of (.
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1.eem-
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FIG. 28. Numerical solutions for D,q, ,(IkI) for
mu, /T = 0.05, 0.5, 1.5.

FIG. 31. The plot of the numerical results for the bulk
viscosities from resummed ladder diagrams for m~h & T.
The fit is gA T/m h„, ——1.4 x 10 [(mph/T) + 0.18(mfa'/T)

high temperature behaves like mhr, /A T as expected. , The
error bar is typically about 1% of the value of g.
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calculations, c is chosen as

2(M —10@)
9p

(M ) 10@,) . (7.7)

This particular choice of c puts about 10% of the total
number of data points below ~p~ = p.

Once ~p~ exceeds p„ the Jacobian is almost constant
until ~p~ = M is reached. This implies that the data
points are evenly distributed throughout the momentum
range p &

~p~
& M. Since the Jacobian drops ofF very

sharply once the momentum exceeds M, one can control
the largest momentum sampled by choosing the value of
M. Usually the largest momentum sampled is the size of
M. Any M much larger than any of the mass scales in the
integrand will do. For the present calculation, the values
of M range &om 30T to 100T as the mass increases.

efFective vertices, satisfying coupled linear integral equa-
tions. These equations were reduced to a single integral
equation, which was then shown to be identical to the
corresponding result obtained &om a linearized Boltz-
mann equation describing effective thermal excitations
with temperature-dependent masses and scattering am-
plitudes. The effective Boltzmann equation is valid even
at very high temperature where the thermal lifetime and
mean &ee path are short compared to the Compton wave-
length of the underlying fundamental particles.

Spatial isotropy allows one to reduce the dimension
of the resulting integral equations to one dimension, at
which point they must be solved numerically. Numeri-
cal results for the viscosities in a scalar A(t)4 theory are
reported.
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VIII. SUMMARY
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APPENDIX A: THERMAL PROPAGATORS

The imaginary-time single particle propagator is

1
Ga(k, iur„) =

ur„2+ k2+ m,'„+Z@(k, ia)„) ' (A1)

d(d p(k, a))

270 4) —zcd~
(A2)

Hence, the single particle spectral density is obtained by
analytically continuing t ~ in &equency and taking the
discontinuity across the real axis,

p(k)—:—i[Ga(k, k +is) —Ga(k, k —ie)]

+k2 + m2 + Z(I(.) k2 + m2 + Z(k)y

2ZI (k)
~k2+ m2„+ Z(k))

where

(AS)

where Za(k, ia) ) is the full Euclidean self-energy, ur is
the discrete &equency 2vrnT, and mt, h is the thermal mass
containing O(AT2) thermal corrections. The Euclidean
propagator has the spectral representation

Z @(k, k +ie)—:Z (k) = Z~ (k) —iZI (k) (A4)
Hydrodynamic transport coefficients can be evaluated

&om first principles in a weakly coupled scalar field the-
ory at arbitrary temperature. Using the diagrammatic
rules derived in [5], it was shown that an infinite num-
ber of diagrams contributes to the leading weak coupling
behavior of the viscosities. The dominant diagrams were
identified by counting the powers of coupling constants,
including those generated by near "on-shell" singularities
cutofF by the single particle thermal lifetime. An infi-
nite class of cut "ladder" diagrams was found to make
the leading order contributions. The geometric series of
cut ladder diagrams was summed by introducing a set of

is the analytically continued Euclidean self-energy.
The real-time propagator (7 [$(x)P(0)]) used in the

cutting rules is

~(") —= f I'+~(~)t e(lkl ~)
I

(A5)

By changing the integration variable cu to —u and adding
the two expressions together, the real-time propagator
can be reexpressed as
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G(k) = —
2 2 p(I~I ~)

I k, . +, . I+ - coth(&k'/2) &(k)
i du) ( 1 1 l 1

= ——[Ga(k, k +is) + Ga(k, k —ie)] + —coth(Pk /2) p(k)
2 2

1+n(k ) . n(k )
k +m +Z(k) k2+ m +Z(k)* '

where the fact that the spectral density p(k) is an odd function of the frequency is repeatedly used.

(A6)

APPENDIX B:EXPLICIT FORM OF THE LADDER KERNELS

To analyze the zero momentum, small &equency limit of the viscosities, a detailed understanding of the structure
of the ladder kernel K is needed. The 4x4 kernel is a product of two factors, K = MX. First, consider the %$4 theory
kernel. The 4x4 rung matrix is

JH(k —p) —=
) —iC(k —p)

0
0

0 0
iC(k —p)' 0

0 L(p—k)
0 0

0
0
0

L(k —p) )
(B1)

which has entries consisting of the uncut rung

.A2 d4/
C(k —p)—:—i.—

2 (2')4 G(l+k —p) G(l)

and the cut rung

d4l
L(k —p)—:—

2 (2vr)4
S(l+k —p) S(—l) .

As before, G(l) is the uncut propagator defined in Eq. (A6) and S(t) = [1+n(l )]p(t) is the cut propagator.
The side rail factor of the ladder kernel is given by

(B2)

(B3)

&(p, v p) =—( G(p) G(~—p) S(—p) S(p ~) G(p) S(p—~)
S(p) S(~-p) G( p)'G{p -~)* S(p) G(p ~)'
G(p) S(~ p) S( p)—G(p ~)'-G(p) G(p ~)'

( S(p) G(~—p) G(—p) S(p—~) S(p) S{p ~)

S( p) G(q —p) —)
G(-p) * S(~-p)
S(-p) S{~-p)

G(—p)'G{~—p) 3

(B4)

When the external momentum vanishes, the matrix X(p, —p) can be written as a sum of four outer products

&{p p) =~(p)u (p-)+h(p)~ (p)+~(p)& {p)+I {p)& (p)

where

(B5)

(p) = (1, 1, (1+e " ~)/2, (1+e" ~)/2) [1+n(p )] n(p ) ~1(p)
'

u~(p) = {1,1, (1+e& ~)/2, (1+e-~ ~)/2),

h (p) = (0, 0, 1/4, —e~ ~/4) ~I p

(B6)

(B7)

~ (p)

(p)

. 6 (p)

~ (p)

& (p)

(0, 0, 1, —e "~)
{1 e " ~ e " ~ 1) [1+n{p')]'/[p'+ mp~y. + ~(p)l'

( 1 s'P 1
—s 'P)—

(1 e" ~ 1 e" ~) n(p')'/[p'+ m', h,.+ ~(p)*]'

(—1, —e~~, —e" P, —1)

(B9)

(B10)

(B11)
(B12)

(B13)

In Sec. IV it is asserted that the hj+ part is orthogonal to the inhomogeneous terms, and if T = T—hj, then
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j+MX = XMh = 0. Showing that h(p) and j(p) are orthogonal to the inhomogeneous terms Z~(p) and z~(p) is
trivial because both h(p) and j(p) have vanishing first and second elements, while the only nonzero elements of X~(p)
and z~(p) are the first and the second ones, respectively. To show that hj is orthogonal to MW and XM, first
note that h(p) is orthogonal to u(p), ((p), and g(p), and that j(p) is orthogonal to m(p), e(p), and p(p). Hence,

P h = j+8 = 0. Because of the relation L(k —p) = e(" " l~L(p —k), h(p) and j+(p) are "eigenvectors" of the rung
matrix:

M(k —p)h(p) = (0, 0, L(p k), ——ei' ~L(k —p))
0 r p(p)

4Z, (p)

= (o o 1 —."'&) L,( -k) P(P)
7 ) ) p 4g ( )

and

oc h(k)

(k)M (k —p) = (0, 0, L(p —.k), —e " ~L, (k —p) )
= (o, o, 1, —e-~ ~)L(p—k)
~ j (p) .

(814)

Hence, j MT = TMh = 0.
In Sec. IV, the relation (4.15) for the A/4 theory rung, repeated here,

Kpp(k, p) = u (k)lH(k —p)ur(p)

= (1—e "~)L(k—p) Sr-.(p)/2~r(p)

was important in simplifying the expression for the pinching pole contribution. This relation can be proved as follows.
Let tv(p) = (1, 1, (1+e " ~)/2, (1+e" ~)/2). Then,

u (k)M(k —p)io(p) = 21mC(k p) + (—1+e" ~)(l+ e "~)[L(k—p) + e (" " l~L(p —k))/4
= (1—e " ~)L(k—p)(e" ~ —1)/2,

where to obtain the last expression, the optical theorem

Im C(k —p) = [L(k p) + —L(p k—))/2—
and a symmetry of the cut rung,

d t
L(p—k) = — Sr„,(l+p k) Sr„,(—I)—

2 (2m)4

0
A, o $4/= —e(" " ~~ S&„,(l+k p) S&„,( I—)—

2 (2vr)4

= e(~'-"'~~L(k —p),

(817)

(818)

(819)
are used. The second expression in Eq. (819) is a consequence of the property of a cut propagator Sr„,(—k) =

0
e Sr„,(k). When combined with the remaining factors forming m(p), this yields Eq. (816). Note that the real
part of C(k —p) makes no contribution to the pinching pole part of the rung matrix.

For the ggP rung matrix representing the straight single line rungs, exactly the same arguxnent applies to yield

Ki;„,(k, p) = u (k)Mi;„,(k —p)m(p)
= g (1—e "

) S(k—p) Sr„,(p)/ g(p), (82o)

where the rung matrix M~;„,(k —p) is now given by replacing iC with —gsG, and L w—ith g2S. And also in place of
the optical theorem for the imaginary part of C, the straight rungs satisfy

Re G(k) = [S(k) + S(—k))/2. (821)

For the analogous relation for the box subdiagram rung (4.37), reproduced in Eq. (823) below, it is convenient to
consider the "rung" matrix generated by the (full) box subdiagram,

d4i
Mr„u b „(k,p) = Mi;„,(k—l)W(l, —l)Mi;„,(I—p), (822)
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illustrated in Fig. 32. The box subdiagram rung Mb~'„l(k, p) is the nonpinching pole contribution of Mr~„'&Ib „(k,p).
The separation of the pinching pole contribution and nonpinching pole contribution can be made after contracting
with u and ul. Since the line subdiagram rung matrix is diagonal, contracting with u(k) and ul(p) produces

d4&
u (k)Mf„u b „(k,p)rv(p) =

4 u;(k)MI,.'„',(k —l)X '~ (l, —l)JHI,„,(l—p)cv~(p) . (B23)

To simplify this expression, first, note that the elements of the rung matrix satisfy

~r ub ("Ip)(14)

~r ub (—"P)(24)

~r ubo (—"p)
(41)

~r ubo (—" P)
(42)

~r ubo (—p)
(43)

~fuu b»(—I P)
(33)

~r ubo (k P)&Op (13)

e — Mr~&l box(kI p)&Op (23)

@Op (31)~rub (—"p)
A;Op (32)~r ub (" P)

e~-"'+~'l~ mI„",,',.„(k, ),
~rubo (—"P)(

0 I 0)p (44)

(B24a)

(B24b)

(B24c)

(B24d)

(B24e)

(B24f)

due to the corresponding property of the cut propagator 8(—p) = e " l S(p). Using the fact that the imaginary part
of an uncut diagram is given by the sum of all possible cut diagrams divided by a factor of (—2) [cf. Eq. (3.11)],one
finds

u (k)Mr„u b»(kI p)m(p) = (1—e —"
) [Mr„&& bo„(k, p) —e" Mf„ll b»(kI p)](e"——1)/2 . (B25)

Note that since the &equency integral is not yet carried out, this relation is valid for both the pinching pole contribution
and for the nonpinching pole contribution.

For the full gPs+A$4 theory rung matrix, the relations (B24) can be again shown to hold. Hence, relation (4.40)
also holds:

(k)~r u(k p)~(p) (1 e ) ~f 11(k P) ~f (p)/2~I(p) (B26)

where

LIf 11(k p) — ~f u (k P) e Mf ll (k, p) . (B27)

momentum-energy conservation. To see this, one must
know the contribution of a momentum-energy density
T " insertion. The standard stress-energy tensor is given
by

APPENDIX C: ZERO MODES OF
LADDER KERNELS

T""= 8"$0"P+ g""8, (C1)

The integral operator (1—iC), where K
has four zero modes as u ~ 0 corresponding to the

where the Lagrangian is given in Eq. (1.1). The momen-
tum density T ' = De$8'P contains only the "kinetic"
part, and hence its contribution in the zero spatial mo-
mentum limit is simply

z* (k, ld —k) = (0, k'(k —(u/2), 0, 0), (C2)

where k is the loop momentum Bowing through the lines
connected to T ' and u is the external &equency.

The energy density on the other hand contains both
the kinetic part Bo$80$ and the Lagrangian part. The
contribution &om the kinetic part of T in the zero spa-
tial momentum limit is again sim. pie:

z„;„(k,(u —k) = (O, k (k —cu/2), 0, 0) .

FIG. 32. Diagrammatic representation of the rung matrix
~full box(k p).

The contribution of a Lagrangian insertion can be cal-
culated by applying the method used in the main text
[cf. Eq. (4.91)]. The result up to O(A ) is
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where

Z(k)'—:—{[1+n(k )]Z(k)' —n(k )K(k)}

is the uncut two-loop self-energy.
Given the form of z' and z = z&,.„+z&, a tedious but

straightforward calculation yields

V"(k, ur —k) =—z"(k, ur —k)W(k, ur —k)

de= g" (k, ur —k)/(u-
(2vr) 4

g"(p, ~—I)
x JH(p —k) X(k, ~—k)/(u

= g"(1 —K)/~, (C6)

where the row vector g" is given by

z~o(k, ~—k) = —(0, Z(k —(u)', 0, i[l+n(to —k ))Zr(to —k))

(C4)

1
+A = ~A. ~1 —K

for momentum density correlation functions,

1
V"17~ = g"(1 —K) T~

1 —K

(C10)

momentum tensor, these zero modes can be used to ver-
ify that correlation functions of the energy or momentum
density vanish in the zero spatial momentum limit. Full
correlation functions involving T" must vanish as the
momentum goes to zero since the conservation equation
relates the time derivative of a conserved "charge" to the
divergence of its current. Hence, for example, the corre-
lation function of two momentum densities must behave
like k2 in the small momentum, finite &equency limit. In
terms of the effective vertex, this implies that

(C9)

for an arbitrary (nonsingular) external operator A. Since
the effective vertex 'V~ can be expressed as

g" (k, (u —k) = k"(0, i[G(k —(u)'
—G(k)'], —iS(k), iS((u —k)) .

Since z"T is 6nite as u goes to zero,

(C7)
=g ~A/~=0~ (Cll)

since as explained earlier g"X~ ——0.
For the pinching pole part of the integral equation,

lim g~(1 —K) = 0 .
co~O

(c8) Irr(k) = D~(k) —(1—e —"
) Lr„u(k, p)

—k P
(2z.)4

Hence, in the zero external momentum, zero frequency
limit, the operator (1 —K) has four left zero modes given
by g+. Note that the 6rst element of g& is always zero
for any ~. Hence, trivially, g~Z~ ——0 for all u. This
implies that the inhomogeneous term is orthogonal to
the zero modes of the operator lim (1 —K).

Since V" corresponds to an insertion of the energy-

D~(p)x Sr„(p) (C12)

the (left) zero modes are

b„(k) = k„[l+rt(k )] Sr„,(—k) . (C13)

To verify this, note that [1+n(ko)] = 1/(1 —e "~) can-
—A;eels the prefactor (1—e " ~), and

f d4k 1 d4k d4l d41
(—k) Lr u(k, p) = — (2 ) b(l +p l k) ]7 (l—, p—; l, k)]

rree( ) free( g) free( 4)

3 2n. 4 Sr„,(—k) Lr„u(k, p)

= 2p~~r(p) "(p'), (C14)

where to obtain the second line, the original expression
is averaged with two equivalent expressions differing by
the k ~ —lq or k ~ l2 labeling changes. The scattering
amplitude is, as before,

Q(l„p; l„k) = A —g' [G&(l,+p) + G&(l, —k)
+Grr (l, —l, )] . (C15)

Hence, when b&(k) is applied to the right-hand side of the
above integral equation, the two terms in the right-hand
side cancel each other exactly.

The right zero modes of (1—WJH) f" can be also obtained
in an entirely similar may. They are

f"(k, cu —k) = k"(i[G'(k) —G(~ —k)], 0, i S(u) k), iS(k)) . — —

APPENDIX D: STRESS-ENERGY TENSORS
AND THE SPEED OF SOUND

In this Appendix, the equilibrium A/4 theory stress-
energy tensor is calculated, including the O(AT ) cor-
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g
2

A —+A—
mph

(D1)

rection. %Then the cubic interaction term is added to
the Lagrangian, to this order, one only has to make the
change

the O(AT4) thermal correction. Hence, to calculate the
pressure through O(AT4), only the nonzero temperature
contribution needs to be examined. For the one-loop di-
agrams in Fig. 33, the nonzero temperature contribution
is obtained by a simple replacement of

In equilibrium, the stress-energy tensor is diagonal in the
comoving &arne:

1 n(Ei ))~ ~2+E2
n=o A:

(D6)

(T""),~ = diag(s, 'P, 'P, 'P) . (D2)

Then because of the equilibrium thermodynamic identity

where n(Ei, ) is the usual Bose factor, and the energy
here is E& = k +m~h. The thermal part of the pressure
is then

s=T'
I

—V I,, a ~1
BT qT )

d k
n(E„) (-', k'+ -', bm,'„),2~ sEg (D7)

only the pressure needs to be calculated.
The easiest way to calculate the correction to the &ee

particle pressure is to sum the contribution of all con-
nected vacuuin graphs (see, for example, Ref. [21]). To
express the pressure in terms of the thermal mass, the
Lagrangian may be rewritten as

—g = -y( —a.' —V'+ m,'„)P+ —,P' — '"P', (D4)

where mth
——m0+bmth. To the lowest order, the zero

temperature mass m0 may be identified as the physi-
cal mass mphy Then the first order correction to the
&ee particle pressure arises &om the diagrams in Fig. 33
where the term 2bm&hg in the Lagrangian is treated as
an additional interaction term. In Euclidean space, the
free particle pressure through O(A) is

d3k k2

(2m. )s 3 u)' + k'+ m2

where the fact that

A d3k
bm,'„= — n(Ei, )2 2x

A d3k

(2 ),Ikl
(I I)

dlkllkl )
0 s=1

T2 ) Zv2

4m 2 82 24s=1
(D9)

to lowest order is used to simplify the expression.
To evaluate the pressure (D7), consider first the one-

loop thermal correction to the mass (D8). Since bmt2&

involves an explicit factor of A, only the leading order
term is needed. By setting the mass in the integrand
to zero, the leading order contribution to the integral in
Eq. (D8) can be evaluated as

d k 1

8 (
) - (2vr)s (u'+k'+m2 )

1
2 ) - (27r) u)' g k'+ m

(D5)

where ~ is the usual discrete Euclidean &equency.
Using standard techniques (see, for example, Ref. [22]),

the sum over ~ can be separated into the zero tempera-
ture contribution and the nonzero temperature contribu-
tion. At high temperature, the (renormalized) O(m4&, )
zero temperature contribution is negligible compared to

neglecting subleading terms suppressed by O(~A).
Next, consider the integral

d3k 127 p
—— n(EI, ) —k

27l
(D10)

4 oo

P th dg sinh4 g ) ~ —sPma, cosh 00—
6Vr2 0 s=1

The integrand depends only on the magnitude of the loop
momentum Ikl. Changing the integration variable Ikl to
mth sinh 0 yields

1
2 ) I 2 2 E2(spmth) + —Ito(spm&&)

I8

(D11)

FIG. 33. The lowest-order connected vacuum diagrams for
the therxnal correction to the pressure in the gP +A/ theory.
The cross indicates an insertion of bm~hP .

where K (z) is the modified Bessel function of order n.
The expression in Eq. (Dll) is obtained by integrating by
parts, and using the standard expression for the Bessel
functions [23]. The leading and the next-to-leading terms
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of 'Po in the small parameter pmth can be calculated by
using the small x expansion of K2(x):

ergy density (D15), the thermal expectation of the stress-
energy tensor up to O(A) can be compactly written as

2 1
K2(x) = ———+ O(2:in+) .x2 2

(D12)
d3k

(T~").,=, n(E, ) (k"k"+-,'g~"Sm,'„) .

Substituting Eq. (D12) into Eq. (Dll) and performing
the elementary sums yield

(D16)

'T'
90

mph~ + O(Tm, „) . (D13)

From expressions (D14) and (D15), the speed of sound
v2 = B'P/B scan now be straightforwardly calculated up
to O(m2„„./T2):

Pth = ~2T4 m,'„T2 T' (AT')
90 24 48 ( 24 )

vr'T4 mph', T' T' f AT')
90 24 48 ( 24 )

(D14)

All together, the thermal pressure up to O(AT4) is (B'P/BT) 1 5mt

(Be/BT) 3 12m.2T2

APPENDIX E: NEAR-SOFT AND COLLINEAR
SINGULARITIES

2 2
h T

~th = 3Pth +
12

d3k
(E ) (E2 lg 2

)27l
(D15)

To obtain the last expression, Eqs. (D7) and (D8) are
used. From expression of the pressures (D7) and the en-

From this, the thermal energy density (D3) can be easily
calculated: In this Appendix, the soft momentum behavior of di-

agrams contributing to the calculation of the viscosities
is brie8y examined. In Sec. III, it is asserted that the
near-soft singularities do not afFect the power counting
described in that section. Here a brief demonstration
is presented. The temperature is assumed to satisfy
T )) mph', so that m,„=O(AT ).

To the leading order, the eKect of adding one more
rung WW is to provide the integrand one more factor of

~ (k)~r»(k &)~(&) = (1—e "
) Lf »(» p) [1+n(&')j Sf-.(p)/»~(p) (El)

together with an additional integration over the four-momentum p. Here If„»(k,p) consists of the cut diagrams such
as those in Fig. 19. In Sec. III, this additional factor is regarded as of order 1 since the inverse powers of A &om the
inverse of the self-energy are canceled by the explicit O(A ) scattering amplitude squared contained in Lf„» When.
the (on-shell) momenta k and p are soft, this argument could be upset if (a) the size of the self-energy Zr(p) is smallet"

than O(A~T2), (b) the would-be soft singularities [factors of O(T/mth)] from the Bose factors are not compensated
by the small momentum space volume, or (c) the nonpinching pole contribution of the side rail matrix is comparable
in size to the pinching pole contribution.

To see that none of these possibilities actually occur, 6rst consider the size of the thermal "scattering amplitude"
which is contained in the expressions for Zr(p) and Lt„»(k, p):

7 (l„p;l, k) —= A —g2 G (l,+p) + G (l, —k) + G~(l, —l ) (E2)

As before, the arguments of the propagators in Eq. (E2) are all combinations of two on-shell momenta. The four-
momentum squared of the sum of two on-shell momenta satis6es

(k+p) —(Ey, +Ep) = 2(EhEp p k.p+ m, „)) 2(EhE„—Ikllpl —m,'„) + 4mtzh

& 4m, h,2

for all k and p since

EhE, —fkllx I

—mth = .(Eh')' —(Ikllpl+mth)' /(E~E~+Ikllpl+mta )
= mth(lkl —lpl)'/(EhE~+lkllx I+mth)
&(j. (E4)

Similarly, the four-momentum squared of the difFerence of two on-shell momenta is
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(k+p) —(EI, E—p) = 2(EI,Ep g k p —mth)

& 2(E.E, Ik—llX I

—m,'.)
&0)

for all k and p. Hence each propagator in (E2) is bounded by 1/mt2& for all on-shell momenta 1,, k, and p, so that

~7 (/„p; t„k)~ = O(A) + O(g'/m, '„) = O(A), (E6)

since by assumption g = O(Am &,) and (m &,/mt&) ( l.
With this estimate of the size of ~7 ~, the size of the g&j& +A/ theory cut rung,

L&~1&(ki p) = ~f~«(li) ~&~«( 12) (2~) ~(li l2+P k) 7 (li~ pi l2~ k)
2 27r 4 27r 4 (E7)

at soft k and p can be determined. When the ex-
ternal momenta k and p are O(mt~), the two 8 func-
tions in the cut propagators can be satisfied by O(mt', )
loop momenta. Hence, the two momentum integrations
over these two h functions and the energy-momentum-
conserving b functions are of order 1. Consequently, the
size of Lr„u(k, p) at soft k and p is determined by the
size of the scattering amplitude squared ~7

~

= O(A )
and two O(T/mt') factors from the statistical factors.
Hence, all combined,

Lr„u(mtt, ) = O(AzT'/mt2„) = O(A),

since mt2h ——O(AT2).
Given this result, one may also estimate the imaginary

part of the self-energy

ZI(p) = —(1—e —") Sf„,(k) Lg„u(p, k), (E9)

at soft external momenta p. When k = O(mt'), the mo-
mentum integration together with b function contributes
a factor of O(mt2h). The O(T/mtt, ) Bose factor and the

0
prefactor (1—e ~ ~) = O(mt', /T) combined are of order
1. Since Lt„ti(p, k) at soft k and p is O(A), putting all
terms together yields, for soft p,

Zl(p) = O(Am, „)= O(A T ) . (Elo)

Hence, ZI(p) is O(A2T ) for both hard and soft p.
With all the ingredients at hand, the size of the

soft momentum contribution to the additional rung
u (k)Mr„u(k, p)ur(p) can be readily examined. When all
the momenta involved are soft, the momentum integra-
tion combined with the h function in the cut propagator
provides a factor of O(mt&). Once again, the prefactor

0
(1—e "- ~) combined with the Bose factor in the cut prop-
agator is of order 1. The cut rung is Lr„u(k, p) = O(A),
and the self-energy remains O(A2T2). Hence, all com-
bined, the integration over u Mm can be regarded as
O(Amth/A T ) 1. Consequently, one can conclude
that the power counting performed in Sec. III is not al-
tered by soft momentum contributions.

For the near-collinear singularities, note that the esti-
mate for the scattering amplitude (E6) holds for all on-
shell momenta. Hence, there is no large factor resulting
&om near-collinear singularities and the power counting
performed in Sec. III is again not altered.

+
AVlXZFYFlXl~+~ 7777

FIG. 34. Diagrammatic representation of the correlation
function o~~. Solid bubbles represent the sum of all cut chain
diagrams. The external operator A is represented by black
circles at each end.

FIG. 35. Diagrammatic representation of the equations
satisfied by the resummed cut and uncut bubbles. In this dia-
grain, the external operators at both ends are P rather than
A. The sum of all chain diagrams for correlation function o.~~
can be expressed in terms of the solutions of these equations.
The empty cut bubble is denoted by L(q), the empty uncut
bubble C(q). The solid bubble on the left-hand side of the
first diagram is denoted by I,h;„(q); the solid bubble on the
right-hand side of the second diagram is C,h;„(q).
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APPENDIX F: DETAILS OF CHAIN DIAGRAM
SUMMATION

tn e 0.01T—
m a0.1T ——

For the sake of simplicity, A/4 diagrams are examined
first. Diagrammatically, the sum of all A/4 chain dia-
grams for the Wightman function o&& of a bilinear op-
erator A can be represented by Fig. 34. The solid bubble
in Fig. 34 with the ends of the cut lines on opposite sides
represents the sum of all cut chain diagrams with the
same topology. This sum is denoted by L,h;„(q). Sim-
i ar y, the solid bubble with the ends of the cut on the
same side represents the sum of aO cut diagrams with the
equivalent topology. This sum is denoted by Cy chain (0)

The equations for L,i, ;„(q) and C,i, ;„(q) are

0.5
0

FIG. 36. Numerical results
= 768m Zr(Ei. )/A T for mq /hT = 0.01, 0.1.

for

70

(&)
~

~&
Lo(&) & + A

~

Co(&)' Lo(&) ~ ~ L h (&) ~

g Cchain(g) ) ( Co(g) ) ( Lo(—q) Co(g) ) ( Cch~i (q)
(F1)

as illustrated in Fig. 35. The cut bubble L0~ ~~and the uncut b
with I~(l, q —l) = l.

o(g) ail e uncut bubble Cp(q) are again defined. by Eq. (3.5) and Eq. (3.6)

The above matrix equation is easy to solve. The solution is

and

( )
Lo(~)

[
— ( )1'+(-')'[ ( ) — (—)]'

C(~) —A[(Re C(~)]' —-", [L(~) —L(-~)]'
[1 —ARe C(&)]'+ (&)'[L(~) —L(-~)]' '

(F2a)

where the Gnite temperature optical theorem

1
C(~) = —

2
[L(~) + L( &)]—

is used to obtain the form shown in (F2).
When cubic interactions are included, the "chain" dia ams also inain iagrams a so include cut two-loop diagrams shown in Fig. 9
ere e u e in t e iagram may be regarded as the sum of all A+a +~chain diagrams. Equivalently, the vertex

I&(l, —l) = I~(l, —l) + %Re C~(0)[1+O(VA)] .

A straightforward application of cutting rules then yields

"''0 = —4L, - O a0. '
(0) = —4iL-(0) G(0) C-(0) / 4iC-(0)'G(0)'L-(0) +4C-(0)*S(0)C-(0) +4L-(0) S(0) L -(0)

(F4)

g
2 4

, Re C~(0)L~(0) + 4, [Re C~(0)]' Lo(0)
th

(F5)

where the optical theorem (3.11) and S(0) = g Lo(0)/m~h, justified below, are used.
For the remainder of this Appendix, the estimates Re C~(0) = O(T ), Re Co(0) = O(l ~A 2G 0 = 0

and S(0) = O(1/A2T ) used in this Appendix and Sec IIID . ' . consi er
0 ~ ~

is ppen ix an ec. are examined. To estimate Re C 0 consider t
following explicit form of the real part of an uncut bubble C~(0):
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1 d4/
Re C~(0) = — I~(l, -l) Re [-~&'(l)]

2 (2vr)4

1—
4 (2~)4 ~(' —) ' ' {'l / ) l&[lz+~z +p(l)]z
1 0 d4l

I~(l, —l) coth{il ~P/2) 2mb{i + m )

[lz+ mz„+ Z(l)*] )
[1+O(A')],

m2=m2th

where, to obtain the last line, the elementary relation

8 ( 1 5 1
Ox 1 x+G) (x+0) (F7)

and the single particle spectral density in the weak coupling limit,

Z

[l~+ m,„+Z(l)] [l + m,„+Z(l)*]
= «- (l) [1+O(f'/@)1 (F8)

are used. Note that the identification m = m~& must be made after the derivative is taken. Again at high temperature,
the zero temperature contribution is sxnaller than the thermal contribution. Hence, the coth(PE~/2) factor in the
integrand can be replaced by the Bose factor 2n(Ei) to calculate the leading weak coupling behavior.

For the pressure and the energy density insertions,

1 8 d3l
Re C~(0) = —, , n(Ei) ,'l—

2 2m =mth

and

1 0
2 Om m —mth2= 2

T'
48

(F9)

1 8 d l
Re C, (0) = — n(E() Ei

1 8 ( m'T'l
, 1»o+28mz ( 12

m mth2= 2

T2

48 ' (F10)

ignoring higher-order contributions.
The expression for Re Co(0) is also given by Eq. (3.8) by setting I~ ——1. At high temperature, the leading O(T )

contribution to the integral in the last expression in Eq. (3.8) comes from loop momenta of O(T). However, when the
derivative with respect to mz is taken, this is zero. The next largest contribution to the integral is O(mT) coming
&om loop momenta of O(m). When the mass derivative is taken and the identification m —+ mph made, this yields
Re CO(0) = O(T/mph) = O(l/~A).

To estimate the size of propagators at zero momentum requires knowledge of the size of the self-energy at zero
external momentum. The lowest-order imaginary part of the oK-shell self-energy comes from the gPs one-loop diagram
shown in Fig. 2. To estimate the size of this diagram, the propagators in the loop must be regarded as resummed
propagators. Then the self-energy in the zero four-momentum limit satisfies

lim liin 2[1+n(q )] Zl(q) = g Lo(0)[l+ O(A)]

= O(gz/A~) = O(m „,/A), (F11)

where the pinching pole approximation of L(0) is again used. The above estimate for the self-energy implies that

lim lim S(q) = lim lim
2[1+n(q')]Z, (q)

o [q +,„+ (q)~

="."[1+O(~~))
mph

= O[g /A T ] = O(m „„,/A T )
= O[l/A T (g /T )] ( O(1/A T ) (F12)
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and

lim lim g Re G(q) = lim lim
qo ~0 g~o qo-+0 z-+o [q2 + mt2„+ Z(q) ~2

= O(g /mt&) = O(Am„&~, /m~h) & O(A) . (F13)

APPENDIX G: THE IMAGINARY PART OF THE TWO-LOOP SELF-ENERGY

Using the cutting rules, the imaginary part of the two-loop self-energy can be expressed as

z~'." '"(q) = —(1—e ' ') S(q)

where

d4l d4k
S(q) = Sl„,(t) Sg...(k+q) Sl„,(—l —A:) . (G2)

Using the on-shell b-function &ee particle cut propagators

Sg„,(l) = ) o.l [1+n(olEl)] orb(l —olEl)/El, (G3)

frequency integrations iu Eq. (G2) can be straightforwardly carried out to yield

1 d3l d3k
S(q) = ) lrk+qlrl+klrl

8(2~) EI,EI +qEI +&

x [1+n(ok+lEk+1)] 8(Eq wlEl ok+—qEk+q —ok+lEk+l)

[1+n(ok+,Ek+, )] [1+n(~lEl)]

The argument of the remaining b function can be satisfied only when two of the o. are +1 and the other one is —l.
By suitably changing labels, the above then becomes

3 d3ld k
8(q) =

s [1+n(El)] [1+n(Ek+q)] n(Ek+l) b(Eq+Ek+l Ek+q El)— —
l k+q k+l

To carry out the remaining integrations, the angles between spatial vectors are de6ned as

cos ek =—k q//k[/q/,
cos f)l = k &/Ikl f&l .

Changing the variables to EI,+q and EI,+~ with the Jacobians

dEk+q/d cos Hk = )k([q(/Ek+q,

dEk+l/d cos ez = lklltl/Ek+l

one Ands

(G5)

(«)
(G7)

(Gs)
(G9)

3 E~i EI+.,
S(q) =, dEl dl&l [1+n(«)l dEk+l dEk+q [1+n(Ek+q)l n(Ek+l) ~(Eq+Ek+l Ek+q El)— —

82~ sq

where

E„+, —: (/k f+/1/)' + m,'„, (G11)

with analogous definitions for E& . Carrying EQ+q and EA, +~ integrations amounts to figuring out the kinematickq'
conditions. Straightforward calculation then yields

3T Eq (e—P% e P(&q+&a))—
8(q) = d~k~ dEl [1+n(El)][l+n(E —El)] 1n

~

327l q 0 Ea

( e l'~~(1—e—l'~&) l+ dEl [1+n(El)][1+n(Eq El)] lu
~ p~ p(~+a )(e P~q e P(%+&a) )— — (G12)
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FIG. 37. ZI(Ea) = 768mZI(Ea)/A T with m&q/T
= 0.01,0.1 for small values of IkI/T.

FIG. 38. Numerical results for
= 768mZi(EI, )/A T for m&h/T = 1.0, 2.0, 3.0.

ZI (Ea)

Changing the variables &om E~ to u = e ~ ', the above can be rewritten as

= 3T' 1 1 ) fu —y'x )
~(q) = [1+u(E,)] "IkI «

I
+

I
»

I

( )
I

u

f 1 1 i fy(1 x) t-du
I

+ IlnI(1—u u —y) qy —

uxor

(G13)

where

Another change of variables,

and the de6nition of the dilogarithmic function

y =—e-~~,
z —=e~'

u —yz =
1—tk

(G14)
(G15)

(G16)

yields

Li2(z)—:— —ln(1 —zu) = )
p tC n=l

(G17)

= 3T' t~l (1-yl 2 (1—yl
~(q) = [I+u(E.)] dl~l »

I

—
I

»
I I

+ 2»
32vrs

I qI
~

o &1-*)
t'(1 —xy)(x —y) l . fx yl . t' x——y~ Li2(y) + Li2

I I
+ Li2

I I

—Li2
I (GIS)

In the I@I
—+ 0 limit, x = y. Hence, immediately,

8(mug, 0) = [1+n(mt')] Li2(e '")= 'T'
~ —Pm, th (G19)

and

A Ttwo looP
( ) L (

—P~&&
)mth„O z2 e (G20)

When the temperature is high, T )) mth, the identity
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yields~

Lip(x) = ——ln(x) ln(1 —x) —Lip(1 —x)6

T~A~
ZI (mt'& 0) =

7 [(1+ O(mt', /T ln(mti, /T))] .

(G21)

(G22)

When the temperature is low, T « mt'„ the dilogarithmic function Liq(e l m'") = e '"~, and

A TZ'" '"(m 0) = e- *hl'[1+O(e--"~)]
128vr

In the opposite limit where )g) -+ oo, the only term that survives in 8 is the first term in the parentheses:

3T'
lim 8(q) = — d~k~ ln(l —e ~ ') .

g~~ 327l p

In the high temperature limit, this yields

(G23)

(G24)

lim 8(q) =
~

—+ O(mt~„/T')
~32vrs ( 6

2 2

lim ZI ' ~(q) = [1+O(m, „/T )] . (G26)

Note that the leading order terms are the same. In the low temperature limit,

A~ mthTZ'" '"( ) = *" [1+O( '"
)1 ~

g~OO 128m' 27r3
(G27)

Numerical integration results shown in Fig. 36 confirm this. A closer look at ZI(q) with mt&/T = 0.01, 0.1 for small
values of [k)/T is presented in Fig. 37, and ZI(q) for mth/T = 1.0, 2.0, 3.0 is given in Fig. 38. Note that as the mass
increases, the self-energy becomes Bat throughout the momentum range.

A similar result was obtained by Parwani [24).
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