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A. A. Actor
Department of Physics, The Pennsylvania State University, Fogelsville, Pennsylvania 180$1

I. Bender
Institut fiir Hochenergiephysik der Universitiit Heidelberg, D 6919-0 Heidelberg, Germany

(Received 9 June 1994)

In quantum field theory with confining "hard" (e.g. , Dirichlet) boundaries, the latter are rep-
resented in the Schrodinger equation de6ning spatial quantum modes by in6nite step-function po-
tentials. One can instead introduce confining "soft" boundaries, represented in the mode equation
by some smoothly increasing potential function. Here the global Casimir energy is calculated for
a scalar field confined by harmonic-oscillator (HO) potentials in one, two, and three dimensions.
Combinations of HO and Dirichlet boundaries are also considered. Some results di8'er in sign from
comparable hard-wall ones.

PACS number(s): 03.70.+k

I. INTRODUCTION

Boundaries in quantum field theory (QFT) are tra-
ditionally "hard, " i.e., smooth, static, and have precise
spatial location and shape. Hard often means impen-
etrable (as for a Dirichlet boundary) but not always.
Penetrability is decided by the boundary condition im-
posed at the boundary. From Casimir's original paper
[I] to the present time, investigators of the boundary-
induced Casimir effect have assumed hard boundaries,
perhaps without exception (see the reviews [2]). Being
specific objects one can imagine these boundaries ex-
periencing well-defined macroscopic vacuum forces such
as those revealed by Casimir s investigation. However,
there is a deeper and more complete way to understand
what actually occurs. The boundary-induced Casimir
effect is the distortion, extending out into space away
&om each boundary, of the quantum vacuum or virtual-
particle background belonging to the quantum field con-
strained by these boundaries. In maintaining this distor-
tion boundaries experience macroscopic back forces. The
latter are of course the direct experimental signature of
the Casimir efFect. However, the rather beautiful (and
in general position-dependent) phenomenon of vacuum
distortion is the essence of the Casimir effect. This phe-
nomenon continues to occur when boundaries other than
the traditional hard ones are introduced.

Hard boundaries in QFT are unquestionably an ide-
alization. No boundary made of matter can be per-
fectly smooth and static under arbitrary magnification.
Yet most (if not literally all) work on the Casimir ef-
fect makes this assumption. Quite possibly the accumu-
lated experience in Casimir theory depends strongly on
the boundary-smoothness assumption, and in ways which
may not be predictable. The only way to find out is to
relax this assumption and see what the consequences are.
We begin doing this here, leaving walls static but making
them "soft" by means of a semiclassical device familiar
in soliton theory.

The spatial modes 4 (x) of a scalar quantum field C'

can be subjected to a confining spatial potential V(x) in
the Schrodinger-like equation

[
—A + V(x)]C (x) = ~o' C (x)

defining thein. The potential V(x) grows without limit
in one or more spatial directions, suppressing all modes
(hence all zero-point fluctuations) at large distance in
these directions. Hard Dirichlet walls are a limiting case
in which V(x) = 0 (= oo) inside (outside) the wall. Less
drastic confining potentials soften the wall. Any poten-
tial V(x) in the inode equation is perhaps best viewed as
representing some distribution of matter which interacts
with the quantum field. In spatial regions where V(x)
is large, only the high modes are not suppressed. Where
V(x) is small, all modes of the field fluctuate much as in
free space. Obviously any V(x) will distort the vacuum
of 4. This distorted vacuum must be regarded as belong-
ing both to 4 and to the distribution of matter modeled
by V(x). Casimir effects unquestionably are generated
and conventional methods of analysis can be brought to
bear (always assuming one can handle the Schrodinger
problem). Local and global Casimir shifts in the vacuum
energy can be computed. However, there are no specific
walls on which vacuum forces can act. The Casimir forces
involved act on the distribution of matter represented by
V(*).

Soliton quantization became familiar 20 years ago (see,
e.g. , Refs. [3]). Solitons, or localized classical solutions
4,(x) of some physical nonlinear equation, become in
QFT a soft localized "spatial property" represented by a
potential in a Schrodinger equation whose solutions are
the modes of the quantum field 4 quantized about Ci, (x)
rather than about 4'(x) = 0. The difFerence between
soliton quantization and what we shall be doing here is
obvious. For solitons one has a localized V(x) and the
modes are scattering modes (plus perhaps a finite set
of bound modes). Given the Schrodinger energy spec-
trum {io2) and the modes 4 (x) one can calculate local
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quantities such as (T00(x)) within and around the soliton.
Traditionally, attention has centered on global quantities,
however, especially the mass of the quantized soliton:

1 &
Mquantum Mcl + 2 g &n )

where the mode sum representing quantum e8'ects di-
verges and needs regularization. This quantum correc-
tion to the classical soliton mass M, I is really a kind of
Casimir energy, although a scattering rather than bound

spectrum is involved. Just as one "quantizes about a soli-
ton, " one could characterize a typical Casimir problem as
"quantization within a confining potential. " This charac-
terization applies to hard and soft walls. Let us proceed
now to describe the calculations presented in this paper.
It seems important to contrast the soft-wall mathematics
with standard hard-walL language, so we begin with the
latter.

The spatial modes of a scalar quantum field 4 con-
fined in the x1 direction between infinite parallel planar
Dirichlet boundaries at xq ——O, L are (with b-function
normalization)

sin(kg xg) e'—~~' '+~' 'l, 0 & xy & L,
mqg, 3

0, x1(0 andz1&I,
m7r

k1 m=1 2 3.

where kq(q2 s) represent momentum in the xq (x2 s) di-
rections. The sine factor in (1.1) is of course the set of
solutions of a one-dimensional Schrodinger equation with
the Dirichlet walls represented by an infinite square-well
potential.

To have tractable soft-wall modeling we must choose
a confining potential whose Schrodinger problem can be
solved, analytically or numerically. As an obvious first
choice we constrain the quantum field by a harmonic os-
cillator (HO) potential in the xq direction:

2

2 + 4n xi 4„(xg) = ki„4„(xi) .d1 (1.2)

The familiar orthonormal solutions are

4„(xj)=
- 1/2

exp( ——a x~)II„(nxq), (1.3)

A;,„=n n+-,', n=0, 1,2. . . ,

where the functions H (x) are Hermite polynomials, so-
lutions of

y" —xy' + ny = 0.

When the factor g2/L sin(max'/L) in (1.1) is replaced
by 4 (xq), the hard Dirichlet walls at xq ——O, L have
been replaced by soft walls modeled by the HO poten-
tial in (1.2) and arranged symmetrically on either side of
x1 ——0. In classical language, particles are able to travel
&eely in the x23 directions, but experience the force of
a spring in the x1 direction. In quantum language the
modes have plane-wave form in the x2 3 directions, while
the exponential damping of 4'~(xq) with increasing ~xq~

makes it very unlikely that real or virtual particles can
penetrate far into the classically forbidden region. This is
a much softened version of the abrupt reQection occurring

at a hard Dirichlet wall. The parameter n in Eqs. (1.2)
and (1.3) has dimension 1/length, and perhaps it makes
sense to assign a "characteristic position" to each soft
HO wall, these positions being the characteristic length
I = 1/n on either side of xq ——0. As n decreases the soft
HO walls move outward, receding to +oo as n —+ 0 and
the confining potential is removed.

Because one knows as much about the modes (1.3) as
one does about the modes (1.1) for parallel hard walls, it
is possible to compute everything for the soft-boundary
system one computes for hard walls. Clearly many other
absolutely confining potentials could in principle be used
in addition to V(x) = cx to model soft boundaries, and
two directions are open for future research. One can
choose confining potentials whose Schrodinger problem is
solvable analytically, or solvable numerically. Quite dif-
ferent potentials are involved and both approaches seem
important. We intend to pursue both paths in subse-
quent work. Here we proceed analytically, calculating for
the HO potential in one, two, and three spatial directions
the global Casimir energy of a confined massless scalar
field. We feel confident that other soft confining poten-
tials would yield results qualitatively similar to those pre-
sented here. The essential step is the one away &om hard
boundaries, and for this the harmonic-oscillator potential
appears quite adequate. Local quantum variables such
as energy density are at least as interesting to compute
as global quantities, and this also can be done using the
modes (1.3). Quite fundamental questions arise at the lo-
cal level. For example, what happens to the well-known
local divergences (see, e.g. , Ref. [4]) associated with hard
walls'? What are the eKects of finite temperature? How
is vacuum regularization aBected by boundary softening?
These questions will be addressed elsewhere.

In the limit n ~ 0 which removes the confining HO
potential one expects the set of one-dimensional (1D)
discrete modes (1.3) to be replaced by the continuum
of plane-wave modes (2vr) ~2e'"' ' with —oo & kq & oo.



CASIMIR EFFECT FOR SO& I BOUNDARIES 3583

The following asymptotic formulas for the Hermite poly-
nomials (see, e.g. , Ref. [5]) show this is indeed the case.

(i) n even, n -+ oo:

@-(»)=
n! 2m

- X/2

( 1)1i/2 ( 1) / 2TL/3

x[cos(ki„xi) + O(n '~ )]; (1.4a)

(ii) n odd, n ~ oo:

@-(»)=
- 1/2

Ck

n! 2m
( 1)!"—'l&'n(n 2)!2"&'

x [sin(ki„xi) + O(n ~ )] . (1.4b)

Here the appearance of the exact "momentum" k~

ngn+ 1/2 in the arguments of cosine and sine is very
important. For arbitrary a one can interpret Eqs. (1.4a)
and (1.4b) as telling us the very high or short wave-
length modes care little about global features of the po-
tential function V(xi). Over short distances V(xi) is
practically constant and the modes are essentially plane
waves exp(iki~xi) after reconstruction from cos(ki~xi)
and sin(ki~xi) as one would expect. In the limit a ~ 0
the size of the region over which V(xi) is practically flat
increases without limit. The asymptotic formulas (1.4a)
and (1.4b) show that plane waves fill up all of space as

-+ 0, and that the transition from a discrete spectrum
to a continuous one is smooth.

One would expect the modes of any other soft confin-
ing potential V(xi) to behave in a similar fashion when
V(xi) is made to flatten and vanish. Suppose that xi ——0
is the minimum of V(xi) and V(0) = 0. Then near
xq ——0 the exact mode equation looks like

ate det[ —4 + 4(nixi + nzxz + asxs)] = QA& where

&g = ai(ni + —,') + ci, (n2 + —,') + n3'(n3 + —,'). The g
functions encountered have (linear summand) ' aiid are
unfamiliar, but fortunately not difficult to work with [6].
All calculations of global Casimir energy are done by the
g-function method, in Euclidean four-dimensional space-
time.

We evaluate the global Casimir energy for a scalar Geld
confined between soft opposing walls, conGned within a
soft waveguide, and confined within a soft-walled cavity.
In all three cases the Casimir energy is negative. For com-
parison and completeness we brieQy rederive the corre-
sponding results for rectangular Dirichlet walls (these can
also be found in the literature). The hard-wall Casimir
energies are negative, positive, and negative in the same
order. Thus there seems to be a significant difference
between the hard- and soft-wall Casimir eKects for long
waveguides, while for 1D and 3D confinement there is
qualitative similarity.

A nontrivial variant of our calculation will also be
given. One can in Eq. (1.3) convert one of the HO walls
into a Dirichlet wall at xz ——0 by discarding all of the
(n = even) modes, leaving the odd modes which all van-
ish at xq ——0. The odd modes become sine functions
[Eq. (1.4b)] as they should when a -+ 0 and the soft
wall is removed, leaving an isolated Dirichlet boundary.
In two and three confining dimensions the sign of the
Casimir energy is aQ'ected by combining soft and hard
walls.

II. ONE-DIMENSIONAL CONFINEMENT

Parallel HO walls

, + O(x", ) C „(x,) = k,'„4„(x,), p ) 0,
dxl

where kz continues to be the exact Schrodinger spec-
trum. Ignoring the small potential term O(xi) one has
just the mode equation for &ee space whose real solutions
are cos(ki~xi) and sin(ki xi), with the exact discrete
momentum kq in place of the continuous momentum one
would have if space really were &ee. This approximation
to the exact modes should be good whenever the kinetic
term —d2/dx3i in the Schrodinger operator is much larger
than the potential term V(xi), as is the case for very
high modes. Thus one can really predict Eqs. (1.4a) and
(1.4b). Moreover, in a large class of Schrodinger prob-
lems, essentially the same asymptotic form (expressed in
terms of the exact momentum spectrum for that prob-
lem) can be expected for the high modes.

A distinguishing feature of HO modes is the discrete
momentum spectrum k = ngn+ 1/2 growing like ~n.
The spectrum for hard walls k = cn grows linearly with
n [see, e.g. , (1.1)]. Global Casimir energy calculations
for a rectangular hard cavity require the evaluation of
d«( —&) = Q &g ~h~~~ &I-, = (cini)'+ (c2n2) + (c3n3)
The t, functions encountered are of the relatively fa-
miliar Epstein-type with (quadratic summand) '. For
a rectangular cavity with soft walls one must evalu-

2s OO

Z(s) = d q) [n (n+-)+q ]
n=0

~3~'r(s ——,')
(2.1)

where ((s, a) is the Hurwitz ( function

((sa) = ) (n+a) ', Res) 1.
n=0

(2.2)

Numerical evaluation of ((s, a) will be done using
MATHEMATIGA [7]. In Eq. (2.1) p is a mass parameter
needed for analytic continuation in the complex variable
s. The dimension [mass] of Z(s) arising Rom integration
over the three continuous energy-momentum components
q = (q0, qz, q3) is necessarily expressed in terms of the one
available dimensional parameter n. A global vacuum en-
ergy density with dimension [mass] can be obtained by
the usual (-function method (see the Appendix):

The spatial modes for parallel harmonic-oscillator
walls are as in Eq. (1.1) with 4 (xi) given by Eq. (1.3)
The global spacetime (or four-dimensional) I,

' function for
the system is (see the Appendix)
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e,@ —= —Z'{0) = ——((—2, 2),6' (2.3)

where

((—2, 2) = 0.016 475.

This negative Casimir energy has an evident interpreta-
tion as the vacuum energy contained within a tube of unit
cross section (and in principle infinite length, although
quantum Huctuations rapidly die out as ~xi~ increases)
parallel to the xl axis. The energy density e,8' becomes
increasingly negative as the stiffness parameter o, of the
HO potential increases, reminiscent of an attractive force
between parallel walls. Here there are no physical walls.
However, if one regards V(xi) as representing a distri-
bution of matter within which the quantum field exists,
then Eq. (2.3) can be interpreted as a tendency for the
matter in the half spaces xl ( 0 and x1 ) 0 to be at-
tracted inward due to the distortion of 4. Obviously one
must investigate this locally to understand it in more de-
tail.

Parallel HO and Dirichlet walls

As already mentioned one of the HO walls can be made
into a hard Dirichlet wall at xl ——0 by discarding the even
values of n in Eq. (2.1) above. The other HO wall is not
affected. The Casimir energy is still negative:

a'~2
~(—.-)2' 4 (2.4)

with

q( —-'„-,') = o.o2o93.

In some sense the Dirichlet wall and the half space xl ) 0
(if xi & 0 lies beyond the hard wall) attract one another.

Parallel Dirichllet walls

Replacing n (n+ 2) by (mar/L) 2 with m = 1, 2, 3, . . . in
Eq. (2.1) converts this ( function into the one for parallel
Dirichlet boundaries:

Z(s) = L,F
'

I I
C{2s —3)

7r')"l (s ——,) f pL))"

(pL) 'I'(2 —s)
8..L.F(.) C('-") (2.5)

1

8 r. ~( ) 72OL,
(2.6)

Here e,g represents the vacuum energy within a tube
of unit cross section and length I extending Rom one

where ((s) = ((a, 1) is the Riemann g function (see, e.g. ,
[5]) and the final equality is reached using the reHec-
tion formula or functional equation for t,'(a). The global
Casimir energy corresponding to (2.3) is (see also [8])

wall to the other. The negative result (2.6) is tradition-
ally understood to represent a global attractive force be-
tween the planar boundaries, just as the original Casimir
effect [1] arising from the electromagnetic vacuum be-
tween uncharged metal plates is an attraction between
these plates.

III. TW'G-DIMENSIONAL CONFINEMENT

HO cylinder

For spatial potential V(x) = (aixi + n2xz)/4 the 4D
t', function is

An explicit evaluation of this linear ( function for arbi-
trary o.i 2 can be found in Ref. [6]. We do not wish to go
into as much detail here.

For the cylindrically symmetric potential o.1 2
——n ex-

plicit calculation is simple:

(u)
'

~ ) ( ~ ~))—.+i
ng 2

——0

(3.2)

Here we have used [6]

L2(s, a) = ) (ni+n2+ a)
n1, g ——0

= a '+ 2[((s, a) —a ']

) (m, +m, ga) '
m1, 2=1

= —a '+ 2((s, a) + ) (m —1)(m+ a)
m=1

=C( -1, )+(1- )4(,.) (3.3)

To reach the final equality one only has to notice that
m —1 = m + a —a —1 and extend the sum to include
m = 0. To reach the second to last equality one needs

) f(mi + m2) = ) (m —1)f(m),
m1, g ——1 m=1

where m —1 is the number of partitions of m = ml +
m2 into two positive integers. The dimension [mass]
of Z(s) comes from the double momentum integral in
Eq. (3.1) over the momentum components qp s parallel
to the unbounded spacetime directions x03. Thus the
Casimir energy for o.1 2

——o.,

28 OO

Z(a) = d'q ) [n,'(ni+ —,')
n1, g

——0

+~2(~2+ —,') + q'1 '
28 OO): [ '(.+-'.)+ '(.+-,')1"

=0

(3.1)
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e,~ = —Z'(0) = —('(—2)4'
(nl

ln
~

—
~

=
2

—12f2 (—1,2) = 0.982 07 .
&~)

(3.9)

= —16,&(3)

((3) = 1.20206, (3.4)

This possibility will be discussed in Sec. V, and rejected.

which is negative, has the interpretation of vacuum en-
ergy per unit length within the HO waveguide under dis-
cussion. Quantum fluctuations try to contract the HO
wave guide.

To investigate the stability of the result just found let
us choose an asymmetric potential o.»

——2o, &
——2n

for which calculation remains simple. Z(s) is given by
Eq. (3.2) with g(s —2) replaced by f2(s —1, 2) where

Quarter cylinder

In addition to the Dirichlet plane at x» ——0 let us
position a second plane at x2 ——0, retaining only the
part x» 2 & 0 of the original HO cylinder. Even values of
both n~ 2 are deleted &om Eq. (3.1). In Eq. (3.2), g(s —2)
is replaced by 2 'L2(s —1, 2) where &om Eq. (3.3) one
can verify

f2(s, a) = ) (2ng+ n2+ a)
ni, g

——0

=2 ' I2 s) — +L2 s)
a ( a+1)
2 g 2

= ~~/(s —1, a) + ~~(l —a)g(s, a)" '~( —;) (3.5)

L2(s —1, 2) = (2' —1)g(s —2)
—2(2' ' —l)g(s —1). (3.io)

e,~ = -Z'(0)
1 (2n2) 1(-i, —;)+ —»

I

2vr
' 2 48 ( p2 ) 48

(3.11)

Because L2(—1, 2) = —
4s does not vanish the Casimir

energy again depends on ln(p/n):

Here Eq. (3.3) is used and also the identity 2'g(s, a) =
g(s, a/2) + g(s, (a + 1)/2). One can verify that
f2(—1, 2) = 0. [For this use g( —n, a) = (n + 1)—
B„+q(a) where the B„(a) are Bernoulli polynomials [5].]
Thus

A
e.~ = -Z'(O) = f,' (-1,—-', )4x

= n [
—0.004892]

where

((3) + 4sln2+ 4('( —1)
= —0.040 784 .

(3.12)

and the Casimir energy of the asymmetric cylinder con-
tinues to be negative.

to

Rectangular Dirichlet waveguide

Replacing n2(n + 2) by (m 7r/L )2 in Eq. (3.1) leads

Half cylinder

Now imagine cutting the HO cylinder lengthwise
through its center with a Dirichlet plane positioned at
xq ——0, and discarding the (xq ( 0) half of the original
cylinder. The appropriate g function for the remaining
half cylinder is obtained from Eq. (3.1) by deleting all
even values of nq. Z(s) for nq 2 ——n is given by Eq. (3.2)
with g(s —2) replaced by

p 28

4(s —1)
D2 s —1L»2

where

2 2

D~(s/L ):—) i i
+ +

i

&L~)

(3.13)

(3.14)

f2(s —1, 2) = -((s —2) + [2
' —-]((s —1) . (3.7)

Because f2(—1, 2) = —
24 does not vanish the Casimir

energy depends on ln(p/n):

This ( function can be written [9] in terms of the Epstein
( function [10]:

e,g = —Z'(0)

p 2

f,'(-1, 2) ——1+ ln
4m

' 24
(3.8)

Z~(siL ) —=

exclude (0, . . . , 0)

(
EL&

where f2(—1, 2) = —0.0401725. Here the sign of e,s.
depends on p/n and there appears to be a sign reversal
at a critical value of this ratio:

(m~ & N+ Res ) —.
qL~) '

2

One easily veri6es

(3.i5)
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4D2(slL&, 2) = Z2(slL&, &) —2(L~' + Lz')((2s) . (3.16)

Important properties of Z~(slL ) are Z~(OIL ) = 0,
Z~( pl—L ) = 0 for p = 1, 2, . . . , and the reHection
formula (extremely useful for analytic continuation into
Res ( N/2) [10]

r(. ——,')
2vrr(s)

x ) ) a;. (n, + —,')
2 3=0 4=1

- —a+1/2

(4 1)

r(.)z~(.IL.) = (L,L2 "L~) — ~ r
I

——~
I

/N This linear ( function can be evaluated for arbitrary
A'1 2 3 In the spherically symmetric case n$ 2 3 —A,

From Eq. (3.17),

(N 11xz~ ——s
g2 L) (3.17) ~vrI'(s ——,') pZ(s) = 2 L (

1 3)
2vrr (s) n

where

(4.2)

Z„'( plL. )—= (—i) (L, ".L„)p!,+„&,
,
I'(N/2+ p)

(N 1 ixz~
I

—+p
I

p= 1, 2, . . . .i2 I )'
We obtain, for the vacuum energy per unit length within
the Dirichlet waveguide [9,11],

Ls(s, a) = ) (ng+n2+ ns+ a)
ni 2 3=0

= 2t,'(s —2, a) + (2 —a)g(s —i, a)
+ -'(a —1)(a —2)g(s, a), (4.3)

eefr — Z (0) — D2( ilLj, ,2)

= —z'( —1IL~,2) —[L '+ L2']&'(—2)—

L L f 1 i 1 1 1

i6.:"I
' „I

+ i6."" L,
+

L,
(3.is)

In the limit I,2 ~ oo, e,rr/L2 smoothly becomes the
parallel-plane result Eq. (2.6). For the equilateral case
Lg2 ——L,

which can be derived much like Eq. (3.3) as is explained
in [6]. The vacuum energy E, „=—Z'(0) of the cavity
1s

&-- = a[-,'&(—2 —;)—s&(—2 2)]
= n[—0.011117] (4 4)

and is negative. Vacuum Buctuations tend to contract
the symmetric HO cavity. To investigate stability con-
sider the cylindrically symmetric potential o.

&
——2ng 3

2n . Then Z(s) is given by Eq. (4.2) with Ls replaced
by fs (s —z, 2) where

c.~ =, g(3) ——P(2) = [0.009 66],

where Z2(sll) = 4$(s)P(s) (see [12]) with

(3.19) fs(s, a) = ) (2nz+ n2+ns+ a)
ni g 3=0

=2 ' L3 8, — +2I3 8,
a ( a+11

)

P(s) = ) .(—1)"(2n+ 1) '
n=O

(3.20) +L3 8, —+1 (4.5)

and P(2) = 0.915 is Catalan's constant. Equation (3.19)
agrees with the numerical result in [9]. The energy den-
sity e,~ is positive [the contrary of Eqs. (3.4) and (3.6)].
Vacuum Buctuations tend to expand the Dirichlet wave-
guide when L~ and L2 do not dier greatly. However, for
L2 )& L~ as just mentioned the attractive parallel-plane
result is recovered. Thus for the rectangular Dirichlet
waveguide the sign of the Casimir energy depends on the
ratio Lg/L2.

IV. THREE-DIMENSIONAL CONFINEMENT

The cavity energy Z, „= —Z'(0) = n fs( —~, 2)
n[—0.0194] continues to be negative.

Half cavity

Position a Dirichlet plane at x~ ——0 and discard the
half cavity in xq ( 0. The g function is obtained by
deleting even nz in Eq. (4.1). Z(s) for aq 2 s ——a is now
given by Eq. (4.2) with fs(s —~, 2) in place of Ls. The
cavity energy E, „=—Z'(0) = afs( 2, z) = a[0.01465—]
is now positive.

HO cavity Quarter cavity

The global 4D g function for spatial potential V(Z) =
(nfl', + a42x22 + ns4xs2)/4 is

Position a second Dirichlet plane at x2 ——0, discarding
all of the cavity outside x12 & 0. Even values of nq 2
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are deleted from Eq. (4.1) to obtain Z(s) for one quarter
of the original HO cavity, bounded by the Hat Dirichlet
walls at xi 2

——0. Z(s) for ni 2 s ——n is given by Eq. (4.2)
with Ls replaced by gs(s —2, 2) where

by 2 '+ j Ls(s —2, 4). The cavity energy is E, „
ny 2Ls( 2—, 4) = n[0.0303) and is positive.

Rectangular Dirichlet cavity

g3(s, a) = ) (2ni + 2n2 + ns + a)
~123—0

a ( a+11
Ls s, — +Lsl s,

2 ( 2 j
The cavity energy E, „= —Z'(0) = ngs (—2, 2 )
ca[0.0340] is positive.

For a rectangular cavity with Dirichlet walls

"v I( )Z(s) = ' Ds(s —2)
7r 21"(s)

in the notation of Eq. (3.14). One readily verifies

(4.6)

—cavity8

Position a hard Dirichlet plane at x3 ——0 which, to-
gether with the planes at x12 ——0, cuts ofF one oc-
tant of the original HO cavity. Even values of n1 2 3 are
discarded in Eq. (4.1) and Is is replaced in Eq. (4.2)

8D& (s IL&,2,s) Zs (s IL&,2 s) [Z2 (s IL&,2)

+Z.(slLi, s) + Z. (slL. .)]
3

+2) L,. 2((2 )s. (4.7)

The vacuum energy of the cavity E, „= —Z'(0)
mDs( —2) is given by [9]

Ecav—
LiL2Ls ( 1

2 Z3 2
16m g Li2s j

(3 (3 (3 1 & vr 1 1 1
+ L1L2Z2

I L I
+L1L3Z2

I L I
+L2L3Z21 —

L I

——
L + L + L327r (2 Li2 j E2 Lisj g2 I2sj 48 Li L2 Ls

(4 8)

In the limit Ls —+ oo, E, „/Ls smoothly becomes the
energy per unit length (3.18) of the rectangular Dirichlet
wave guide.

For a cubic cavity Eq. (4.8) simplifies to

=1 1 3 (3) (3i 7rE..„=— — z, (2)+ —
C I

—
I & I

—
I

——
L 16' 2 8m (2j E2j 16
1= —

[
—o.o32] . (4.9)

This negative result agrees numerically with [9].

V. DISCUSSION

Although there may be other interpretations for them,
let us for the sake of explicitness regard a boundary
in QFT as modeling some distribution of matter which
interacts with the quantum field(s). As mentioned in
the Introduction, boundaries have traditionally been as-
sumed to be hard (and smooth or piecewise smooth) in
Casimir theory. The word "hard" implies the boundary
has a precise location in space. In this sense the standard
calculations in electromagnetic Casimir theory which in-
volve dielectrics rather than metals, and therefore repre-
sent objects partially transparent to the electromagnetic
field, are hard-boundary calculations. (In scalar terms,

dielectrics correspond to Gnite step-function potentials in
the Schrodinger mode equation. ) For bulk purposes the
hardness assumption may be justifiable. There is little
doubt, however, that this assumption is highly idealized,
and cannot be microscopically realistic.

The present article is the first attempt known to the
authors to relax the hardness assumption. One can imag-
ine doing this in difFerent ways, characterized by difFerent
potential functions V(x) in the Schrodinger mode equa-
tion. This program is very broad, and one can say a
great deal about it. Detailed discussions are in prepa-
ration [13]. In the present article we have chosen an
extreme form of boundary softening. The hard rect-
angular boundaries of the Dirichlet box have been re-
placed by completely soft boundaries which act to con-
Gne a scalar Geld, but do not themselves have spatial posi-
tion. These soft boundaries are represented by HO poten-
tials in the Schrodinger mode equation. Such boundaries
could model nonuniform distributions of matter which
suppress the quantum Geld more and more strongly the
farther kom the center one looks.

The notion of soft conGning boundaries has been stud-
ied quantitatively in this paper by means of examples.
A massless scalar Geld 4 was subjected to confining HO
potentials in one, two, and three spatial directions. Per-
forming global calculations which exactly parallel the
global calculations in standard hard-wall Casimir the-
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Parallel planes

Prom Eq. (2.3) we find the global vacuum energy

e,ir (tube) = n[—0 000 8. 74] (5.1)

ory, we obtained the vacuum energy of 4 for one- two-,
and three-dimensional soft-wall confinement. In all cases
these vacuum energies are negative, and they increase
(toward zero) as the confining HO potentials are weak-
ened. In other words, it costs energy to displace the HO
potentials, or the matter these potentials represent, out-
ward to infinity. This qualitative statement appears to be
independent of the confining HO geometry. On the other
hand, using a simple mathematical device, we were able
to insert hard Dirichlet walls in various ways through our
HO boundaries, to obtain additional confining systems
having both hard and soft walls. For these, the results
were strongly dependent on the confining geometry.

The HO potential suppresses at least the lower modes
of 4, and this suppression increases without limit as
x» ~ oo. For large x» the hard wall at x» ——0 has
little effect. However, for small x» its suppression of 4
is strong. Right where the HO potential has little effect,
the Dirichlet wall has a strong effect. Together, the two
boundaries suppress 4 much more strongly than does the
HO potential alone. The result is Eq. (5.3)—a substan-
tial diminution of the total vacuum energy in the half
tube x» ) 0.

In the limit n -+ 0, Eq. (5.1) describes the restoration
of free field in all directions, while Eq. (5.2) describes
the restoration of free field in x» ) 0, with a now iso-
lated Dirichlet wall at x» ——O. These are quite differ-
ent systems, yet the final global energy looks the same:
e g ~ 0—.The system with the isolated Dirichlet wall
has vanishing global Casimir energy because all of the en-

ergy (5.4) of the distorted field C' is inseparable from this
wall. The mathematics we are using correctly assigns it
to the wall, not to 4.

within an infinite tube of unit cross section orthogonal
to the parallel HO boundaries. Prom Eq. (2.4) the cor-
responding energy within a unit semi-infinite tube ex-
tending from the Dirichlet wall at x» ——0 into the region
xi ) 0 (C is excluded Rom xi & 0) is

e,ir(2tube) = —n [0.00314] . (5.2)

Comparing total energies in the semi-infinite tubes in
x») Owe fin

e,ir(-'tube) & ie,ir(tube) . (5.3)

Predictably, the Dirichlet wall does not simply halve the
vacuum energy in the infinite tube. The Dirichlet wall
adds its own distortion of 4 to the distortion caused by
the HO potential. Its insertion is a complicated and
highly local process, best studied at the local level.

For an isolated Dirichlet wall at 2:» ——0 the distortion
of 4 as measured by the canonical vacuum stress tensor
1s

(5.4)

This energy density is intrinsic to the Dirichlet wall, even
though it extends outward into space from the wall. [Just
think of displacing the wall. The entire function (5.4),
and, more importantly, the distortion of 4 this function
represents, gets rigidly displaced along with the wall. ]
The energy density (5.4) diverges at xi ——0, a conse-
quence of the assumed perfect smoothness of the hard
boundary. This surface divergence can be removed by a
little surface roughening and is, in any case, unimportant
for our present discussion because it does not participate
in the global Casimir efFect. Only finite parts of (Too(x))
some distance away &om x» ——0 participate in the global
Casimir effect. It is not simple to compute the exact
(T~„(x)) for the parallel HO dirichlet wall system. This
is being done and will be reported elsewhere. Here we
only make a few qualitative remarks.

UVave guide

Equations (3.4), (3.8), and (3.11) give us the global
vacuum energies for the cylindrical HO waveguide, and
for half- and quarter-cylinder waveguides formed by the
insertion of one or two perpendicular Dirichlet walls
through the cylinder axis:

e,~ (cylinder)

e,ir (2 cylinder)

e,ir ( 4i cylinder)

—o. [0.00242],

0.006 51 + ln—2 1 p
48m o.

0.007 51 + ln—2 1

48m o.

(5.5)

(5.6)

(5.7)

Disregarding for the moment the ln(p/n, ) terms, each
of the energies (5.6) and (5.7) is negative, predicting as
for the cylindrical HO waveguide an attractive Casimir
effect. The in(p/n) terms enhance this efFect if p/a ) 1.
We remind the reader that, in ( function theory, p, is an
ultraviolet regularization parameter linked with vacuum
renormalization. One usually thinks of p as being arbi-
trary. However, if p truly were arbitrary, then whenever
in@ contributed to a Casimir energy [because the space-
time t,

' function Z(0) g 0] the sign (not to mention the
magnitude) of the Casimir energy and efFect would be un-
defined and, therefore, meaningless. We do not believe
the actual situation can be this bad. Perhaps a physical
interpretation can be found for p in Eqs. (5.6) and (5.7).
Remember, we are dealing here with a vacuum energy
problem and not, say, with a scattering process in which
an external energy may determine the renormalization
scale.

Let us change to the UV regularization length l = 1/p, .
If nl ) 1 or ln(p/n) = —ln(nl) & 0, the strength of the
Casimir efFect in Eqs. (5.6) and (5.7) is eroded. At some
critical value l, ) 1/n of l these Casimir energies would
change sign. This gives us reason to think that l ) 1/o. is
somehow excluded on physical grounds. In this problem
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there is only one available length I = 1/o. . I sets the
broad scale of nonuniformity of the background matter
with which 4 interacts. We suggest that l might be re-
garded as a smaller length scale characterizing possible
lumpiness or irregularity in this background. This finer
structure is only crudely taken into account because, in
the mode equation, the HO potential is ignorant of it.

This idea attempts to distinguish a physical meaning
for p. A different question is as follows: Why does p,

appear at all? In standard Casimir theory the presence
of in@ terms is linked with the confining geometry. This
appears to be the case here as well.

Cavity

Finally, we note again that a sign change occurs in the
Casimir energy of a symmetric cavity (ni 2 3 —o.) when
hard walls are inserted through its center:

E, „(sphere) = —a[0.01112],
E, „(z sphere) = a[0.01465],
E, „(4sphere) = n[0.0340],
E. (I sphere) = a[0.0303] .

(5.8)
(5.9)

(5.10)

(5.ii)

Quantum fluctuations within the spherical soft cavity try
to contract it—i.e., to draw inward the matter repre-
sented by the HO potential. Contraction of the cavity
means n ~ oo, with E, + —oo. If instead this mat-
ter recedes to infinity, then E, ~ 0—and the free field
is regained (but with spherically distributed matter at
infinity).

Somehow, when one or more Dirichlet planes are in-
serted, the situation reverses. Consider first the hemi-
spherical cavity obtained by inserting an infinite Dirich-
let plane at xi ——0 which confines 4 to xi ) 0. Quantum
Huctuations now try to push the hemispherically symmet-
ric distribution of matter outward from the center. This
is so unlike the attractive parallel boundary system that
one may wonder how both can be true. We emphasize
these two systems are quite different. Here, as o. is tuned
up and down, the edge of the hemispherelike distribu-
tion of background matter sweeps inward and outward
directly along the plane xq ——0. Behind this edge the
suppression of 4 is quite strong, right up to the plane.
In the parallel-boundary system there is no such edge; all
the way out to infinity the soft-wall material is no closer
to the Dirichlet wall than it is in the center. The distor-
tion of 4 in these two systems is therefore very different.
Similar remarks can be made about the 4 and 8 sphere
configurations.

We believe that the sign change in E can be under-
stood. Local calculations will decide this. We remind the
reader that the sign changes going from Eqs. (2.6) and
(3.19) to (4.9) for hard walls are not predictable by any
known (and compelling) argument. One must compute
these signs.

The global calculations reported in this article are ob-
vious first steps in our program of softening the tradi-
tional hard boundaries of Casimir theory. The HO po-

tentials used are prototypical of the type of boundary we
have called "soft." There is another category between
hard and soft, which we call "semihard" [13]. A semihard
boundary has a potential V(x) which grows smoothly
from V = 0 far from the boundary, to V = oo on. the
boundary surface OM. This potential V(x) gives BM
a surface "texture. " The latter is smoothly eliminated
when V(x) smoothly becomes the infiiute step-function
potential of a Dirichlet boundary at BM. The spectra
(and therefore the mathematics) associated with seini-
hard boundaries are basically similar to the spectra asso-
ciated with hard boundaries. Semihardening only finitely
distorts a hard boundary problem. Softening is more ex-
treme. When one smoothly eliminates a soft boundary,
free space is the result. Therefore very different spectra
are produced by soft boundaries. Both the semihard and
soft categories of nontraditional boundary are interesting.
Local calculations are needed to measure the distortion
of the quantum field characteristic of each type of bound-
ary. Both semihard and soft boundaries appear to be new
topics in QFT, with interesting physical applications.
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APPENDIX

.For notational convenience we summarize here the (-
function method [14] for evaluating Casimir energies.
It begins with the global spacetime ( function Z(s)

(p2/A )', Res ) 2, where A is the spectrum of the
Schrodinger operator on one's 4D Euclidean spacetime of
interest; 8 is a complex variable; finally p is an arbitrary
mass parameter needed to have a dimensionless quantity
p /A raised to a complex power. The defining series
for Z(s) converges absolutely in Res ) 2. Continuation
into Res ( 2 reveals that Z(s) is meromorphic, having
its rightmost pole at 8 = 2 on the real axis and other
possible poles to the left. With this interpretation, Z(s)
assigns a unique finite value to its divergent defining se-
ries everywhere in Res ( 2 [excepting the poles of Z(s)].

New consider Euclidean spacetime E x M where E
and M represent the imaginary time line and 3D space,
respectively. Z(s) is defined by

OO

Z(s) = dko ) (ko + (u„)

(Ai)

(—A + V)4 = u24' is the spatial eigenmode problem.
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-Z'(0) = ) (A2)

Differentiating the second equality in (Al) yields a formal
equation (with p = 1)

This quantity has the evident interpretation of a (Pnite)
global vacuum energy or energy density, whose dimen-
sion depends on how many momentum components are
continuous. Integration over each of these provides Z(s)
with one dimensional power of [massj, afFecting its inter-
pretation as mentioned in the text.
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