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Can a particle interacting with a scalar field reach the speed ef light~

Dan N. Vollick*
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(Received 23 June 1994)

The motion of a particle interacting with a scalar field is examined. It is shown that the efFective
mass of the particle is a linear function of the scalar field and that the particle reaches the speed of
light when its efFective mass goes to zero if scalar field radiation is neglected. The equation of motion
for the particle including radiation reaction has the same form as the Lorentz-Dirac equation. The
radiation emitted diverges as the particle approaches the speed of light and prevents the particle
from becoming luminal. The energy-momentum tensor for the particle and field is calculated and
it is shown that there exists an interaction energy-momentum tensor which allows for violations of
the weak energy condition.

PACS number(s): 03.30.+p, 03.20.+i, 03.50.—z

I. INTRODUCTION

It is well known that it is impossible to accelerate a
particle of constant nonzero rest mass to the speed of
light as it would require an infinite amount of energy [1].
If, on the other hand, the particle has a variable rest
mass, it is of interest to see if the particle can reach the
speed of light when its mass vanishes.

To examine this possibility I consider a collection of
particles interacting with a scalar field. The equations
of motion for the particles and Geld are derived Rom an
action principle. The efkctive mass of a particle is given
by m(1+ nP) where m is the rest mass in the absence of
the scalar field P and n is a coupling constant. The par-
ticle equations of motion are solved in Minkowski space
when P = P(t) and when P = P(x). In both cases the
particle reaches the speed of light when its efFective mass
vanishes. These equations, however, do not include the
backreaction produced by the scalar Beld radiation. The
rate of scalar field four-momentum radiated by the par-
ticle is calculated and is shown to have the same form as
the Larmor formula for the emission of electromagnetic
radiation. The equations of motion for the particle will
therefore have the same form as the Lorentz-Dirac equa-
tion. The radiation emitted by the particle diverges as
the particle approaches the speed of light and prevents
the particle &om reaching the speed of light.

The energy-momentum tensor for the particles and
field is calculated and it is shown that there exists an
interaction energy-momentum tensor which depends on
both the particles and the field. It is this interaction
energy-momentum tensor which keeps the total energy
of the system finite as the particle approaches the speed
of light (neglecting radiation so the speed of light can be
reached). The interaction energy-momentum tensor also
allows for violations of the weak energy condition even if
the particle and Geld energy-momentum tensors satisfy
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the weak energy condition.
Throughout this paper P and its derivatives will be

assumed to be finite, the metric will be taken to have the
signature (—,+, +, +), and the value of c will be set to
1.

II. FIELD AND PARTICLE EQUATIONS
OF MOTION

Consider a collection of timelike particles interacting
with a scalar field P. The action will be taken to be

S= —) m„f g„U"Udx—
„„

+-') f 1„(x„)]g„U„"U„"+1]dx„

—x) m„fd(x„(x„))dx„——,
' fV'dV„d~gd'x,

) m„f 6 (x" —x„"(x„))dx„,
~g

(2)

where = V'"V'„.The equations of motion for the par-
ticles are found by varying the action with respect to
x„"(r) and are given by

+~„)
~

„"+~"~U„~g~+ "U/dU„" „p'dA„

= —m„nV'"P. (3)

Contracting with U„"gives

where xg(w„)and U" are the position and the velocity of
the nth particle, 7 is the proper time along its world line,
m is its rest mass, A„(w ) are Lagrange multipliers, and
n is a constant (see [2—4]) for a discussion of the dynamics
of relativistic particles). The field equations are found by
varying the action with respect to P(x) and are given by
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Thus

A„=m„nP .

III. MOTION IN A FLAT BACKGROUND
SPACE- TIME

The equations of motion for timelike particles are then

[(1+ P) U„"]+ (1+ P)I'"&U„Ug= — V"P . (6)
n

The "effective mass" of the nth particle is therefore given
by m (1+nP). This mass has an infinite contribution
&om the P field produced by the particle. This needs
to be renormalized away, as does the usual infinite self-
energy. Since luminal particles have zero rest mass it
is possible that the particle reaches the speed of light
when its effective mass vanishes. This possibility will be
examined in the next section.

For null particles the action is

& = i ) fg„V"V da „+„q„)f I (rr )g„V"V„„'"der
n n

—[(1+ng)U] = 0,
d7-

(14)

where U = pv. The solution (14) is

U= Uo

1+nP '

where Uo is a constant vector. The magnitude of the
three-velocity is

In order to gain some insight into the motion of parti-
cles interacting with the P field consider a single particle
moving in a given P field in a fiat space-tiine.

First consider the case when P = P(t). The spatial
components of (6) are

—&) f p(2(rr ))der ——,'f V"pV„p~gd'x, (7)
l+U 1+a

(16)

where ~ are aKne parameters and V" = &~" . The par-
ticle equations of motion are

(i+ a„)
~
„"+ r".~V-V~

~

+ „"V~= nV~y. —
(d(T„~ ) d(T„ lim, v=1.

1 (17)

Thus if the initial velocity is nonzero (i.e. , Uo g 0) then

[U[ -+ oo as P ~ ——and

Contracting the V„gives

d

do~
=0.

The three-acceleration of the particle is

(nv2) dPa = —
I q I

(1+nP)v
gU0~) dt

Thus n = 0. Therefore null particles are completely de-
coupled &om the P field; they neither feel its effect nor
act as its source. This behavior can be seen &om the
relativistic limit of (2) and (6). For simplicity consider
(2) and (6) on a fiat background space-time. Using

f b'(x& —z~(~„))d~„=—6'(x —x„(t))
yn

gives

so that a —+ 0 as the particle velocity approaches the
speed of light. When the particle reaches the speed of
light it decouples &om the P field and remains luminal.

Now consider the case when P = P(x). the timelike
component of (6) is

d—[(1+n&)~l = o.
d'T

Thus

v = Ql —(1+nP)/A',

In the relativistic limit the right-hand side goes to zero
[for more details see Eq. (23)]. The spacelike components
of (6) can be written as (dropping the subscript n)

and

(1+nP)v. a = —n
~ 7 v ~ VP+p v

Ot

(1+nP)n a = —np n. VP,
where v and a are the three-velocity and the three-
acceleration, respectively, and n is a unit vector normal
to the velocity. Thus for P not close to ——both v" a
and n . a go to zero in the relativistic limit (the limit
P ~ —1/n will be discussed below).

where A is an integration constant. Once again v ~ 1
as P ~ —1/n. Note that this happens even if the initial
velocity is zero.

The above calculations are idealized in the sense that
radiation reaction has not been included. As the parti-
cle accelerates it radiates P field radiation, gravitational
radiation, and electromagnetic radiation if it is charged.
One expects that radiation reaction will prevent the par-
ticle &om reaching the speed of light. To calculate the
P field radiation produced by a particle I will follow
Rohrlich's [5] derivation of the electromagnetic radiation
produced by a point particle.

The Geld equation

Zip = rzm f 8 (x"(~))d~
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has the retarded solution

4mp
' (22)

particle
worldline

where p is the invariant p = U—„R"and R" = x" x"—(7 ).
Recall that RI'R& ——0 at the retarded (and advanced)
time. In noncovariant form (22) is

4mpR(1 —P R)

Thus P -+ 0 as v ~ 1, as expected (except along the line

P R = 1). Now define a spacelike u" such that U"u„=0,
u"u„=1, and R" = p(u" + U~). The partial derivatives
of p at the retarded time are given by FIG. 2. The surface do2 on which dP,"& is evaluated.

where a = a"u„and a" = dU" /dr. The energy-
xnomentum tensor of the field is given by (see Sec. IV)

where dO is an infinitesimal solid angle (this can be seen
by going to the instantaneous rest frame of the particle).
In the limit p + oo,

T" = 8"QB"P— q""8 $—0 P.1
2

(25)
dP" o.2m2'~ =™a (u" +U")dO.

d7- 16m 2 (29)

Substituting (23) and (24) into (25) gives In the instantaneous rest kame of the particle,

o. m [u"u" + a(u"R + u"R") + a R"R
16vr2 p4

—2irI""(1+2ap)] . (26)

dP" o.'m'' ~ =™(a R)'(1;R)dB .
dw 16~

Integrating this gives

(30)

The energy-momentum radiated by the particle in an in-
terval dw is given by (see Fig. 1)

dP" o2m'
d~ 12' (31)

dP,"q —— lim T""do~ .p~ oo
Since this is a four-vector the rate of radiation of four-
momentum in an arbitrary inertial kame is

do" = u~p dOcdv, (28)

It can be shown [5] that (27) is surface independent and is
therefore a four-vector. The only term which contributes
to the radiation is the R"R" term in (26). To calculate
dP,"& it is convenient to choose the surface do2 shown in
Fig. 2. The surface element is

dP,"~ o.'m'
a apU" .

di- 12' (32)

This has the same form as the expression for electro-
magnetic radiation. In electrodynamics the constant
n m, /127r is replaced by 2e2/3. The equation of mo-
tion of the particle will therefore have the same form as
the Lorentz-Dirac equation [5,6] with 2e /3 replaced by
n2m2/12'. Thus

particle
world line [(1+ng)U"] = nO"P+ ~*(a"——aga" U"), (33)d7.

where w* = n m/12', a" = da"/dw, and I'" = r*(a"—
a agU") is the correction to the equations of motion.
To eliminate possible runaway solutions the asymptotic
condition

lim a"(~) = 0r+ oo

FIG. 1. The surface dal is the region of the plane t =const
contained within the light cones produced at two infinitesi-
mally close points on the particle world line.

must be imposed (see Rohrlich [5] for a discussion of the
properties of the Lorentz-Dirac equation).

It is interesting to note that the bound four-momentum
of the particle (i.e., the bare momentum plus the bound
field momentum) is given by

Pq „„~——m(l + nP) U" —m~'a" .
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dP, ~ n2m~, v2gP

d7. (1+ng)2 (36)

and

'U," (- n(2 —v') j'&
(1 + ~)'

~
(1 + ~) ~

' (37)

where P = dP/dw = pdP/dt. Therefore dP,"&/dr and I'"
diverge as P -+ 1/n. Thus the radiation reaction will
become important as the particle approaches the speed
of light (P or P nonzero).

To analyze the motion, consider one-dimensional mo-
tion and let pv = sinh(. Equation (33) becomes

~ ( 0)(1+nP)(+ n
~

P tanh(+ sech/
~

= w'( .
Ox ) (38)

Consider xnotion with P = P(t) near P = —1/n and with
( )) 1. The equation of motion then becomes

(1+nP)$ + nP = ~( .

If radiation reaction is neglected (i.e., w = 0) the solu-
tion is

Thus, as in electrodynamics [7], the bound four-
momentum is acceleration dependent. This means that
the four-momentum radiated by the particle does not, in
general, equal the change in m(1+nP) U". However, if we
impose the asyxnptotic conditions (34) the acceleration
dependent term in (35) vanishes asymptotically and the
total energy radiated equals the change in m(1+ ng)U".

Consider once again, the case where P = P(t). To see
when radiation reaction will be important dP,"&/dr and
I'" can be estimated by using (14) and (15). The results
are

speed of light. It will be shown in Sec. IV that the energy
of the particle (in the asymptotic regions) can be taken
to be

E = m(1+ nP)p . (44)

Thus the energy of the particle will become negative
when 1+ nP ( 0.

As an example consider ( )) 1 and the scalar field to
be given by

1+ nqi = —tanh ( ) (45)

Note that in the absence of radiation the particle's ac-
celeration vanishes as w ~ koo. The solution to (39)
1s

((s) = —ln[(1+ s) +'l(1 —s)~ 'l] + Cia+ C2, (46)

((s ) = —2 in[1+ tanh(Ci/2)]+ Ci+ C2 . (47)

It is also easy to show that d (/ds ( 0 for all —1 ( s ( 1
so that ((s) is concave downwards. Thus for the condi-
tion ( )) 1 be satisfied it is necessary and sufficient that
((+1) )) 1. The asymptotic conditions are automatically
satisfied, as can be seen &om

1 2 f1+a)
((s) = — (1 —s ) ln

i i

—Ci
E1 —s (48)

where ((s) = d(/ds. The change in energy b.E = E(s =
1) —E(s = —1) = 2m(2 ln2 —C2) is finite.

where s = —(1 + nP) = tanh(w/2w') and Ci and Cz are
constants. Thus ((s) is finite for all —1 & a & l. $(s)
has a local maximum at s = tanh(Ci/2), where it has
the value

$ = (0 —ln(1 + nP), IV. THE INTERACTION ENERGY-MOMENTUM
TENSOR

which diverges, as expected, when P ~ —1/n. For v' g 0
Eq. (38) can be written as

T T I

((w) = n/r e e y(7 )dw dr
0 0
T

+C, ~«"~d~'+ C, ,
0

2 b'S

v g ~gatv
(41)

From (1) we have

The energy-momentum tensor of the field and particles
is given by

where Cq and C2 are constants,

0
y(~) = P tanh ( + sech(,

Ox

and

1
@(~) = — (1+nP)d~'.

7 0

(42)

(43)

T" = ) " (1+ng)U„"U„"b(x —x„(~„))d~„
~g

+V"PV"P — g""V PV P . —g/

2
(50)

There is therefore an interaction energy-momentum ten-
sor given by

When P = 0 the term involving Ci is a runaway term
and is eliminated by the asymptotic conditions. When
P g 0 the behavior as 7 —+ Woo depends on P. Since vP(r)
and y(7 )dr are finite [note that P(v)dv = (dP/dt)dt] for
~r~ ( oo so is ((w) and the particle does not reach the

Tg~
——n)™$(x )U U h (x —x (T ))d7 . (51)(x)

This energy-momentum tensor is necessary if
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is to give the correct equations of motion for the particles.
It is the interaction energy-momentum tensor which

keeps the total energy of the system Gnite as the particle
velocity approaches the speed of light (neglecting radi-
ation so that the speed of light can be reached). The
particle and interaction energy-momentum tensor can be
written as

Tg I = ).(1+nP)p b (x x (t))

From (14) and (19) it can be seen that p„(1+o.P) is finite
as the particle approaches the speed of light. Thus the
total energy-momentum of the system remains Gnite as
the particle approaches the speed of light. The quantity
my(1 + o.P) can be called the energy of the particle.

The interaction energy-momentum tensor allows for vi-
olations of the weak energy condition even if the particle
and Geld energy momentum tensors satisfy the weak en-
ergy condition individually. For example, if cia ( —1 and
is constant then T ( 0.

From (2) and (50) it can be seen that it is the trace of
the particle energy-momentum tensor which acts as the
source of the scalar Geld. In the continuum limit Eqs.
(2) and (50) become

(54)

V. CONCLUSION

The equations of motion for a collection of particles
interacting with a scalar field were derived &om an ac-
tion principle. It was shown that the efFective mass of a
particle is given by (1 + o.P)m and that the velocity of
the particle approaches the speed of light as the eH'ective

mass goes to zero if radiation reaction is neglected. Once
the particle reaches the speed of light it decouples &om
the Geld and remains luminal.

The P field four-momentum radiated by the particle
was calculated and shown to have same form as the four-
momentum radiated by an accelerating charged particle.
The equation of motion of the particle including radiation
reaction will therefore have the same form as the Lorentz-
Dirac equation. This equation was then examined and it
was found that radiation reaction prevents the particle
&om reaching the speed of light.

The energy-momentum tensor for the Geld and parti-
cles contains an interaction term which depends on both
the Geld and particles. It is this interaction term which
keeps the total energy and momentum of the system fi-

nite as the particle approaches the speed of light (neglect-
ing radiation reaction so that the speed of light can be
reached). The interaction energy-momentum tensor also
allows for violations of the weak energy condition even if
particle and field energy-momentum tensors satisfy the
weak energy condition.

&""= (1+~&)[(l + I')&"U" +»""]
+[V'"PV'"P —zg""V' PV P], (55) ACKNOViTLEDG MENT

where T„is the trace of the particle energy-momentum
tensor, p is the rest mass density and P is the pressure.
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