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Stringy evidence for D=11 structure in a strongly coupled type-IIA superstring
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Witten proposed that the low energy physics of a strongly coupled D=10 type-IIA superstring
may be described by D=11 supergravity. To explore the stringy aspects of the underlying theory we
examine the stringy massive states. We propose a systematic formula for identifying nonperturbative
states in D=10 type-IIA superstring theory, such that, together with the elementary excited string
states, they form D=11 supersymmetric multiplets, in SO(10) representations. This provides hints
for the construction of a conjectured weakly coupled D=11 theory that is dual to the strongly
coupled D=10 type-IIA superstring.

PACS number(s): 11.25.Sq, 04.20.3b, 04.65.+e, 11.25.Db

I. INTRODUCTION

Recently several proposals have been made about du-
ality connections between various string theories in sev-
eral dimensions. These seem to provide a handle on the
behavior of strongly interacting string theories in vari-
ous dimensions. In this paper we will concentrate on the
type-IIA D=10 superstring in the strong coupling limit.
In a recent paper Witten [1] made the remarkable sugges-
tion that 11-dimensional supergravity, including all the
states that come from compactifying the 11th dimension,
represents the low energy sector of the strongly coup/ed
type-IIA D=10 superstring. He suggested that nonper-
turbative black hole or monopole-type states that are al-
leged to arise in the strongly coupled D=10 string theory
are precisely the massive Kaluza-Klein states of D=ll
supergravity. Also, as was known for a long time, the
original massless string states are the massless D=11 su-
pergravity states. He based his reasoning on U duality
and hints provided in related previous work [2].

I first give a short summary of Witten's idea in a form
that will suggest generalizations. The argument relies on
extending the D=10, %=2 super Poincare algebra with
a central extension. There is mounting evidence that the
D=10 type-IIA superalgebra develops a central extension
Z nonperturbatively,

= p" Cp„p + e'~ C p Z,

and that there are states that carry nontrivial values of
Z. Witten argued that the values of Z should be given
by Z = cW/A where c is a pure constant, W is quan-
tized in terms of a unit, W' = nR'o, and A is the coupling
constant of the interacting string. It is useful for our ar-
guments later to regard the central extension Z as the
11th component of momentum for an 11-dimensional su-
peralgebra:

where A, B = 1, 2, . . . , 32, and P is a momentum in 11 di-
mensions P =(p", Z). Then (1.1) and (1.2) are the same

SO(8): (1 + 8 + 28 + 35 + 56)~
+ [8+ + 8 + 56+ + 56 ]~, (1.3)

and, as is well known, they do form the SO(9) multiplets

SO(9): 2~ ——(44 + 84) gy, 2~ ——128',
$(lJ) —441 /[1'JIi j

= 84, @~I = 128
(1.4)

which are interpreted as the graviton, antisymmetric ten-
sor, and gravitino of D=11 supergravity.

For nonzero charge W g 0 the BPS saturated states
are massive M = c

~
W] /A, but as argued above, they

are classified in the same short multiplets. Witten in-
terpreted them as the Kaluza-Klein excitations of the
graviton, antisymmetric tensor, and the gravitino, com-

superalgebra. It is useful to rewrite the algebra in the rest
frame P ~ P' = (Mii, 0, 0) where Mii ——M —Z . If
Mqq vanishes, it is not possible to go to the rest kame. It
is known that when the mass Mqq vanishes the supersym-
metry representations are "short" and contain 27 bosons
plus 2" fermions. These states have M = ]Z~ = c]W~ /A
and they are called the "BPS (Bogomolnyi, Prasad, Som-
merfield) saturated states" in [1]. When Mii P 0 the
supersymmetry representations are "long, " and contain
the seeds of an SO(10) little group, as will be discussed
below.

For zero charge TV = 0 the "BPS saturated states"
are precisely the massless states of the string theory, and
their quantum numbers are determined by the 2&+2&
short multiplet. Since the little group for massless states
in D=ll is SO(9), it is natural to expect that the mass-
less string states should be classified by SO(9). So, even
though in D=10 the little group for massless states is
only SO(8), this argument demands that the SO(8) states
have just the property to fit into SO(9) multiplets. In-
deed, the massless states which come &om the Ramond-
Ramond vacuum sector ~vac)L, ~vac)~, are classified under
SO(8) as (8„+8 )& x (8„+8~)&, where 8„,8~ are the
vector and spinor representations of SO(8). This prod-
uct yields the following representations for the massless
bosons and fermions:
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ing &om compactifying the 11th dimension of D=11 su-
pergravity. I"urthermore he suggested that their interac-
tions at low energies are given precisely by the full theory
of D=11 supergravity.

These arguments suggest that there may be some
richer, stringy, D=ll-like theory that is dual to D=10
type-IIA superstring, whose spectrum and interactions
may be studied in either the language of the D=11 theory
(if one could guess it) or directly in the original D=10
theory. If this is true we should be able to see more
evidence of D=ll by studying the type-IIA theory. In
particular it should be possible to see that the stringy
spectrum of the D=10 string theory exhibits some D=11
property. Indeed we have known for quite some time that
the first stringy massive level of the type-IIA theory does
exhibit a D=ll dimensional structure [3]. Namely the
states fill the long multiplet 2& +2+ of D=11 supersym-
metry, and they are classified in SO(10) representations,
i.e. , with the little group of massive states (the rotation
group) in 1+10 dimensions. This was discovered in the
process of analyzing D=ll supermembrane theory, but
the same arguments apply directly to type-IIA string as
is evident in [3]. It will also be repeated below.

In this paper we will make a proposal that extends
this observation to include the higher stringy levels, but
only after including nonperturbative states. We will give
a systematic prescription for the masses and SO(8) or
SO(9) quantum numbers of the nonperturbative stringy
states, and will carry out an explicit analysis of the D=11
structure successfully up to string level 5. The perturba-
tive states combined with the nonperturbative ones will
form complete supermultiplets at each string level. In
the weak coupling limit the nonperturbative states be-
come infinitely heavy or decouple, and the spectrum re-
duces to the usual type-IIA perturbative string states. In
the infinite coupling limit there is a Kaluza-Klein tower of
degenerate massive states forming D=11 supermultiplets
at each stringy level.

II. PERTURBATIVE STRING SPECTRUM

In 10 dimensions (1-time + 9-space) the rotation group
is SO(9). A massive state at rest must come in degen-
erate multiplets of SO(9), where the inultiplet represents
the spin components. When one actually constructs the
states of the type-IIA superstring in the lightcone gauge
there is only a manifest SO(8) symmetry (see the Ap-
pendix). This is because manifest Lorentz invariance is
broken by the choice of gauge. However, since the the-
ory is actually Lorentz invariant one finds that the SO(8)
representations can be reassembled into SO(9) represen-
tations (see, e.g. , [4]).

Furthermore, there is separate supersymmetry for the
left movers and right movers (type IIA). For left movers,
or right movers, there are 16 supercharges. For a massive
state at rest pi' = (M, O) the supercharges form a 16-

dimensional Clifford algebra for left movers S,S&
Mb p, and a similar one for right movers. The automor-
phism group of this algebra is SO(16). It is useful to

2~ ——44 + 84, 2~ ——128 . (2.1)

Therefore, for either the left movers or right movers,
the type-IIA superstring states must be arranged into
massive supermultiplets of the form

r x f(44 + 84)~ + 128' j, (2.2)

where r is a representation of SO(9) that may be consid-
ered as the lowest state in the supermultiplet (which may
be bosonic or fermionic) and the factor ((44 + 84)& +
128~) represents the action of the supercharges.

The closed string state is obtained by taking the direct
product of left and right movers at the same excitation
level l, with Lp = —M + l) Lp = —M + l and Lp
Lp ——0. The combined left- and right-moving states at
level l take the form

() - iiil (
L ~ R

{(44+84)~ + 128' jl.
( )x ((44 + 84)~ +. 128~)~

where an identical collection of representations, . r,.
occur for left or right moving states at each level l. These
represent the lowest states in the supermultiplet.

Thus, to chracterize the states of the type-IIA super-
string it is sufficient to give the collection of states g,. r;
that occur at each level l. Up to level 5 these are com-
puted in the Appendix, and are given in the following
table in terms of SO(9) representations:

Level
l =1:
l =2:
l =3.
l =4.

SO(9) representations P,. r,(&)

1+
9g
44' + 16@

(
(9 + 36 + 156)gy

+128'
(2.4)

l=5: (
(1 + 36+ 44+ 84+ 231+ 450)~
+ [16 + 128 + 576]

Levels I = 0, 1, 2 were previously given [4] while the re-
sults for levels l = 4, 5 are new. The SO(9) irreducible
tensor structure of these representations are given in (1.4)
and below

embed SO(9) in this SO(16) by mapping the vector of
SO(16) into the 16-dimensional spinor of SO(9). The 16
supercharges may be rearranged into 8 fermionic creation
operators and 8 annihilation operators. At the most 8
powers of the creation operators can be applied on a given
state. The repeated action of the supercharges can be
organized into the two spinor representations 2~&+2+7 of
SO(16), where the subscripts B,F imply that they are
bosonic (even powers) or fermionic (odd powers) opera-
tors respectively. The SO(9) content is obtained by de-
composing these SO(16) representations into the SO(9)
representations
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III. D=11 SUPERMULTIPLET STRUCTURE

A. Perturbative states

Type-IIA superstring in D=10 has two supercharges of
opposite chirality. Each supercharge has 16 components
and all states can be classified as SO(9) supermultiplets
as seen above. However, there is a higher supermultiplet
structure. To understand this, first notice that, at rest,
the two supercharges combined form a 32-dimensional
Clifford algebra, which may be divided into 16 creation
operators and 16 annihilation operators. The isomor-
phism group of this algebra is SO(32). The 16 creation
operators form the 16-dimensional representation of the
rotation group SO(9). However, it is useful to regard this
SO(9) as being embedded in SO(32) as

SO(32) z SU(16) z SO(10) z SO(9), (3.1)

where the embedding is done by classifying the 16 cre-
ation (annihilation) operators in the 16 (16) of SU(16),
which is the 16 (16) of SO(10) and the 16 (16) of SO(9).
This embedding exhibits an intermediate SO(10) which
will play an essential role below. This is the embedding
that we used some time ago [3].

To take advantage of this higher structure, let us reor-
ganize the perturbative levels as follows. A massive su-
permultiplet in the type-IIA superstring is obtained by
starting &om any representation of SO(9) (which may
represent either bosons or fermions) and applying the 16
fermionic creation supercharges on it repeatedly. At the
most 16 powers can be applied. The SO(9) content of the
nth power of the generator is obtained by antisymmetriz-
ing the 16 of SO(9) n-times, i.e. , [16"].The SO(9) con-
tent of this antisymmetrization is better understood by
embedding it in SO(32), since the same procedure forms
the two spinor representations of SO(32). Thus, the even
powers form the spinor 2& and the odd powers form 2~5

where the subscripts B,E stand for bosons or fermions.
Each spinor may be decomposed into representations of
SU(16). The 2&is contains the completely antisymmetric
SU(16) tensors with 0, 2, 4, 6, 8, 10, 12, 14, 16 indices, and
likewise the 2+5 contains the completely antisymmetric
SU(16) tensors with 1, 3, 5, 7, 9, 11,13, 15 indices. There-
fore, under SU(16) we have the representations

2'15

15

1+120+ 1820+ 8008+ 12870

+1+120+ 1820+ 8008,
16+560+ 4368+ 11440

+16 + 560 + 4368 + 11440 .

(3.2)

450, P(jj g) —231, P(zj~) —156~

Q[jj] —36, @ (r j) ——576. (2.5)

Indices in square brackets P[rjj are antisymmetrized,
in round parantheses P(jj~) etc. , are completely sym-
metrized and traces projected out, P(r j~) corresponds
to a Young tableaux with (2,1) boxes and traces pro-
jected out, while @ (gj) is a mixed spinor tensor with a
projection involving a p inatrix [16 x 45 —16 x 9 = 576].

These are further decomposed under SO(10) and then
under SO(9) [3]. Thus, any massive supermultiplet must
have the structure of the long D=ll supermultiplet

R x (2~i + 2~is), (3.3)

where R is some collection of SO(9) representations
[rather than SO(10) at this stage] representing either a
boson or fermion, and the structure (2P + 2P) comes
&om applying the supercharges on it.

By comparing to the perturbative spectrum in Eq.
(2.3) we can determine that

5 isi ((44+ 84)ii + 128
x((44+ 84)~ + 128~)~,

perturbative: R = B&~ = P,. r( ) x(L) (~) (~)

(3.4)

The point is that the action of the supercharges repre-
sented by (2g + 2P) has a higher symmetry structure.
In particular we focus on its SO(10) subgroup since it
is the rotation group in 10 spacelike dimensions. Indeed,
from the D=ll the superalgebra point of view the SO(10)
has the correct interpretation to be associated with one
additional spacelike dimension.

The question is whether the factor B also has the
SO(10) symmetry? The answer is affirmative [3] for the
first excited level I = 1 since, according to (2.4) we have
only SO(9) singlets

l = 1: Bz ——1~ x l~ ——1,

which are also SO(10) singlets. Thus, in addition to the
arguments given by Witten about the existence of hidden
D=ll structure at the massless level, we have a first hint
that D=11 evidence may show at the massive stringy
levels as well. The argument above relies only on the
supersymmetry structure and is completely general as
far as the first level is concerned.

At levels l ) 1 we need to analyze B~ in more detail.
For example at level 2 we have, from (3.4) and (2.4),

l =2: Bz ——9~ x9~, (3.5)

which clearly cannot be complete SO(10) multiplets. So,
there is no way that the perturbative spectrum has D=l1
structure by itself.

B. Nonperturbative states

We now postulate that the D=10 type-IIA super-
string has additional nonperturbative states that emerge
just like monopoles or black holes in nonlinear theo-
ries. According to the supersymmetry algebra their mass
should satisfy M ) z ~

W~ . In the weak coupling limit of
the type-IIA superstring these states are presumably in-
finitely heavy, or infinitely weakly coupled (i.e. , nonper-
turbative e '~"), and therefore do not appear in the per-
turbative theory. In the strong coupling limit, if there is
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D=11 structure, the extra nonperturbative states should
become degenerate with the perturbative states just in
such a way as to give complete SO(10) supermultiplets.
In this case, since the D=11 momentum of the state has
the form P = (p", cW/A), we conjecture a stringy mass
relation of the type

P =Mii=M —c W /A =n, (3.6)

where the stringy n = 0, 1, 2, . . . is a positive integer.
The n = 0 case is the sector that saturates the BPS

bound, and therefore the states form the short multiplets
of D=ll supersymmetry with 2ii + 2& ——(44 + 84)z +
128~, just like the massless states, since for all of them
the D=11 mass vanishes, P:Myy: 0 The elementary
massless states of the string have W = 0, but the non-
perturbative states have W g 0. The n = 0 case is the
sector discussed by Mitten, and interpreted as Kaluza-
Klein modes of D=ll supergravity, with charges W =
kWp, and M =

q ~W~.
In our case we investigate the conjectured stringy non-

perturbative states, with n & 1. The masses will be
M = gn+ c W /A . Just like the n = 0 case, it is
natural to expect one state with W = 0, and an infinite
number of charged states with W = kWO. At infinite cou-
pling c W /A ~ 0, all the new nonperturbative states
of level n have the same mass M = n, which is similar to
the spectrum of the elementary massive string states. At
weak coupling the W g 0 states become infinitely heavy
and disappear from the spectrum. But how about the
W = 0, M = n nonperturbative states which remain at
finite mass at weak coupling. Assuming that the W = 0
states do not exist at all is one option, but it seems un-
natural, since W = 0 is interpreted as just a zero value
for the 11th component of the momentum. Instead I will
assume that its coupling to the elementary string states
is nonperturbative, e.g. , g exp( —c/A) rather than a
power of A. This would explain why it would not be seen
in weakly coupled perturbation expansion of the type-IIA
superstring.

Our aim here is to answer the question "what is the
massive stringy spectrum that exhibits D=11 structure
and SO(10) symmetry at strong coupling?" The impli-
cation is that the extra nonperturbative states together
with the perturbative states form complete SO(10) super-
multiplets. However, can we provide a concrete formula
for identifying all such states at all massive levels? Here
we make a proposal for all levels, and show that it works
at least up to level 5.

As a first hint consider how the l = 2 states in (3.5)
can be completed to SO(10) multiplets. We need to add
singlets for both left movers and right movers at the same
mass. By examining (2.4) we see that the only place
where singlets appear are at the previous level (l = 1).
This suggests the presence of new nonperturbative states
at level l (with l = 2 in the present example), whose
quantum numbers are those of the perturbative states of
the previous levels. Indeed this hint leads to the following
systematic formula.

In the infinitely strong coupling limit (or for the W = 0
state) we suggest that the mass formula for left and right

movers that incorporates all perturbative and nonpertur-
bative states follows &om putting the non-perturbative
string on shell as follows:

Io ———M +l'+l =0,

I, = —M'+l'+ l = 0,

(3.7)

where t' is a positive integer and / represents the level
of excitation with the elementary superstring oscilla-
tors as defined before. Then integer I, determines the
SO(9) content of the state as given in (2.4). The fac-
tors (—M + l'), (—M2 + l') play the role of D=ll
squared masses (—Mi2i) for left and right movers, respec-
tively. Thus, at a fixed 10-dimensional (10D) mass level
M2 = n = l' + l the integers (l', l), (l', l) take the values

(l', l) = (O, n) + (1,n, —1) + + (n —1, 1),
(3.8)

(l', l) = (0, n) +. (1,n —1) +. + (n —1, 1).
The states with the highest level (l' = 0, l = n) are iso-
morphic to the perturbative level l = n states that were
discussed in the previous section. The others are the
nonperturbative states with l' g 0. The SO(9) quantum
number of the state (l', l) is identical to those listed in
Eq. (2.4), as determined only by l, but the new states
listed in (3.8) are distinguished Rom those in (2.4) by
their quantum number I,', as well as the W charge, if any.

Note that we have not included the state (l' = n, l = 0)
even though the mass formula M = t' + l = n allows it.
The reason is that the D=ll left or right masses vanish
when l = l = 0, i.e. , Mii ——(M —l') = (M —l') = 0
and then the supermultiplet is the short one (the BPS
saturated states) 2& + 2& ——(44 + 84) gy + 128~. These
states are stringy partners of the Kaluza-Klein excita-
tions of the D=ll supergravity multiplet. They may
not exist at all, or they may be interpreted as point-
like states (&om the D=10 point of view) that would fit
into the type of discussion given by Witten. The stringy
states must have l g 0 and must form the long inultiplets
(2&is + 2p) x R as described in (3.3) and (3.4). There-
fore, since (l' = n, l = 0) are not such states they are
excluded from the stringy list in (3.8).

In this section we simply want to use this mass formula
irrespective of its origin and show that it works. However,
in addition to the mass formula we need a scheme for the
multiplicity of each state listed in (3.8). We will explore
two schemes for the multiplicities. These will differ from
each other by how many times it is possible to obtain the
same value of l'. Each scheme works at least up to level 5,
but each one provides a different view on the origin of /'

and the dynamics of the weakly coupled dual theory. The
simplest scheme is to take a single copy of each state listed
in (3.8). We now show how the SO(9) representations
reassemble to give SO(10) representations at each mass
level M2 = n & 1.

At mass level M = 1 there are only the states (0, 1)
that correspond to the 2& + 2& perturbative states al-
ready discussed above. They form the D=ll supermul-
tiplet
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M =1:1 x (2~ +2~ j. (3.9) Therefore the full set of perturbative and non-
perturbative states forming the D=11 supermultiplet is

This is SO(10) covariant.
At mass level M~ = 2 we have, for left movers,

((0, 2) + (1, 1))L . B = (9gy + l~jL (3.10)

M = 2: (10 x 10) (2~ + 2P j . (3.ii)

At mass level M~ = 3 we read off &om Eq. (2.4) the
SO(9) content of (0, 3) + (1,2) + (2, 1) . For either left
or right movers this is R = (44+ 9+ 1)& + 16~. These
reassembe into SO(10) representations so that the D=ll
supermultiplet is

M = 3:(54++ 16pj x (54~+ 16' j x (2~ +2& j,
(3.12)

where P(xY) = 54 is the symmetric traceless tensor for

SO(10) and 16, 16 are the two spinor representations.
At mass level M~ = 4 the SO(9) content of (0, 4) +

(1,3) + (2, 2) + (3, 1) is obtained from (2.4). For left
movers the SO(9) representations reassemble into SO(10)
as

(1+ 2 x 9+ 36+ 156+ 44)~
+ (16 + 128)~

SO(10) = (45 + 210)~ + 144' .

Therefore the full set of perturbative and non-
perturbative states included in the D=11 supermultiplet

(3.i4)

ls

((45 + 210)~ + 144' )
M~ = 4: & x ((45+210)~+ 144~j

x (2~ + 2~~5j .

Here the SO(10) tensors are

'(t'(XYZ) 2101 4'[XY] = 451

@ x = 144, @-x = 144,

and their SO(10)~SO(9) decomposition is

210 m 156+44+ 9+ 1,
45 -+ 86+ 9,

144 ~ 128+ 16.

(3.15)

(3.16)

(3.17)

Finally, at mass level M = 5 the SO(9) content of
(0, 5) + (1,4) + (2, 3) + (3, 2) + (4, 1) for left movers, as
obtained from ( 2.4), reassemble into SO(10) representa-
tions as follows;

2 x (1+9+ 36+ 44)
SO(9) = ~ ~+84+156+231+450 i (3.18)

+ [2 x (16 + 128) + 576]~,

6O(10) = [
(1+ 120 + 620 + 660)9

(2 19)+ [144 + 720]~ .

and the same set of representations for the right movers.
These SO(9) representations are read off directly Rom
Eq. (2.4) through their / values. Therefore, the full set of
perturbative and nonperturbative states form the D=11
supermultiplet

(1+120+ 620+ 660)6
)+ [144 + 720]~

M = 5: & 1+ 120+ 320+ 660 ~
+ 144+ 720 ~

x (215 + 215j
The SO(10) tensors are

(3.20)

(t1(VXYZ) = 660, 4'(XY,Z) = 320, 4'(XYZ] = 120,

@ (xY) = 720, g x = 144, (3.21)

@-(xY) = 720, Q-x =144.

Their SO (10)-+SO (9) decomposition is

660 m 450+ 156+ 54+ 9+ 1,
820 m 231+44+ 86+ 9,
120 m 84+ 86,
F20 + 5'76 + 128 + 16,
144 + 128 + 16.

(3.22)

C. Higher multiplicity scheme

The simplest scheme for the multiplicity of the states
that was used above may be electively reformulated as
follows. Introduce a new left-moving oscillator P q that
has a single mode at level 1. A similar one P q is intro-
duced also for right movers. Then we may identify the
number operators l' = P qPq and I' = P qPI while the
states (I', I), (I', l) can be built as

(3.23)

(3.24)

At level I' the states (l', I) are

where !l)L„!l)~are the original string oscillator states
given in (2.4). This construction should be regarded as a
mnemonic to keep track of the states, and while it is not
excluded, it need not represent necessarily an additional
oscillator in the dual theory This m. inimal approach
clearly gives a single copy of each state (l', t), (I', I).

It is tempting to explore the idea of extra oscillators,
leading to higher multiplicities. The most attractive case
would be to boldly introduce all modes for an extra di-
xnension. This would account naturally for all stringy
Kaluza-Klein partners in the conjectured D=11 dual the-
ory. Let the modes be P with the usual Heisenberg al-
gebra [)9,P ] = nb + . Similarly introduce also right
movers P . The zero mode is the Kaluza-Klein charge
that appears as the 11th momentum in the superalgebra
Pp = 18p W. We may now construct many more states
with the same value of /', l':
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P- lt) P- + P- II)~ . (P- )' lt) (325)

The multiplicity is equal to the number of partitions p(l )
of the integer 1'. Thus, in this scheme we would have the
following states up to mass level M = 5

M2=n

2
3
4
5

States P p(l') x (l', t)
(0, 1)
(0, 2) + (1, 1)
(0, 3) + (1,2) + 2(2, 1)
(0, 4) + (1,3) + 2(2, 2) + 3(3, 1)
(0, 5) + (1,4) + 2(2, 3) + 3(3, 2) + 5(4, 1) .

(3.26)

The remarkable fact is that these states also can be re-
organized into complete SO(10) supermultiplets. This is
done as follows.

There is nothing new at mass levels M = 1, 2. At
mass level M = 3, first use one factor of each state to
obtain the result (54~ + 16') as before. The remaining
(2, 1) is just a singlet of SO(10); that is, it has the same
SO(10) content as mass level n = 1. Therefore, the full
collection of SO(10) states is ((54+ 1)& + 16~) for left
movers, and the same one for the right movers. These
multiply the overall factor 2~ + 2~ as before.

Similarly, at mass level M = 4, after reproducing the
previous collection of SO(10) states in (3.14) by using
one factor of each state, there remains (2, 2) + 2(3, 1).
This may be regarded as two sets (2, 2) + (3, 1) and (3, 1)
each having multiplicities one, and furthermore having
the same SO(9) or SO(10) content as the collection of all
the states in mass levels n = 1, 2 as listed in (3.26). Using
the known result for those levels, we see that the extra
states correspond to the SO(10) multiplets (10+ 1)&.
Therefore the full collection of left-moving SO(10) states
is (1 + 10+ 45+ 210)&+[16+ 144]& . Similarly, for right
movers.

Finally at mass level M = 5, the same procedure
indicates that in addition to the states in (3.19) there
are those coming Rom the levels (2, 3) + 2(3, 2) + 4(4, 1).
Again, these may be regarded as several sets, each con-
taining single multiplicities:

(2 3) + (3 2) + (4 1)
(»2) + (4, 1)

(4, 1),
(4, 1) .

(3.27)

These have the same SO(9) or SO(10) quantum num-
bers computed for the single multiplicity scheme at the
lower mass levels n = 1, 2, 3. Therefore the total SO(10)
multiplets are

(5 x 1+ 2 x 10+ 54+ 120+ 320+. 660)z

+ [16 + 144 + 720]~ . (3.28)

The pattern is clear. If we have already established
that the single multiplicity scheme gives SO(10) multi-
plets, then the expanded scheme also gives it since the

additional states at mass level M = n have the same
SO(10) quantum numbers as the states in the mass lev-
els M = (n —2), (n —3), . . . , 1. We have already shown
this up to level 5, and an iterative proof can be given for
all mass levels.

Recall that in addition to these stringy Kaluza-Klein
partners, the dual theory presumably has also an infi-
nite tower of pointlike Kaluza-Klein states for all possi-
ble values of the 11th momentum W (all of which become
degenerate at infinite coupling).

IV. COMMENTS

I have made a proposal for identifying the conjectured
nonperturbative stringy states that uncover a hidden
D=11 structure. This involves stringy structures that
are not included in Witten's discussion, but which must
be there if his proposal is more than an accident at low
energies. In order to tighten the arguments one should
look for a possible role of discrete symmetries, similar to,
or beyond the conjectured SL(2,Z) symmetry and the as-
sociated U duality [2]. There may be a symmetry that
commutes with the SO(8) or even SO(9), but not with
SO(10). Combining such a symmetry with SO(10) may
generate a much more restrictive symmetry of the string
theory that could be suKcient to elucidate the conjec-
tured 11-dimensional structure and the strong coupling
behavior of the theory. Evidence for such a symmetry
would begin with finding repetitions of the same SO(8)
or SO(9) representations at the same mass levels, such
that they would form multiplets of the extra symmetry.
We indeed And such repetitions at various stages of our
analysis as is evident in the Appendix and the text. How-
ever, more is needed to understand if this is due to a
symmetry.

It may be that restoring the light-cone oscillators
would make it easier to investigate the presence of sym-
metries in a covariant quantization. In this connection
I suspect that a new construction of an SL(2,R) current
algebra that uses the light-cone oscillators [5] would be
useful. Note that the arbitrary c = 0 stress tensor T' used
in this construction may be taken as the stress tensor of
the type-IIA theory by including ghost fields. Extra ef-
fective dimensions may arise through such a mechanism.

One approach for searching for the nonperturbative
states is to investigate a string Geld theory type formu-
lation. In this connection recent proposals for the field
theoretic formulation of the superstring by Berkovits and
Vafa seem promising [6].

The extra oscillators P, P are intriguing. Is it possi-
ble to include them directly in the discussion of the D=10
type-IIA superstring, and not only in the dual theory?
In this connection, perhaps it is useful to recall that the
covariant quantization of the Green-Schwarz string has
never been fully understood. Could there be a possibil-
ity of a I iouville-like mode that decouples perturbatively,
but which is present nonperturbatively'? If so, it would
account naturally for the extra dimension.

The dual D=11 theory that we are seeking, especially
when discussed in terms of the oscillators P, P, is be-
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ginning to look like a membrane theory, as it shares some
similar features to the D=ll supermembrane theory that
we studied some time ago, although not quite the same.
The D=11 theory that is dual to type-IIA superstring
may be a new membranelike theory. In any case, in view
of the approach we have pursued here, it may be useful to
revise also the previous work [3,7,8], using the new hints
as a guide for the construction of a consistent "super-
membrane theory" in 11 dimensions.

implies that these tensors are constrained as follows:

4'{xr) ~ = 0, (t ) 0px = o. (A2)

Combining these rules with the decomposition of indices
in the above table, one can figure out the group or sub-
group decomposition of higher representations. For ex-
ample,

SO(10) SO(9) SO(8)

ACKNOWLEDGMENTS

I thank K. Pilch and J. Minahan for discussions, and
E. Witten and J. Schwarz for comments. This research
was supported in part by the DOE Grant No. DE-FG03-
84ER-40168.

= (35„+8„+1)= 44+9+1
+(8„+1)+1

APPENDIX
(A3)

In this appendix we construct the SO(9) content of the
elementary string states for D=10 type-IIA superstring,
up to level 5. The results were previously known for levels
0,1,2,3 [4], but they are new for levels 4 and 5.

4 x 01+4'
+(4. + @.)

, +(@.'+ 0.')

1. Notation

We work directly in the light-cone gauge. Therefore,
we start with manifest SO(8) symmetry. Vector indices
i = 1, 2, . . . , 8 denote the vector 8„of SO(8), while the
spinor indices a, a = 1, 2, . . . , 8, denote the spinor rep-
resentations 8+, 8, respectively. The string oscillators
are classified as o.' = 8„, S = 8+ for left movers and
6' = 8, S = 8 for right movers. The zero modes

So = 8+, So = 8 give the Ramond vacuum ~8„+8 )I,
for left movers and ~8„j8+)R for right movers.

SO(9) vector indices are denoted by I = 1, 2, . . . , 9
and spinor indices by n = 1, 2, . . . , 16. SO(10) vector in-
dices are denoted X = 1, 2, . . . , 10 and spinor indices by
o. , o. = 1, 2, . . . , 16 for the spinor representations 16, 16 of
SO(10), respectively. The group or subgroup decompo-
sition of these representations is

= 144 128+ 16

&56 +56 )
+8++8 )

+(8~ + 8 ).

2. Massless sector

+8 )I, x ~8 +8+)R

= (8„x8„+8 x 8+)R + (8„x8+ + 8„x8 )~
= (1+35„+28 + 56„+8„)R

+(56+ + 8 + 56 + 8+)&

The Ramond-Ramond vacuum (l = 0) has the follow-
ing SO(8) classification of bosons and fermions:

= 16
@- =16

= 16
vP' = 16

SO(10) SO(9)

4x =10 pl —9
SO(8)

(4' = 8-) + (4' = 1)
+ (& = 1)

(0 = 8+) + 4' = 8-
(4". = 8+) + 0.' = 8-

(Al)

(A4)

SO(9): = (44+ 84)R + 128'

So, SO(9) emerges only after combining left with right.
Thus, the decomposision is obtained by specializing the
index X —+ I 10 ~ i 9 10 and o. , 6 ~ o, ~ a a .

For SO(n) all antisymmetric tensors are irreducible
multiplets, but tensors with symmetric vector indices
or mixed spinor-vector indices are reducible. Irreducible
multiplets are obtained provided these tensors give zero
when contracted with the Kronecker b function or with a
p matrix. Thus, for SO(8), SO(9), or SO(10) writing irre-
ducible representations in the form P{xy), or g x, etc. ,

3. Level 1

At massive levels, the left movers and right movers sep-
arately must exhibit the SO(9) structure since each sec-
tor behaves like the open string. Another reason, based
on the representations of supersymmetry, was given in
the text. Therefore, we will erst reorganize the left-
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moving SO(8) states into SO(9) long supermultiplets
(2& + 2+) x r. The right moving states have the identi-
cal SO(9) structure. The SO(10) structure will become
apparent only when left and right are put together, as
done in the text.

At level 1, there are left and right moving oscillators
applied on the left and right vacuum. For left movers the
SO(9) structure can be seen by writing out the SO(8)
content of the oscillators and vacuum

8„+8+ ——35„+8 x 8„+8+ . A10

Left . [1 + (8„+8+) + (35„+8 )]

x(8„+8+) x (8„+8 )
(A11)

Then the left-moving states may be rewritten as SO(9)
multiplets as follows:

Left:

4. Level 2

(ci*, e s, )lvac)
= (8„+8+) x (8„+ 8 ),

SO(9) = [(44+ 84)~ + 128~]~ .

SO(9) = [44& + 16~] x [(44+ 84)~ + 128~].

( 5) The SO(9) ~ SO(8) decomposition is

44 —+ 1 + 8„+35

6. Level 4

(A12)

The oscillators applied on the left vacuum are classified.
under SO(8) as

Left: j(n* e s ) e (a' e s ) ) lvac)1,

= ((8 +8+) + (8„+8+) „}x (8„+.8 ),

The oscillators that are applied on the vacuum have
the SO(8) structure

(~'-4 e S-4)
e(~' s e S s)(~', e S,)

(A6)

where the subscript "SUSY" means symmetrization of
identical bosons and antisymmetriz ation of identical
fermions. It can be rewritten as

Left: e ( ', e s ,)' ,„,„
+( '.+ s .) (

'
~ e s .)',„,.

e (
' , e S ,)' ,„,.

vac I

,(8. + 8+)',„„ ( (8„x8„)~+ (8+ x 8+)z i
( +. (8„x8+)

= (1 + 35„+28)~ + (8 + 56+)~
= 8 x (8„+8+), (A7)

(8- + 8+) + (8- + 8+)'
(8„+8+)',„

(8„+8+) x (8„+8+)2

+ (8-+8+)',„,„

x(8. +8 ).

where the subscripts S, A mean symmetrization and anti-
symmetrization, respectively. The important last step is
the rewriting in terms of an overall factor (8„+8+) . This
allows rewriting all the SO(8) states for the left movers
in (A6) in the form of SO(9) multiplets

Left: (1+8„) x (8„+8+) x (8„+8 )

= 9 x [(44 + 84)~ + 128~] . (A8)

5. Level 3

First we work on rewriting the supersymmetrized quartic
by pulling out a factor of (8„+8+) as

[(8„+8+) = [(8„+112) + 56 ] x (8„+8+),
(A14)

where P~,~i, l
= 112 is the completely symmetric traceless

SO(8) tensor in three indices. Combining this result with
(A7) and inserting them in (A13) we may pull out the
overall (8„+8+)factor to exhibit the SO(9) classification

Left:
(~'-. e s .)

+(,+ S.,)(,+ S.,) l ).
e[( '.+s .)'],„,„

The oscillators that are applied on the vacuum have
the SO(8) structure Left, :

1 + (8„+8+) + 8„

+8„x (8 +8+) )

, + (8„+112) + 56

x(8„+.8+) x (8„+8 )

2xl+3x8„

(8„+8+) + (8„+8+)'

+ [(8.+8 )'],„,„
x (8„+8 ) . (A9)

( +28 + 35„+112 ) H

+ (8+ + 8 + 56+ + 56 )~
x (8„+8+) x (8 + 8 ),

By an analysis similar to (A7) we can rewrite the cubic
supersymmetrized product by factoring out (8„+8+) as

SO(9) = ((9 + 36 + 156)gy + 128' )
x [(44+ 84)~ + 128']

(A15)
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where P(1~~) = 156 and P(I~) = 36 are the three
index traceless symmetric and the two-index antisym-
inetric SO(9) tensors, respectively. The SO(9) -+ SO(8)
decomposition is

where

Q(;sit) = 294, @ (;s.)
= 224 (A19)

36 ~ 8. g28,
156 m 1+8„+35 + 112,
128 m 8~+ 8 + 56~+ 56

(A16)

are the SO(8) representations. Combining this result
with (A7) and (A10) and inserting them in (A17) we may
pull out the overall (8„+8~) factor and then exhibit the
SO(9) classification as follows:

7. Level 5

The oscillators that are applied on the vacuum have
the SO(8) structure

Left:
1 ~ 2 x (8„~8+)~ 2 x 8„x(8„+.8+)

~(35„~8 ) x (8„~8~)
+(28+ 35+294)+ (224 + 8 )

x {(8„+8~) x (8„+8 ))

Left: e( '.e~ .)
e(~', e +,)

e(ce, e s, )

e (~'-i

(
'

~ e~ .)',„„
( '.+ ~ .)',„,„
(

' e ~ .)' ,„,„
sUsv

( '.e~ .)

e(a' 4 e S 4) (o", e S,)

e( '.e+,)( ', e+,)

(vac)L,

(Sxi+4xs+3x28+axsa)
+56 + 112 + 160 + 294

3 x 8+ + 3 x 8 + 2 x 56++

)~,

These form the SO(9) inultiplets

+2 x 56 + 224+ + 224 F
x {(8„+8+) x (8„i 8 )) . (A20)

(8„+8+) + 2 x (8„+8+)2

+2 x (8„+8+) x (8„+8+)2

g(s„g 8+) x (s„g 8+)'
y (s„ g s )'

x(s„~s ) . (A17)

(8- + 8+)',„,„
(28 + 35 + 294)~ x (8„+.8+),
~ (224 ~8 )~

(AIs)

First we work on rewriting the supersymmetrized quintic
by pulling out a factor of (8„+8~) as follows:

(450+ 231 + 84+ 44+ 36+ 1)tr
SO(9) = &

+ [576 + 128 + 16]~

x {(44+84)~+ 128~) (A21)

where p(IJ~l, )
— 450, $(lJ It) = 231, 4'(lyse)

84, v/j (IJ) —576 are the SO(9) irreducible tensors. Their
SO(9) -+ SO(8) decomposition is

84-+ 28~56
231 —+ 8+ 28+ 35+ 160,

(A22)
450 —+ 1+8+ 35+ 112+294,
5'?6 ~ 8+ y 8 ~ 56+ ~ 56 ~ 224+ g 224
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