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We begin a study of the cosmology of moduli in string theory. The quantum field theory
requirement of "naturality" is shown to be incompatible with slow roll inQationary cosmology unless
very stringent constraints are satisfied. In most cases, these constraints imply the existence of fields
with the properties of string moduli: their natural range of variation must be the Planck scale. The
scale which characterizes their potential energy (the inaation scale) must be two to three orders
of magnitude smaller than the Planck mass in order to explain the observed magnitude of the
Quctuations in the cosmic microwave background. Even if these constraints are satisfied, generic
initial conditions near the Planck energy density do not lead to inQation unless the theory contains
topological defects. In this case inQation can arise naturally at the cores of the defects. We show
that string theory has two generic types of domain walls which could be the seeds for inBation, and
argue that modular physics provides a very robust model of inflation. Two scenarios are presented
to explain the discrepancy between the in8ation scale and the scale of supersymmetry breaking.
One of them is favored because it leads to a natural understanding of why the dilaton does not run
out to the weak coupling region in the postin8ationary period.

PACS number(s): 11.25.Mj, 98.80.Hw

I. INTRODUCTION

The existing versions of superstring theory all contain
high dimension manifolds of degenerate ground states.
As a consequence, string theory contains massless fields
which move on these ground state manifolds as functions
of space and time. For supersymmetric ground states,
the degeneracy is not lifted in perturbation theory and
these massless moduli fields remain massless to all or-
ders in perturbation theory. It is quite clear that nature
does not contain such massless scalar fields, and so one
must hope that nonperturbative physics lifts the moduli
masses up to an acceptable energy scale. It is an im-
plicit assumption of all work on string theory that this
occurs. Generally, it is also assumed that the dynam-
ics responsible for the masses of the moduli is connected
with the dynamical breakdown of spacetime supersym-
metry, which must occur if string theory is to describe
the real world.

Among the many moduli, one, the dilaton, is of spe-
cial interest because it controls the string coupling. Gen-
eral arguments [1] show that it cannot be stabilized in
a regime where a systematic weak coupling perturba-
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tion expansion of all of string theory is valid. At least
some sectors of the theory must be strongly coupled.
Most string theorists have kept this problem tucked away
in the back of their minds, assuming that the dilaton
could be stabilized and that somehow one would then
explain why the observed couplings in the world are
weak at short distance. There are currently two sce-
narios which purport to explain how this could occur.
The first is the "racetrack" of [2]. It has proved difficult
to find a supersymmetry- (SUSY-)breaking vacuum state
with a zero cosmological constant within this &amework.
The other proposal for stabilizing the dilaton [3] invokes
nonperturbative stringy corrections [4] to the dilaton's
Kahler potential, combined with a superpotential gener-
ated by nonperturbative field theoretic eKects. Since the
corrections to the Kahler potential are presently uncalcu-
lable, it is hard to assess the plausibility of this proposal.

In the present paper we will find that a robust infla-
tionary cosmology can be constructed if we make some
modest general assumptions about the potential on mod-
uli space. If we are forced to live within the straightjacket
of racetrack models, however, it is easy to show that our
"modest general assumptions" would be untenable. For
our purposes, then, the proposal of [3] is at least a nec-
essary psychological crutch. While we will not use any
of the explicit results of that paper, we mill rely on the
freedom it allows us in imagining the form of the modular
potential.

Recently, it has begun to become evident that the sce-
narios for generation of moduli masses tacitly assumed
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by most string theorists lead to problems with cosmol-
ogy. In particular, Brustein and one of the present au-
thors [5] argued that even if the dilaton were stabilized at
a finite value of the coupling, generic cosmological initial
conditions would send it flying out to the weak coupling
region in which string theory conflicts with experiment.
In addition, moduli with masses set by the scale of SUSY
breaking would, even in an inflationary universe, domi-
nate the energy density of the universe as nonrelativistic
matter until it was too low for nucleosynthesis to take
place [6,7].

Motivated by these difIiculties, we have begun a study
of the cosmology of moduli or what we will call modular
cosmology. It is our hope not only to solve these prob-
lems, but to find a version of cosmology in which moduli
play an important role. This might lead to an early op-
portunity to confront string theoretic predictions with
observational data. Although we have not yet succeeded
in Gnding a satisfactory modular cosmology, we have ob-
tained some interesting results.

In particular, if, following [9], one incorporates the field
theoretic requirement of naturality on the Lagrangians
of inflationary cosmology, then one is led to conclude
that successful inflation requires the existence of fields
with the properties of moduli. The argument is simple.
The number of e-foldings of the universe in a slow roll
inflationary model is given by

M~2 V'(P)

We will argue that in natural models this number can be
large only if there exist fields whose range of variation is
the Planck scale.

"Naturalness" or "technical naturalness" is a strong
constraint on scalar Geld Lagrangians, which follows from
a combination of general renormalization group analysis
and common sense. It is basically the requirement that
all small parameters in a theory be explained by well-
understood physical mechanisms. For example, a param-
eter is allowed to be small if it violates a symmetry whose
breaking can be attributed to effects of a very weak cou-
pling or nonrenormalizable terms in the Lagrangian.

There are two classes of natural scalar Geld La-
grangians. The Grst class is appropriate for a field with
renormalizable interactions such as the Higgs fields of the
standard model. Such Lagrangians have the generic form

8 = —(V'P) + —m P + —P + —P i 0
[ [ 04+„.12122psA4(1

2 2 4I iM )

Here M is a mass scale, much larger than m or p, and Og
is an operator of dimension d. The quadratic and cubic
terms in the Lagrangian of such a field are unnaturally

The proposal that moduli are the inQaton fields of in8a-
tionary cosmology dates back to the work of Binetruy and
Gaillard [8].

Here we write formulas for models involving a single field,
but our conclusions are completely general.

small, but this can be explained by SUSY or by techni-
colorlike ideas. The quartic couplings of such fields are
of order 1, and higher order couplings are suppressed by
powers of a very high energy scale. Lagrangians of this
form never lead to inflation.

The second class of natural Lagrangians has the form

This would be appropriate for a pseudo Goldstone boson
of an accidental symmetry with decay constant f If t.he
symmetry were broken only by Planck scale effects, M

q
would be of order f ( t, where q is e positive iute-M~
ger determined by the lowest dimension operator which
breaks the continuous symmetry. The other example of
this sort of Lagrangian is provided by the moduli fields
of string theory. In this case, f M~ and M (( M~.

For this second class of Lagrangian, N is of order
2

f dx",l(*I. Thus, unless f M~, it is difficult

to get any inflation at all. The only loophole in this
argument is the possibility of a divergence in the dimen-
sionless integral. If the divergence occurs at a finite point
or at infinity in a noncompact space of finite volume, then
f must still be of order M~ to get sufficient inflation. In
this case one would argue that the small probability of
starting the universe off with initial conditions near the
point where the integral diverges is compensated by the
large volume of the late time universe covered by those
regions with initial conditions which led to inflation. This
sort of a posteriori calculation has been carried out by
[9] and others. It leads to a significant probability for
inflation only when f M~.

There is one possible exception to this argument. If
field space is noncompact and of infinite volume and if the
potential approaches a constant or increases like a small
power (the precise power depends on M and f), then one
can have inflation at large field strengths for Lagrangians
of the form (1.3), even when f «M~. This is essentially
the scenario used by Linde [11] in his chaotic inflation
models. The small dimensionless constants necessary to
the success of this scenario might be naturally realized as
powers of a ratio of scales. Apart from this possibility,

Actually, this statement is a bit too strong. Certain renor-
malizable supersymmetri. c models with very large discrete
symmetry groups may lead to successful inHationary mod-
els [10]. Even in this class of models, in8ation occurs for field
values of order the Planck scale and one must understand the
high energy dynamics of the theory.

One must remember that quantum mechanics limits the
degree to which we can assume very accurate classical initial
conditions.

T.B. thanks I . Randall for a discussion of this point.
Note that this scenario is not appropriate for string moduli,

for the space of moduli fields has finite volume [12]. It is
also inappropriate for Goldstone bosons, since in that case
field space is compact. We do not really have examples in
which fundamental physical principles lead to fields with the
properties required for large field inBation.
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one is led to the conclusion that for field theoretically nat-
ural Lagrangians, inflation requires the existence of fields
with a Planck scale range of variation. This observation
is very exciting for a string theorist, since it suggests that
string theory moduli are the natural candidates for infla-
ton fields, a proposal first made by Binetruy and Gaillard
[8]

There are two more simple observations that are rel-
evant to our study of modular cosmology. The first is
that even for f M~, one cannot hope to get many
e-foldings of inflation &om a natural Lagrangian. Even
the 60 or so e-foldings required to solve the standard
cosmological puzzles will have to be explained by dimen-
sionless numerical factors in the equations. For example,
the dimensionless coefficient in the expansion of the po-
tential around some quadratic maximum might have to
be 0.01 in order to achieve sufficient inflation.

The second is that the fluctuations in the microwave
background observed by the Cosmic Background Ex-
plorer (COBE) experiment [13] constrain the parameter
M to be about 10 —10 GeV (assuming that we wish
to retain the standard inflationary explanation of these
Quctuations). This follows f'rom the formula

10- bP H' I'M i (1.4)

Here we have used a standard formula for inflationary
Buctuations [14] and the slow-roll equations of motion,
dropping various numerical coefficients. The latter could
change our estimate of the fluctuations by an order of
magnitude. On the other hand, if SUSY is to solve the hi-
erarchy problem, the natural scale for the vacuum energy
near the true minimum of the potential, the square of the
SUSY-breaking F term, is bounded by 10 —10 GeV.
For larger values of E, squark masses, which are gener-
ated by dimension-6 operators neutral under all symme-
tries, will be larger than 1 TeV, even if SUSY breaking
is communicated only by gravitational strength interac-
tions. We will present several speculative explanations
of the discrepancy between the inflationary and SUSY
scales below. For the moment we note only that the sim-
plest resolution of the cosmological moduli problem [6,7]
is to give the moduli mass at a scale higher than the
SUSY-breaking scale. If moduli masses arise from non-
perturbative SUSY breaking, then they typically domi-
nate the energy density of the universe until it is too low
for nucleosynthesis to occur. This can be avoided if mod-
uli masses are generated at a higher scale. If the moduli
are the inflatons, the high scale would then be the nat-
ural vacuum energy scale during inflation. Finally, we
note, for what it is worth, the coincidence between the
vacuum energy scale "determined by COBE" and the pu-
tative scale of coupling unification in SUSY grand unified
theories (GUT's) [15].

In order to begin our study of modular cosmology, we
must deal with the problem of initial conditions. In prin-
ciple, one would want to give a completely quantum me-
chanical and string theoretic description of initial con-
ditions. Unfortunately, neither classical nor quantum
string theory is sufficiently well developed to make a re-

ally fundamental attack on this problem. We will there-
fore follow tradition and assume that at an energy scale
just below the Planck scale the conditions, in at least
some small patch of the universe, can be described by the
semiclassical dynamics of moduli fields coupled to grav-
ity. We argue that the Lagrangian describing the moduli
is a nonlinear model on a noncompact target space of
finite volume. The potential term in the Lagrangian is
of order (10 —10 GeV) or smaller. We will show that
this means that the horizon volume becomes highly in-
homogeneous by the time the energy d.ensity falls to the
scale of the potential. Heuristically, this occurs because,
at energy densities much higher than the potential, the
kinetic energy of the homogeneous modes of the fields
redshifts like B, while the energy in inhomogeneous
fluctuations redshifts only like B . Consequently, when
the energy density falls to the scale of the potential, dif-
ferent domains of space will fall into difI'erent local min-
ima of the potential.

We next observe that string theory moduli provide two
generic kinds of domain wall excitations. First note
that the resolution of the Dine-Seiberg problem of string
theory requires the existence of a ridge in the moduli
space potential, which separates the true finite coupling
vacuum &om the weak coupling region. This implies
that there are quasistable domain wall configurations, in
which the fields traverse the ridge as a function of one
spatial coordinate. Second, moduli space appears to con-
tain noncontractible loops. A configuration in which the
moduli traverse one of these loops, which goes through
the minimum of the efI'ective potential, as a function of
one spatial coordinate, would be a topologically stable
domain wall in Minkowski space. There is another kind
of generic domain wall associated with the discrete mod-
ular symmetries of string theory. Our observations about
the nature of the initial state suggest that many domain
walls of all types will be produced in the course of the
expansion of the universe.

When gravity is taken into account, we find that, if
the potential at the top of the domain wall is ffat enough,
the center of each domain wall inflates forever [18,19].
Thus, by the time the average energy density of the ini-
tial patch has fallen significantly below the height of the
ridge, most of the volume of the patch will be covered by
inflationary domains which originated as domain walls.
Quantum fluctuations will drive subvolumes of these in-
flationary domains to "roll ofI' the potential" toward a
nearby minimum of the potential. In the case of walls
draped over the ridge between weak and strong coupling,
the fluctuation will move in the direction of either the
weak or finite coupling regions with about equal proba-
bility. Thus the problem e-posed in [5] is substantially
mitigated. In this scenario, 50'Fp of the region that under-
goes inflation eventually settles into the correct vacuum
state at finite coupling. This is at least a partial solution

See, however, the very interesting contributions of [16].
Domain vralls in the low energy theory of moduli have pre-

viously been considered by Cvetic and collaborators [17].
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of the problem raised in [5].
In Sec. IV we explore the discrepancy between the vac-

uum energy scales required by COBE and by the SUSY
solution to the hierarchy problem. One possible explana-
tion of this discrepancy exploits the fact that the poten-
tial depends exponentially on the inverse of the unified
fine structure constant. Thus, if the point on the ridge
separating weak and strong coupling is at a larger value
of the coupling than the true minimum, the potential on
the ridge could be many orders of magnitude larger than
the square of the E term at the minimum. This by it-
self could be the explanation of the discrepancy between
the COBE and SUSY scales. We will refer to this as the
"one-component" scenario for explaining the discrepancy
in scales.

In order to solve the problem of moduli, a more com-
plicated mechanism might be necessary. For example,
both [6] and [7] point out that one way to solve the
problem of the modular domination of the energy den-
sity of the universe is to assume that moduli get their
masses kom nonperturbative SUSY-preserving dynam-
ics at a very high scale. This scale might be identified
with the high vacuum energy scale required by the COBE
observations. The superpotential would then be the sum
of two pieces, the first of which gives rise to inHation
and the second of which breaks SUSY. The discrepancy
in scales is explained by assuming that these two pieces
are proportional to different exponentials of the inverse
string coupling. We call this the Aao-component scenario
for modular cosmology.

In a previous paper [20] some of the authors have in-
vestigated this scenario in some detail and found that it
is very difBcult to realize. The required SUSY-preserving
dynamics seems to be realized, if at all, at special points
in moduli space where the number of light chiral multi-
plets charged under the hidden sector gauge group under-
goes an increase. There are no known points in moduli
space with this property. Even if one could be found,
this mechanism cannot give rise to a dilaton mass unless
we allow cancellations of two field theoretic effects of dif-
ferent nominal orders in the weak coupling expansion (as
in the racetrack models). Despite these diKculties, one
might still wish to explore the idea that the COBE data
are really telling us about a new scale in physics, asso-
ciated with the vacuum of some strongly coupled SUSY
gauge theory. The rough coincidence of the required scale
with the "observed" unification scale lends impetus to
speculations in this direction.

In the modular scenario, inQation does not occur on
the ridge between strong and weak coupling, which is of
negligibly small height during the inBationary era. How-

ever, we show that there are domain wall solutions asso-
ciated with noncontractible loops in moduli space which
can drive defect inBation.

The problem of [5] takes on very different aspects in the
one- and two-component proposals for explaining the dif-
ference between inHationary and SUSY scales. Indeed, in
the first proposal, inQation takes place at a much higher
energy scale than the smallest barrier between the true
vacuum and the weak coupling region. The arguments of
[5] would lead us to expect that the system will run over

the low barrier into the weak coupling region. Thus our
proposal for solving the dilaton runaway problem may
not work if we also attempt to explain the difference be-
tween inHation and SUSY scales in terms of a superpo-
tential with a single exponential.

If the discrepancy in scales is explained by a superpo-
tential which is the sum of two exponentials, then the
dilaton does not run to infinity. During the inQationary
era and the period before the moduli fields settle into
their vacuum values, the dilaton feels a large potential
which may be assumed to confine it to the vicinity of a
point So(M) (M are the moduli Belds) which traces out
a trajectory on the space of nondilatonic moduli (Fig. 1).

This potential vanishes as M —+ 0. When the moduli
fields are small enough, the energy density in the large
part of the potential falls to the level of the smaller part

Dilaton Groove

FIG. 1. In the two-component scenario for modular cos-
mology, the dilaton is trapped in a "groove" So(M) until the
moduli or inHaton fields return to their minimum. If the end
of this groove is on the strong coupling side of the true dila-
ton minimum, the dilaton does not run into the weak coupling
region.

However, we have also made some observations which sug-
gest that the dilaton runaway problem may not be as se-
vere as was envisaged in [5]. We present this analysis in the
Appendix.
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of the potential. If, as M ~ 0, Se(M) is smaller than
(i.e. , lies to the strong coupling side of) the true minimum
of the small potential, then the dilaton will always end
up at the true minimum.

Thus the combined requirements of stopping the run-
away dilaton and of explaining the discrepancy between
the inflationary and SUSY scales for the vacuum energy
strongly suggest that the two-component approach to
modular cosmology is the correct one.

The modular cosmology outlined in Sec. V is of course
highly speculative. Moreover, it suffers from the p'ost-
modern Polonyi problem (PPP) outlined in [6,7]. Even
in the scenario in which geometric moduli obtain a mass
much larger than the weak scale, the dilaton dominates
the energy density of the universe until it is too low for
nucleosynthesis to occur. In a previous paper [20], some
of us have explored possible ways of solving the PPP. At
present, there are no completely satisfactory resolutions
of this problem. (See note added in proof. )

We summarize what we have learned in the concluding
section (Sec. VI). We point out that many of the obser-
vations that we have made are valid in a more general
context than superstring-inspired inflationary models. In
particular, the need for fields whose natural range of vari-
ation is the Planck scale appears quite general. This
requirement more or less follows from field theoretic nat-
uralness. The necessity of introducing topological defects
as the seeds of inflation comes &om the fact that observa-
tional constraints on relic gravitons and on the microwave
background fluctuations tell us that the energy density
during inflation was ten orders of magnitude (or more)
below the Planck density. In many models, generic initial
conditions starting at the Planck era do not lead to the
degree of homogeneity required in conventional inflation
models, at the inflationary energy scale. Defect inflation
is a very general resolution of this problem. However,
in models where inflation takes place in unbounded re-
gions of Beld space or &om a metastable minimum, we
can have inflation without introducing defects. Thus de-
fect inflation is more general than superstring-inspired
models, but not a universal requirement.

A number of other authors have recently written about
the possibility that string moduli are inflaton Belds. We
mention particularly the work of [21] and [22]. These
authors use the tree level Kahler potential and, in the
case of [21], a hypothetical equation of state for stringy
matter, which makes the problems that they face consid-
erably difFerent than our own. Thomas [23] has recently
explored similar ideas from a point of view much closer
to that expressed in the present paper.

II. BEFOR,E INFLATION

To be &ank, we are as ignorant as everyone else of
the proper initial conditions for cosmology. Undoubt-
edly, the full story involves quantum mechanics and the
correct short distance theory of geometry, which might
be string theory. Conventional accounts assume that the
universe we observe arose &om a much smaller universe
or a small patch, henceforth called the inflationary patch,

in a metauniverse we may never see. The size of this
patch is taken to be suKciently large that quantum me-
chanics of the geometry of spacetime and the details of
the correct short distance theory may be ignored. Clearly
such an assumption may be wrong, but as always one
does what one can or does nothing at all. A more funda-
mental approach to stringy cosmology has been studied
in [16].

There is one fairly generic consequence of the assump-
tion that the inflationary patch is much larger than the
string scale, namely, that the homogeneous modes of
scalar fields in the inflationary patch may be described
by classical dynamics. Indeed, their Lagrangian has the
form

g—g[ot„m'g""8 m'K;;], (2.2)

where K is the Kahler potential of the moduli.
We will include the dilaton axion supermultiplet as the

first of the moduli fields, m . However, we will often sin-
gle out this field and call it S, following the usual conven-
tion in the literature. To all orders in perturbation the-
ory, K depends on m, only in the combination m + m .
We should also note that the mass scale in K is the string
scale Ms = gsMp = gsl0 9 GeV, where gs is the unified
string coupling, possibly of order —.However, we will

not have occasion to do calculations accurate enough to
distinguish Ms &om MP, and so we will usually refer to
them both as MP.

Usually, in writing down an effective Beld theory at a
scale well below the Planck mass, we keep only the first
few terms in an expansion of the Lagrangian in inverse
powers of the Planck mass and forbid the discussion of
field values of order of the Planck mass. This is not the
correct procedure for moduli in string theory. We know
many things about how the Lagrangian changes when the
moduli change by amounts of order of the Planck mass.
Indeed, this is the natural scale of variation for these
Gelds. We can compute &om the underlying string the-

(2.1)

The volume R of the patch is by assumption large com-
pared to the Planck scale. As a consequence, the sta-
tionary phase approximations for the dynamics of the
zero modes are always valid. The initial conditions for
these classical degrees of &eedom are presumably deter-
mined only probabilistically by some quantum process
at shorter distances. For our purposes, we will need to
make only a few general assumptions about this proba-
bility distribution.

The initial quantum state of the rest of the degrees
of freedom is something of a mystery. Conventionally, it
is assumed to be such that it does not make significant
contributions to the equation for the coherent classical
gravitational Beld. We will make this assumption ini-
tially, but we will see that the dynamics of moduli is
such that it rapidly becomes untenable.

Now consider the classical Lagrangian of the moduli.
The space of fields is a complex manifold, equipped with
a Kahler metric. To all orders in perturbation theory,
the low energy effective Lagrangian has the form
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ory, for example, just what happens to the Yukawa cou-
plings of quarks and leptons when we change the size of
the internal manifold by an amount of order of the Planck
scale. Thus the power counting in the effective Geld the-
ory of moduli is that we should keep only terms with
small numbers of derivatives but arbitrary dependence
on the moduli fields. The situation is somewhat similar
to that of pions in the efFective chiral Lagrangian of QCD.
We do not expand this out in powers of the canonically
normalized pion Geld, because symmetry considerations
tell us how the Lagrangian depends on low momentum
pion fields, even when fields are of order 47rf . In the
string case, the field space is noncompact, and it is ex-
plicit computations rather than symmetry that Gx the
field dependence.

An important property of the Lagrangian for moduli is
that the volume of moduli space determined by the met-
ric in the Lagrangian is finite [12],despite the existence of
noncompact regions. This appears to be true classically
for all noncompact regions of moduli space which are
currently well understood. For some of these regions, we
cannot be sure that quantum corrections do not change
the metric. However, the noncompact region, which will
be of primary interest to us in this paper, is the extreme
weak coupling region. Here we can rely on classical con-
siderations.

The Gnite volume of moduli space is an important con-
straint on the choice of "generic" initial conditions. If
moduli space really had infinite volume, then one would
have expected a generic initial condition to be somewhere
deep in the noncompact region of field space. (Note that
general arguments suggest that the potential will vanish
in many of these noncompact directions. ) In particular,
we would expect to find the initial value of the dilaton
deep in the weak coupling region. It would then be highly
unlikely for the universe to evolve to a finite value of the
string coupling.

The authors of [12] argued that the dynamics of the
zero modes on moduli space was chaotic, implying that
after a few I yapunoff times any reasonable distribution
of initial conditions gets spread uniformly (in the finite
voluine measure) over moduli space. Unfortunately, as
we will show below, it is not a good approximation to re-
strict attention to the zero modes. Inhomogeneous modes
grow, and the coupling of the zero mode to the inhomo-
geneous modes damps the chaotic motion on times scales
shorter than the Lyapunoff time. Thus the dynamical
mechanism proposed in [12] cannot effectively distribute
the initial conditions uniformly in the Gnite volume mea-
sure of moduli space. Nevertheless, we will make the
assumption that the distribution of initial conditions sug-
gested by that argument, that noncompact regions still
have Gnite volume, is valid for modular cosmology.

The second fact that will be important for our con-
siderations is that the scale of the potential in regions
of interest is far below the Planck scale. This is a phe-
nomenological input to our calculations. We are trying
to construct an inflationary model and, in particular, to
preserve the standard inflationary prediction of fluctu-
ations in the microwave background. This requires us
to use a potential which is 10—12 orders of magnitude

j'+ r',.j'j'+ 3'' = o, (2.3)

where I"& is the Christoffel connection on rnoduli space.
This is a geodesic equation with a friction term. The
trajectory is a geodesic, but it is followed at a different
rate than it would be in a flat spacetime. If we make a
Fourier decomposition of the deviations of the Geld &om
this trajectory, b'Pi(x, t) = hfdf(t, k)e'~', then the Fourier
components satisfy the linearized equation

(2.4)

Now choose coordinates on moduli space for which the
initial geodesic is one of the coordinate lines, gP(t), and
such that I'pp vanishes along the geodesic. As we ex-
plained above, H = s~~+, l

and R(t) ti/s. This implies

that gP(t) oc (t + to) . The equation for hPo is particu-
larly simple in these coordinates and does not involve the
other components of the deviation &om homogeneity. It
is

A:2

bp + bye+ bye =o.t+t, (2.5)

For the given form of R(t), this is a variant of Bessel's
equation. The large time asymptotics of the solution are

gyO t—1/sy (t2/3) (2.6)

where E is a trigonometric function. This leads to an
energy density that scales like t ~ or R . Thus the
homogeneous energy density falls relative to the inhomo-
geneous component by two powers of R.

The equations of modes orthogonal to P behave in
a similar manner or worse. These equations contain
the sectional curvatures of moduli space, which are &e-
quently negative. This leads to a further growth in the

smaller than the Planck scale in the region where infla-
tion takes place. Near its minimum, the potential will
drop nearly to zero, corresponding to a state with a very
small cosmological constant.

Consequently, if we begin our considerations of mod-
ular dynamics at a time when the energy density is just
below the Planck scale, then we can neglect the poten-
tial initially. It is possible to solve for the reaction of a
Robertson-Walker metric to the energy density of the ho-
mogeneous modes of a general nonlinear model with no
potential. Indeed, because of the simplicity of the non-
linear Lagrangian, the pressure and energy density terms
in the stress tensor satisfy the exact equation of state
p = p. It follows that p oc R and that R t ~ . The
expansion is subluminal, and the energy density falls off
extremely rapidly.

Now consider corrections to this behavior coming from
inhomogeneous modes of the Geld. The equation for the
zero mode is



3554 BANKS, BERKOOZ, SHENKER, MOORE, AND STEINHARDT 52

amplitude of the inhomogeneous modes relative to the
homogeneous one.

We see that by the time the energy density has fallen to
the scale of the potential, our initial assumption of homo-
geneity has lost all plausibility. We have just shown that
within each original horizon volume the inhomogeneous
energy density has grown relative to the homogeneous
component by a factor of 10 ~ . Furthermore, the ex-
pansion is subluminal, and so the current horizon volume
contains many initial horizon volumes. The current size
of an initial, Planck, horizon volume is about 10 Planck
volumes, while the current horizon volume is 10 Planck
volumes. Conventional models of in8ation assume the ex-
istence of a homogeneous region at least as large as the
current horizon volume at a time when the energy den-
sity is dominated by the potential. In the present context
the existence of such a region seems dubious.

III. DEFECT INFLATION

All is not lost. Once the potential has come to dom-
inate the energy density, fields tend to fall into its local
minima. Generic features of string theory Lagrangians
and of moduli space lead to the existence of a compli-
cated potential surface which supports topological de-
fects. Thus string theory provides a natural setting for
defect inflation, an idea first proposed by Linde [19] and
Vilenkin [18].

As an example of the kind of defect that must be
present in string theory, let us assume the existence of a
solution of the Dine-Seiberg problem. Then we know that
the potential has at least two local minima, the "physical
vacuum" and the "weak coupling region, " separated by
a ridge in moduli space.

Consider now two adjacent regions of order the hori-
zon size at the time the potential comes to dominate the
energy density. Since the total volume of moduli space is
finite [12], there is a reasonable probability that one of the
regions will be evolving toward weak coupling, while the
other evolves toward the physical vacuum. This will lead
to the formation of a domain wall. Thus we claim that
generic initial conditions for moduli near the Planck scale
lead, as a consequence of our mild assumptions about
the modular potential, to the formation of many domain
walls straddling the ridge between the weak coupling re-
gion and the physical vacuum.

In fact, it is likely that string theory contains other
generic kinds of domain wall solutions. Indeed, it ap-
pears that the moduli space of heterotic string vacua has
noncontractible loops. There is a subspace of moduli
space called the conifold subvariety [24] which has com-
plex codimension 1. At these points in moduli space,
physical couplings blow up. It is not clear how one should
interpret these singularities, but certainly one possibility
is that one must excise these singular points Rom the
space of classical solutions. In that case the space would
have noncontractible loops. Assume that the potential
for moduli has an isolated minimum on moduli space and
consider a noncontractible loop going through the mini-

mum. A field configuration in which the moduli traverse
the noncontractible loop as a function of one spatial co-
ordinate, asymptoting to the minimum of the potential
as the spatial coordinate goes to infinity, will be topolog-
ically stable. The minimum energy configuration with
this topology will be a domain wall.

In addition to these potential noncontractible loops,
the moduli space of string solutions certainly has orbifold
points. For example, at the tree level the moduli space
of a toroidal compactification is two copies of the funda-
mental domain of SL(2,Z) in the upper half-plane with
Poincare metric, which has the usual orbifold points. An
orbifold space (i.e. , a generalized cone) can be viewed
as a covering space, with points, which are related by
some discrete group of symmetries, identified. Now con-
sider a potential on the orbifold which has a minimum at
a point not invariant under the group of identifications.
On the covering space the potential will have two de-
generate minima, and there will be a topologically stable
domain wall configuration of the field theory on the cov-
ering space. Considered as a field configuration on the
orbifold, this domain wall defines a state in the hoisted
sector of the quantum field theory whose target space is
the orbifold. It will be a locally stable domain wall, since
the local stability analysis will be the same in the cover-
ing and the orbifold theories. In the orbifold theory there
is only one minimum of the potential, and the domain
wall configuration describes a closed loop in the moduli
space encircling the orbifold singularity. The existence
and local stability of the domain wall are guaranteed by
the analysis of the symmetries of the potential on the
covering space.

In the orbifold theory, the domain wall is no longer
topologically stable. Its nonperturbative instability can
be described in two ways. In orbifold language the do-
main wall corresponds to a closed loop in target space
which surrounds the orbifold point. We can "slip it over
the tip of the cone" in a finite region of space and con-
tract the loop. Alternatively, we can think of the orb-
ifold theory as a discrete gauge theory on the covering
space. In the absence of a potential, it will have cosmic
string configurations with string tension determined by
the Planck scale. Once the potential is introduced, these
strings are the boundaries of domain walls, precisely the
walls we have been talking about. The gauge-invariant
description of "slipping the loop over the tip of the cone"
is equivalent in gauge-variant variables to the nucleation
of a loop of cosmic strings in the domain wall, which will
expand and destroy the wall.

The cosmic string solution exists even without the
generation of a potential by nonperturbative eKects.
Thus we would imagine that its core energy is of order
M~. Since the string core energy is much larger than
the surface tension of the wall, the wall will be highly

If there was no potential on moduli space, the defect would
be a cosmic string, but in the presence of a potential, the
string has a domain wall attached to it.



52 MODULAR COSMOLOGY 3555

metastable. Note that global cosmic strings associated
with truly noncontractible loops in moduli space will pro-
vide a similar mechanism for the decay of the domain
walls which traverse these loops. The similarity between
the dynamics of these two types of domain walls leads
us to abuse language and refer to both types of walls as
being related to noncontractible loops, even though the
loop on the orbifold is topologically contractible.

Kibble's argument [25] and our observations about the
number of initially causally disconnected regions in a
horizon volume at the time the potential becomes im-
portant suggest that many domain walls associated with
both types of "noncontractible loop" in moduli space will
be formed as the energy density falls below the scale of
the potential.

In order to proceed, we will have to make two more as-
sumptions about the potential on moduli space. The first
is, we believe, rather generic. We assume that the ridge
between weak and strong coupling has a saddle, with
exactly one unstable direction (namely, the one leading
down to the two minima). We will further assume a cer-
tain degree of flatness of the maximum at the top of the
ridge (the precise conditions will be stated below). Alter-
natively, we will assume that the potential near the top
(the point of highest potential energy) of the noncon-
tractible domain wall is suKciently flat. We will show
below that the assumption of flatness leads to defect in

ation.
The Brst requirement for inflation is an effective poten-

tial with a "suKciently flat" segment. In the flat segment,
the equation of motion for the inflaton field P must be
well approximated by the slow-roll equations [26]

3HQ = —V'(Q) (3.1)

and

f a) 8vrGV(P)

La) 3
(3.2)

where a is the Robertson-Walker scale factor, G = M&
is Newton's constant, and V(g) is the effective potential.
The slow-roll approximation is valid for a span of the

Formally, the classical gauge field kinetic term of an orb-
ifold gauge theory vanishes (the orbifold is the extreme strong
coupling limit). In a supersymmetric theory we might worry
that the cosmic string had zero energy to all orders in pertur-
bation theory. However, the local stability of the domain wall
certainly means that the cosmic string instability is a nonper-
turbative efFect. The potential gives the string a core energy
even if it did not have one in perturbation theory. The esti-
mates of instanton actions in the field theory of moduli made
in [20] suggest that the walls would have enormously long life-
times even if the string core energy were of the same order as
the surface tension. Furthermore, as we will see below, the
domain wall cores inffate (if the wall is sufficiently smooth)
when coupled to gravity, and all of these Hat space instabil-
ities become irrelevant, as long as the Hat space lifetime is
much longer than the e-folding time.

potential over which P/3HQ and zP /V(P) are negligi-
ble. This requires that the flat segment of the efFective
potential satisfy [27]

and

fv'& '
« 48m. G = 48a M~&v) (3.3)

1 (V'l 1 (V"&

~

«12~G = 12~M~' .
4 (V) 2 kv) (3.4)

A second condition is that the slow-roll condition must
be satisfied for a sufBciently long stretch that the universe
undergoes 60 or more e-folds of inflation as P rolls down
the potential. The reasoning for defect inflation is slightly
difFerent than for other forms of inflation, although the
quantitative constraint is the same in the end: We envis-
age a situation in which the efFective potential has two de-
generate minima (possibly identified by a discrete gauge
symmetry) separated by a ridge. This allows the possi-
bility for a locally stable domain wall in which P ranges
from one minimum in one region of space to the other
minimum in another region. Somewhere in between, P
must traverse the top of the ridge of the efFective poten-
tial, P = P. If the ridge near P = P is sufficiently flat
(satisfies the conditions above), the defect core itself be-
gins to inflate. The core is stretched, but at the same
time, quantum (de Sitter) fluctuations will drive P away
from the top of the ridge in some regions. The random
fluctuations will drive some regions toward P ) P and
others toward P & P. The radius of any such region ini-
tially will be of order a Hubble horizon radius. After one
e-folding, the radius is stretched, but at the same time,
subsequent quantum fluctuations will have split the re-
gion into subregions (each with Hubble horizon radius)
with different values of P. In particular, a region with

P ) P at first will be subdivided into subregions which
will include ones with P & P. This subdivision process
will end in a given region when P grows large enough that
the classical evolution of P dominates the quantum fluc-
tuation eff'ect; let us call this crossover point P = P'. At
this point, a typical homogeneous region still has radius
of order H . For inflation to explain why the present
observable universe is so homogeneous, the final volume
of the homogeneous regions needs to grow by 60 e-folds
or more. Consequently, we require at least 60 e-folds
of inflation during the classical slow-roll process where

P ) P'. This constraint is, roughly [27],

4 & —V"l 1
9'H9 iH2) N, ' (3.5)

where N 60 is the minimum number of e-folds to solve
the homogeneity problem, or, equivalently,

f —V") 6~

( v) M~+.
(3.6)

These conditions, Eqs. (3.3)—(3.6), are necessary and suf-
hcient to achieve the minimal number of e-foldings of
inflation to resolve the flatness, horizon, and monopole
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problems.
I.et us consider what happens if the ridge between

strong and weak coupling or the potential at the top of a
noncontractible domain wall is suFiciently flat to satisfy
the slow-roll conditions. Without loss of generality, we
can expand the effective potential about a point near the
top of the ridge, P = P, as

V=V. ~1—
M~

(3.7)

In flat space, the wall thickness would be equal to the
curvature of the efFective potential, b ~ n(Vo/M&2)i~2.
The Hubble parameter in the interior of the wall is
K (8mGVe/3) ~ . If b && H, gravitational efFects
are negligible. However, if b ) H, the region of false
vacuum with P near the top of the ridge and V = Vo ex-
tends over a region greater than a Hubble volume. Since
the top of the ridge satisfies the conditions for inflation,
the interior of the wall inflates.

Once started, defect inflation never ends. Although
P in regions of the defect core may roll down the po-
tential and those regions may reheat into a Friedmann-
Robertson-Walker-like patch similar to our own Hubble
volume, topological constraints require that there always
remain some core region with P P. Because of infla-
tion, the core thickness grows exponentially with time.
In. fact, the inflation is so rapid that the defect never
settles into a stable, minimum energy configuration.

The condition for defect interiors to inflate, 8 ) H
corresponds to

In this regime,

n' & 8~/3. (3.S)

(V') 4n4(P —P)2

q V) M~2
(3.9)

which satisfies the first inflationary condition, Eq. (3.3),
for

ay —= (y —y) «, M~ . (3.10)

The second inflationary condition, Eq. (3.4), reduces to

12' 2
- x/2

My
O.4

(3.11)

These equations are automatically satisfied if AP « M~.
The expression in square brackets is positive for all o.
satisfying the third inflationary criterion (using N,
60), Eq. (3.6):

n2 & vr/20 . (3.12)

This last condition is the most stringent condition on
In deriving these relations, we have assumed that

o. (AP/M~) && 1, which is consistent with the previous
constraints on n and AP.

It is interesting to note that the conditions for inflat-
ing domain wall cores do not require fine-tuning of the
dimensionless parameter n in the potential. This is a

consequence of our choice of a "natural" potential with
Planck scale variation of the fields. Models of defects
arising at the grand unification scale would require fine-
tuning of dimensionless parameters. We may, however,
have been a bit too optimistic in the above estimates. We
have used the conventional 3 normalization of Einstein's
equations, appropriate for a scalar field with canonical
kinetic term. In string theory, the moduli fields have ki-
netic terms whose normalization is related to Einstein's
action. At the tree level, the conventional factor of-
is simply not there. In the philosophy of [3], the actual
kinetic terms of the scalar fields are at present uncom-
putable, and so it is not clear what the proper normaliza-
tion is. Perhaps it would be more conservative to assume
the tree level normalization (though not the tree level
form of the Kahler potential). In that case we would re-
place every m in the formulas above by 8. Note that the
inflationary conditions are still satisfied for o, of order
0.02. We take this as evidence that in modular cosmol-
ogy defect inflation requires at most only a rather mild
fine-tuning.

The motivation for invoking d.efect cores as the seeds
of inflation is to exponentially enhance the a posteriori
probability that a region equal to our present Hubble
horizon emerged &om a patch of spacetime that once
underwent inflation. There are three enhancement fac-
tors. First, beginning Rom random initial conditions,
the probability of forming defects with P P at the core
is exponentially higher than the probability of forming
soine bounded region (with no topological stability) with

The probability of forming the bounded region
scales according to the ratio of the Hat portion of the po-
tential to the entire potential surface, which is small. The
probability of forming a defect scales according to the
areas of the basins on the potential surface which draw
P toward the degenerate minima, which can be exponen-
tially greater. The second enhancement factor is that the
inflation is eternal. Almost all models of inflation have
an eternal character: Although some regions slow-roll
down the effective potential, random quantum Huctua-
tions kick the value of P in some regions back toward the
top of the potential where they continue to inflate. The
defect cores exhibit similar behavior. However, on top of
that, there is a classical contribution to eternal inflation
due to the classical, topological constraint that guaran-
tees some region with P P even if h —+ 0. Finally, we
have noted that the natural initial conditions for modular
cosmology do not lead to homogeneity over a horizon size
when the energy density is near a maximum of the poten-
tial consistent with the proper amplitude for primordial
fluctuations. By contrast, if the potential is flat enough,
the defect is hoxnogeneous over a horizon volume.

A technical issue in applying these concepts in a
superstring model is that the height and curvature
[n(VO/MJ, ) ~

] of the efFective potential at the top of the
ridge is not uniform along the ridge. (It is diflicult, if not
impossible, to construct a model in which the ridge sat-
isfies the conditions for inflation everywhere along the
ridge. ) Consequently, a field configuration which tra-
verses the ridge may contain a core which, initially, does
not satisfy the conditions for inflation. Note, though,
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that conGgurations connecting the vacua and crossing at
difFerent passes along the ridge have difFerent energies. It
should suKce, though, if the minimal energy Geld conGg-
uration connecting the two vacua traverses the ridge at
that segment where inflationary conditions are satisfied.
Then any initial Geld configuration connecting the vacua
will settle into one in which the core inflates. Or there
may be ripples (with saddle points) along the ridge. It
sufEces if one or more of the saddle points satisfy the
inflationary conditions. Depending on the depths of the
saddle points, all or most of topological defect cores will
relax into an inflationary saddle point.

To summarize, in superstring-derived models it is likely
that the nonperturbative potentials responsible for infla-
tion are bounded functions on Geld space. The grav-
itational wave and cosmic microwave background con-
straints on the scale of inflation suggest that we take this
bound to be much lower than the Planck scale. We have
shown that this leads to a highly inhomogeneous uni-
verse if we choose typical initial conditions at the Planck
scale. Defect inflation provides a way out of this impasse.
Although the breakdown of the Robertson-Walker ap-
proximation in the inhomogeneous universe prevents us
&om giving a rigorous discussion of its history, it seems
plausible that many domain walls will be formed as the
energy density falls below the inflationary maximum in
the potential. If this is the case, then (with mild fine-
tuning in the Lagrangian) the structure of the domain
wall solutions guarantees the existence of regions suK-
ciently homogeneous for inflation to occur. The entire
visible universe will grow out of one of these inflating
domain walls.

IV. SOLUTIONS AND PROBLEMS

A. Fifty percent solution

In the case of defects straddling the ridge between
strong and weak couplirig, the scenario of defect inflation
that we have just described leads to what one may call the
50Fo solution of the cosmological dilaton problem discov-
ered in [5]. In such a situation, postinflationary history
always starts with the initial values of fields perched on
the ridge between the weak coupling and physical vacua.
The direction in which the Gelds fall ofF the saddle is de-
termined by quantum Huctuations; i.e. , it is essentially
random. Thus, with 50'Fo probability, the universe rolls
toward the correct vacuum state. If the inflationary ridge
is not much higher than the lowest ridge separating the
vacuum &om the weak coupling region, the universe will
surely end up in the correct vacuum state. We have em-
phasized that our scenario leads to the formation of many
domain walls, and so the quantum ensemble is realized
in terms of an ensemble of difFerent inflationary regions
spread through the universe.

It seems perfectly acceptable to us to have a theory of
the world in which we are lucky enough to be living in
one of those regions which rolled toward the right min-
imum. We had a 50-50 chance. If we are more greedy
and want to explain the world as we see it as a dead cer-

tainty, then there are several roads that we might follow.
Undoubtedly, there are anthropic arguments which show
that human beings cannot survive in the weak coupling
region. More physically, we can imagine features of the
modular potential which could prevent the universe &om
reaching weak coupling. For example, if the potential had
the sort of double ridge structure shown in Fig. 2, with in-
flation occurring only on the strong coupling ridge, then
the weak coupling side could only be reached by quan-
tum tunneling after inflation, while the system could roll
classically into the true vacuum. Since tunneling life-
times for the moduli are exponentially longer than the
age of the universe [20], the universe would end up in the
true vacuum with overwhelming probability.

A more plausible possibility is to assume that the ridge
is separated Rom the weak coupling region by a region in
which the potential is negative. The results of [20] then
imply that after inflation the system generically tries to
roll into the negative potential region and ends up in
a state of contraction instead. Few if any trajectories
get out to the weak coupling region. The only generic
metastable behavior of the system after inflation is to
come to rest at the finite coupling vacuum state.

B. Inflationary fluctuations and another model
for superstring inflation

We see then that a few simple assumptions about the
nature of the potential on moduli space lead to a rather
robust prediction of an inflationary universe which set-
tles into the correct ground state of string theory after
inflation has ended. We must ask whether this scenario
for inflation passes the crucial tests of any inflationary
model, the generation of density fluctuations of the right
magnitude, and proper reheating of the universe. Con-
sideration of the first of these tests leads to an interest-
ing general observation. We have emphasized that in the
context of natural models, generation of the right fluctu-
ation amplitude requires that the height of the potential
near its inflationary maximum be about 10 M&. This
is quite difFerent &om the maximum allowed scale for

v(Res)

50 z

FIG. 2. In8ation ofF the strong coupling maximum leads ei-
ther to classical evolution to the true minimum. The system
can only get into the weak coupling region with an infinitesi-
mally small tunneling probability.
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SUSY breaking, 10 M&.
We can think of two natural explanations for this dis-

crepancy. The erst involves the fact that the potential
we are discussing varies exponentially with the string cou-
pling in the weak coupling region. . Inflatio takes place
on a ridge in moduli space, while SUSY breaking is as-
sociated with the natural scale of the potential near its
minimum. If, as in Fig. 3, the ridge sits at a stronger
value of the coupling than the minimum, we can expect
the potential near the ridge to be substantially larger
than the SUSY-breaking scale.

Another, more modular, approach is to assume that
inflation and SUSY breaking are related to two difFerent
sectors of the theory. That is, we assume the existence
of two hidden sectors whose nonperturbative dynamics
occurs at the relevant scales. The first sector preserves
SUSY and has zero vacuum energy. Its potential has
an inflationary ridge. The second breaks SUSY, at a
lower scale. This scenario has some attractions. The
"observed" value of the unification scale for the gauge
couplings suggests the existence of a threshold for new
physics at about the energy scale needed to explain the
observed microwave fluctuations in terms of inflation.

In [20], we have investigated the scenario in which mod-
ular masses arise from high scale, SUSY-preserving dy-
namics. There we argue that it is unlikely for SUSY-
preserving dynamics which gives rise to a vanishing cos-
mological constant to give mass to the dilaton. If these

Im S

ReS
FIG. 3. In the one-component scenario, the discrepancy

between infIation and SUSY-breaking scales is explained be-
cause infIation occurs on a ridge I at stronger coupling than
the minimum M. The potential varies exponentially with the
coupling.

Here we are relying on our conviction that one cannot
cancel two difFerent exponentially small efFects in the weak
coupling region.

arguments are correct, then the model of inflation occur-
ring on the ridge between strong and weak coupling will
not be compatible with the idea of high scale, SUSY-
preserving nonperturbative dynamics.

However, the idea of defect inflation is very robust, and
a version of it also occurs naturally in the boo-component
scenario. In this scenario the superpotential consists of
two parts:

W=e Wi(M)+e ' W2(M) . (4.1)

Here 6 & c, so that, at small values of the coupling and
generic values of M, the second term is negligible. We can
think of these two terms as arising from gaugino conden-
sation or similar nonperturbative dynamics in two dis-
joint sectors of the hidden gauge group of superstring
theory. We postulate a minimum of the potential gener-
ated by R'i, which preserves both SUSY and a complex B
symmetry, so that the cosmological constant is zero [20].
This means that R"i vanishes at the minimum. As a
consequence, the effective potential for the dilaton would
vanish were it not for the second term in the superpo-
tential. When combined with a Kahler potential arising
from nonperturbative string physics, this term can stabi-
lize the dilaton, but the cosmological constant will vanish
only if SUSY is broken [3]. By assumption, the minimum
of the first part of the potential is isolated, so that all
moduli but the dilaton obtain a mass of order e M~.
The SUSY-breaking E term has a scale e M& and the
graviton mass e M~, which is much smaller than the
moduli masses.

In flat space, Lagrangians with a superpotential of
the form (4.1) have domain wall solutions. Consider
any "noncontractible loop" in moduli space which runs
through the minimum of the potential, M = 0. A field
configuration in. which M(z) winds around this noncon-
tractible loop, approaching M = 0 as the space coordi-
nate z goes to —oo and oo, would be a metastable domain
wall configuration. Our discussion of the preinflationary
dynamics of moduli indicates that many such walls will
be produced in the course of expansion down from energy
densities near the Planck scale. Further, the same sort of
mild fine-tuning which produced defect inflation in the
scenario of the previous section will work the same sort
of magic here.

The major difference between these two models for ex-
plaining the discrepancy between the inflationary and
SUSY scales relates to the problem discovered in [5]. The
"50/0 solution" advocated above really works only if the
inflationary saddle lies at an energy density not much
higher than the lowest ridge separating the true minimum
from the weak coupling region. In order to explain the
discrepancy between the SUSY and inflationary scales
with a single exponential contribution to the superpo-
tential, we must assume that the energy density at the
saddle is 10 times larger than the energy density near
the SUSY-breaking minimum. Although our system is
multidimensional, one would expect a substantial frac-
tion of this energy to be diverted into kinetic energy of
motion in the direction of weak coupling. It is likely to
send the system flying over the miniscule barrier into the
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weak coupling region, following the scenario of [5].
By contrast, the postinflationary fate of the dilaton in

the high scale, SUSY-preserving scenario depends on the
effective potential for the dilaton generated by the mod-
uli fields during and just after inflation. The moduli are
initially displaced from their minima (because they be-
gin moving &om the top of the domain wall) just after
inflation. If the combined modular-dilaton potential has
the form shown in Fig. 1, it will have a local minimum
for S, S = So(M), for nonzero M. If the M = 0 end of
the "groove" So(M) is on the strong coupling side of the
minimum of the potential generated by e ' W2(0), then
after inflation, S will evolve toward the vicinity of So(0)
and will not have a large velocity along the dilaton di-
rection. Once the energy density comes down to of order
e ' M&, the second part of the potential will come
into play and the dilaton will evolve toward its minimum.

Thus the two-component approach to modular cosmol-
ogy seems to be preferred if we want to both solve the
problem of [5] and explain the relative scales of inflation
and SUSY breaking. As emphasized in [20], it also pro-
vides us with a very strong hint about where in moduli
space the true vacuum of string theory must lie. In a way,
the results of the Appendix are somewhat disappointing
because they mean that this conclusion is not completely
clear-cut. The single exponential scenario might, depend-
ing upon numerical details over which we have no control
at present, also survive these two tests of a successful su-
perstring cosmology.

C. Reheating: The postmodern Polonyi problem

Reheating has been the bugaboo of supersymmetric
inflationary models almost since the beginning of time.
Typical hidden sector models contain very light scalar
fields with gravitational strength coupling. In an infla-
tionary universe model, such fields inevitably start the
postinflationary period displaced from their minima by
a finite amount. They remain practically constant until
the Hubble constant falls to a value on the order of their
masses. For natural models, in which the potential takes
the form M4V ~@, this takes place at a time whenM~
the total energy density of the universe is on the order
of the energy stored in these displaced scalars. From
that point on, the scalar fields behave like nonrelativistic
matter, and the universe is matter dominated until they
decay. For weak scale masses and Planck scale couplings,

Actually, the problem described in [5] is not quite as seri-
ous as it was depicted there. We show in the Appendix that
for a large class of rapidly decreasing potentials, the zero mode
of the dilaton coupled to gravity changes only logarithmically
with the energy. Thus a decrease of 22 orders of magnitude in
energy corresponds to an increase of ReS by about 12. This
might be small enough to avoid Hying over the barrier. See
the Appendix for further discussion.

We choose coordinates on moduli space so that the mini-
mumis at M =0.

the energy density at the time of decay is eight orders of
magnitude smaller than that required for nucleosynthe-
sis.

Reference [6] pointed out the generality of this phe-
nomenon for theories with hidden sectors coupled to the
ordinary world only through gravitational strength inter-
actions. There and in [7], it was also noted that stringy
moduli would be prime examples of this problem. A num-
ber of proposals to solve the PPP have been made, but
it is not clear that any of them are successful. The prob-
lem of reheating appears to be the most serious obstacle
to the construction of a viable modular cosmology. (See
note added in proof ).

V. CONCLUSIONS

In summary, we have generalized the arguments of [9],
which suggest that inflation is only compatible with field
theoretic naturalness if there exist scalar fields, like string
theory Inoduli, whose natural range of variation is the
Planck scale. The COBE and gravitational radiation
constraints on the vacuum energy during inflation put
another obstacle in the way of a successful inflationary
scenario. They imply the existence of an era when the
potential energy was negligible and the total energy den-
sity well below the Planck density. In models of the type
we are considering, in which the potential is bounded,
generic initial conditions in this preinflationary era do
not set up the right conditions for inflation, unless do-
main walls (or possibly other kinds of topological defects)
are formed.

We showed that the dynamics of stringy moduli may
give rise to two different kinds of domain walls, the first
associated with the ridge between strong and weak cou-
pling and the second with noncontractible loops in mod-
uli space. Both can give rise to defect inflation if the
potential at the top of the wall is flat enough.

Finally, we tried to incorporate into our cosmology
an explanation of the large difference between the infla-
tionary scale and the SUSY-breaking scale. Of the two
models proposed for this purpose, the two-component ap-
proach in which the superpotential is the sum of an in-
flationary, SUSY-preserving piece and an hierarchically
smaller piece which leads to spontaneous SUSY violation
solves the dilaton runaway problem posed in [5] in a more
elegant manner. It also promises a criterion for determin-
ing the correct superstring vacuum state and gives a mass
much larger than that of the gravitino to all moduli but
the dilaton.

Such a modular cosmology would lead to dilaton dom-
ination of the universe from an energy density of about
(10 GeV) down to (10 MeV)4. It is not clear how to
eliminate the dilatons at an early enough stage to make
the model compatible with classical cosmology. This
seems to be the most serious problem of any modular
cosmology. If it cannot be solved, the present form of
string theory will have been shown to be incompatible
with observation.

Cosmological considerations thus lead to an intricate
and detailed set of constraints on the hidden sector of
string theory. Heretofore this sector has been a black
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box whose only function was to generate SUSY breaking.
Modular cosmology has suggested that it should consist
of two sectors with rather distinct properties, which be-
come strong at very specific energy scales. Combined
with knowledge of the string coupling at very high ener-
gies, these scales determine the value of the leading co-
efficient in the P function of each of the two coinponents
of the hidden sector. We suspect that further study of
modular cosmology will lead to ad.ditional constraints on
the hidden sector.

Before concluding, we would like to point out that
many of the conclusions of this paper are true quite gen-
erally of models of inflation that obey the field theoretic
constraints of naturalness. Fields whose natural range
of variation is the Planck mass and whose couplings to
ordinary matter are suppressed by the Planck scale seem
to be required for inflation. The scale of the potential
during inflation is fixed to be about 10 M& in such
theories by the COBE data on microwave background
fluctuations. In any case, constraints on primordial grav-
itational waves tell us that the vacuum energy density
during inflation cannot be larger than this. As a con-
sequence, there will be a "window" of cosmic history in
which we might expect a semiclassical treatment of the
universe to be valid, but during which the potential of the
inflaton fields is negligible. We saw in models of the type
studied. in this paper that such a preinflation era does not
lead to the natural initial conditions for inflation, unless
the model supports "ffat topped defects" (FTD's). Thus
the necessity for and the robustness of defect inflation
may be general features of a large class of inflationary
models, not just those motivated by superstrings. We
note, however, that in models where inflation occurs at
large field strengths or from a metastable minimum of
the efFective potential such defects may not be necessary.

Rote added in proof. The last paper in Ref. [22] con-
tains a workable solution of the PPP. It remains to be
seen whether the models postulated in that paper can be
derived &om string theory.
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APPENDIX

In dimensionless units, the equations of motion for a
single scalar field S (the inverse string coupling), cou-
pled to gravity in a homogeneous isotropic, spatially flat
universe are

S+ 3HS + V'(S) = 0,
—.'(S)'+ V(S)

(A1)

(A2)

They imply

and

E = —6v E(E —V)

S= V'2(E- V)

(A3)

(A4)

We have chosen a canonical kinetic term for S. The
purpose of the present appendix is to explore the evolu-
tion of the coupling starting from an inflationary ridge at
very high energy density in the one-component scenario
for modular cosmology. In this scenario, the difference
between the inflationary energy density and the SUSY
scale is attributed to an exponential of the inverse cou-
pling in the expression for the potential. Inflation oc-
curs in a more strongly coupled region of field space than
SUSY breaking. We are trying to determine whether the
dilaton field, whose initial energy is very high, is likely
to simply sail over the small barrier separating the finite
coupling minimum &om the weak coupling region. We
are thus interested in a region of Geld space in which,
according to the philosophy of [3], the Kahler potential
for S is unknown. It would be wrong to use the weak
coupling expression for the Kahler potential in this re-
gion. Instead, we expand the Kahler potential around
the initial point, assuming, consistent with [3], that it is
not a rapidly varying function in this region. Only the
superpotential is rapidly varying. What we will show be-
low is that, despite (indeed, because of) the steepness
of the potential, the dilaton moves a distance which is
only logarithmic in the decrease in energy density. Thus
keeping only the first term in the expansion of the Kahler
potential around the initial point is a reasonable approx-
imation.

In an expanding universe, E is decreasing and will
eventually reach zero. It is convenient to define E = e
u will go to +oo asymptotically. Divide Eq. (A4) by (A3)
and rewrite everything in terms of u. The result is

3/2(1 —e V)
(A5)

e V must of course remain bounded. by 1. In general, if
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V is rapidly decreasing with S, e"V will in fact go to zero
rapidly as S increases. Thus the logarithmic derivative
of S becomes constant, so that the dilaton increases only
logarithmically as E decreases.

It is easy to see that a power law increase of S as a func-
tion of E' is only consistent if the potential has a decreas-
ing power law form. In fact, the boundary between the
behavior we described above and systems for which the
potential become important asymptotically is the expo-
nentially decreasing potential e . The expected form
is precisely exponential. Note that if we had used the
weak coupling form of the Kahler potential, the canon-
ically normalized field would be the logarithm of S and
the potential would have been even steeper than this.

The ratio between inflationary and SUSY energy densi-
ties is about 10, with a natural logarithm of about 51.
The nominal distance between the inflationary plateau
and the SUSY-breaking vacuum state for S may be
crudely calculated as follows: The scale of SUSY break-
ing, ~ 10 M& ) should be explained as e " MI
where S, is determined by the "observed" value of
the unified coupling to be about 50vr. The position

of the inflationary plateau is approximately determined
by e 'My 10 ' M~. Thus SI 8 Sv~, andS,—SI 35m. So the question of whether or not the
dilaton flies out to weak coupling is whether 51C ) 35vr,
where C is the coefBcient of logarithmic increase in the
above solution, S —+ —C lnE. Clearly, the answer de-
pends on C. Even more clearly, our imperfect knowledge
of the potential and Kahler potential on moduli space
precludes our giving a convincing answer to this ques-
tion at present.

We conclude that the dilaton runaway problem discov-
ered in [5], which is not resolved in our one-component
scenario, may not really be a problem. However, the res-
olution of this question depends on numerical details of
the effective Lagrangian for moduli over which we have no
control at present. By contrast, the successful resolution
of dilaton runaway in the two-component scenario de-
pends only on the qualitative assumption that the "dila-
ton groove" in the inflationary potential for moduli ter-
minates at a value of the coupling stronger than the po-
sition of the barrier between strong and weak coupling in
the SUSY-breaking potential.
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