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Increase of black hole entropy in higher curvature gravity
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We examine the zeroth law and the second law of black hole thermodynamics within the context
of efFective gravitational actions including higher curvature interactions. We show that entropy can
never decrease for quasistationary processes in which a black hole accretes positive energy matter,
independent of the details of the gravitational action. Within a class of higher curvature theories
where the Lagrangian consists of a polynomial in the Ricci scalar, we use a conformally equivalent
theory to establish that stationary black hole solutions with a Killing horizon satisfy the zeroth
law, and that the second law holds in general for any dynamical process. We also introduce a new
method for establishing the second law based on a generalization of the area theorem, which may
prove useful for a wider class of Lagrangians. Finally, we show how one can infer the form of the
black hole entropy, at least for the Ricci polynomial theories, by integrating the changes of mass and
angular momentum in a quasistationary accretion process.

PACS number(s): 04.70.Dy, 04.50.+h, 04.70.Bw

I. INTR.ODUCTION

One of the primary motivations to study black hole
thermodynamics is to gain some insight into the nature of
quantum gravity. Whatever framework physicists even-
tually uncover to describe quantum gravity, there should
be a low energy efFective action which describes the dy-
namics of a "background metric field" for suKciently
weak curvatures at suKciently long distances. On general
grounds, one expects that this effective gravity action will
consist of the classical Einstein action plus a series of co-
variant, higher-dimension interactions (i.e. , higher curva-
ture terms, and also higher derivative terms involving all
of the physical fields) induced by quantum effects. While
such effective actions are typically pathological when con-
sidered as fundamental, they may also be used to define
mild perturbations for Einstein gravity coupled to con-
ventional matter 6elds. It is within this latter context of
Einstein gravity "corrected" by higher dimension opera-
tors that we wish to consider modifications of black hole
thermodynamics.

Naive dimensional analysis suggests that the coefB-
cients of all higher dimension interactions in the effective
Lagrangian should be dimensionless numbers of order
unity times the appropriate power of the Planck length.
Thus one might worry that the effect of the higher dimen-
sion terms would be the same order as those of quantum
fIuctuations, and so there would seem to be little point
in studying modifications to classical black hole thermo-
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dynamics &om higher dimension terms. One motivation
for studying the classical problem is that it is of course
possible that this naive dimensional analysis is incorrect,
just as it would be in predicting the observed value of the
cosmological constant. So given the lack of any direct ex-
perimental evidence, it is possible that the coefBcients of
some higher dimension terms are larger than expected.
Further, we would like to know whether or not consis-
tency with classical black hole thermodynamics places
any new restrictions on these coeFicients. Moreover, it
is interesting to explore black hole thermodynamics in
generalized gravity theories in order to see whether the
thermodynamic "analogy" is just a peculiar accident of
Einstein gravity, is a robust feature of all generally co-
variant theories of gravity, or is something in between.

In this "analogy, " any black hole should behave as a
heat bath. Quantum field theory reveals that r/(2') is
the black hole temperature [1], independent of the details
of the dynamics of the gravity theory [2]. Hence this is
in fact a robust feature of black hole physics in general.
An important foundation for black hole thermodynamics
is then the validity of the zeroth law, namely, that the
surface gravity should be constant across a stationary
event horizon. If the event horizon is a Killing horizon
with a regular bifurcation surface, it is straightforward
to show that the zeroth law holds [5]. In Einstein gravity
a proof of the zeroth law can also be constructed with-
out the assumption of a regular bifurcation surface, but
with the additional assumption that the dominant en-
ergy condition [3] holds, i.e. , for any future pointing time-
like vector u the corresponding four momentum density
P = —T ub is future pointing timelike. Equivalently,
for all pairs of future pointing timelike vectors u, v

T~gtL v + 0.
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In higher curvature theories, establishing the validity of
the zeroth law in general remains an important open
question.

Using Euclidean path integral methods [6] it is clear
that, if the zeroth law holds, a version of the Brst law of
black hole thermodynamics still applies in these higher
curvature theories. Applying these techniques to various
specific theories and specific black hole solutions showed
that the relation equating the black hole entropy with
one-quarter the surface area of the horizon no longer
holds in general [7]. However, it is now known that the
entropy is given always by a local expression evaluated
at the horizon [8—11].

Wald [9] established this result very generally for any
difI'eomorphism invariant theory via a new Minkowski
signature derivation of the first law of black hole me-
chanics. This law applies for variations (of the dynami-
cal fields) around a stationary black hole background to
nearby solutions:

(2)

Here M, J~ ~, O~ ~, and K are the mass, the angular
momentum [12], the angular velocity, and the surface
gravity of the black hole. Wald found that S can be
expressed as a local geometric density integrated over a
spacelike cross section of the horizon, and that it is asso-
ciated with the Noether charge of difI'eomorphisms under
the Killing vector Beld that generates the horizon. Equa-
tion (2) then has the rather remarkable feature that it
relates variations in properties of the black hole as mea-
sured at asymptotic infinity to a variation of a geometric
property of the horizon. Given the identification of the
temperature with e/(2vr), Eq. (2) has a natural interpre-
tation as the first law of thermodynamics where S is the
black hole entropy. If this S is truly to play the role of
entropy, it should also satisfy the second law of thermo-
dynamics as a black hole evolves —i.e., S should never
decrease in any dynamical processes.

For general relativity, one has the celebrated result
that the black hole entropy is given by one-quarter the
surface area of the horizon, S = A/(4G) [13]. In this
context, the second law is established by Hawking's area
theorem, which states that in any classical process in-
volving black holes, the total surface area of the event
horizon will never decrease [14]. An essential ingredient
in the proof of this theorem is the assumption that the
null convergence condition R gk k & 0 holds for all null
vectors k . This condition is implied by the Einstein Geld
equation

eluded along with the Einstein Lagrangian, the equations
of motion may still be written in the form of Eq. (3), if
the contributions &orn the higher curvature interactions
are included in the stress-energy tensor. Typically, these
contributions spoil the energy conditions, and so one can-
not establish an area increase theorem in such theories.
However, this is not the relevant question for black hole
thermodynamics. The relevant question is whether or
not the quantity S whose variation appears in the Grst
law (2) satisfies a classical increase theorem. If so, one
would have a second law of black hole thermodynamics
for these theories, further validating the interpretation of
S as the black hole entropy.

In this paper, we investigate the validity of the zeroth
law and the classical second law for higher curvature ex-
tensions of Einstein gravity. Section II examines entropy
increase in quasistationary processes. For such processes,
the second law arises directly &om the first law for any
theory of gravity, as long as the matter stress-energy ten-
sor satisfies the null energy condition. Section III demon-
strates that the zeroth law for stationary black holes
and the second law for arbitrary dynamical processes
hold in a theory where the gravitational Lagrangian is
R+ o.R . These results are established by relating the
higher curvature theory by a conformal Geld redefinition
to a more conventional theory in which Einstein gravity
is coupled to an auxiliary scalar Geld. Our proofs are
valid provided that o. is positive and that cosmic censor-
ship holds for the conformally related metric. Section IV
generalizes the previous results to a larger class of the-
ories where the gravitational action is a polynomial of
the Ricci scalar. In Section V, a proof of the second
law is constructed directly within the higher curvature
theories without making (explicit) use of the conformal
Beld redefinition. This approach follows closely the logic
of Hawking's area theorem, and may provide insight for
the problem of establishing the second law in more gen-
eral theories. This analysis makes use of an "extended"
Raychaudhuri equation which is also used to establish a
new "physical process" derivation of the first law and of
the form of the entropy for these higher curvature theo-
ries analogous to that of Wald for general relativity [15].
Section VI presents a discussion of our results.

Throughout the paper, we consider only asymptoti-
cally fiat spaces [16], and we employ the conventions of
[4]. We also adopt the standard convention of setting
h = c = 1. Further, motivated by the fact that many of
the recent candidates for a theory of quantum gravity are
theories in higher dimensional spacetimes, we will allow
spacetime to have an arbitrary dimension, D & 4.

1
R~g ——g~gR = 8vrG T~b

2 (3) II. QUASISTATIONARY PROCESSES

together with the null energy condition

Tgk k &0 for any null vector k (4)

Another essential ingredient is cosmic censorship i.e., it
is assumed that naked singularities do not develop in the
processes of interest.

In theories where higher curvature interactions are in-

Here we demonstrate that in quasistationary processes,
the second law is a consequence of the Grst law for any
theory of gravity. We wish to consider a dynamical pro-
cess in which a small amount of matter enters &om a
great distance and drops into a vacuum black hole. The
initial and final black hole states are (approximately)
stationary. In those spacetime regions then, there are
Killing vector fields, ( and gP. .. which asymptotically
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generate time translations and orthogonal rotations [12],
respectively. By a quasistationary process we mean one
in which the background spacetime is only slightly per-
turbed by the infalling matter. In order to establish a
perturbation expansion we introduce a small parameter
b associated with the amplitude of the infalling fields.
We assume that the stress energy tensor is order b, as
are the resulting perturbations of the metric. The vec-
tor fields, ( and (tP( ), can then be extended through the
intermediate spacetime region where the accretion pro-
cess occurs such that Killing's equation still applies to
leading order [e.g. ,

V'& ( l = O(b ) ). This extension is
further chosen so that the horizon generator is given by

= ( +0( )(t)( )
throughout the entire evolution, where

O~ is constant to order b .
Two spacelike surfaces Z, and Zy are introduced at a

time before the accretion process begins, and at a time
after the process has ended, respectively. The black hole
horizon H provides an inner surface, and we introduce
a surface 0 at some large radius in the asymptotically
flat region. These four surfaces enclose a spacetime vol-
ume V, and we assume that the matter enters &om the
asymptotically flat region and exits either as it crosses
the black hole horizon or after scattering back out across
O. One can evaluate the mass and angular momentum
carried in with the new matter by flux integrals in the
asymptotic region,

LM= T g dZ

LM —O' 'LJ( )
—— T gy dZ

O
(6)

By the first law (2), this combination of variations is pro-
portional to the variation of the entropy, 2" AS. (Here,
we apply the first law in what Wald calls the "physical
process" form [15], for which one assumes that the ac-
cretion process is a mild perturbation, and hence that no
singularities develop in V.)

Using stress-energy conservation as well as Killing's
equation, one has

V' (T I g ) = V T ( X + T~b V X = O(b' ).

b, J( )
——— T sf( )dZ,

0
where dZ is defined with an outward pointing normal.
In the &amework of the perturbation expansion, these
qllaIltltles al'e O(b ) . In what follows hlgliel' OI'del' tel'1118

will be ignored. These expressions may be combined to
produce a flux integral containing the horizon generating
vector field y:

which, on the horizon, is antiparallel to the null genera-
tor y . Hence the integrand of the second flux integral
is everywhere negative or vanishing, as long as the stress
tensor satisfies the null energy condition (4). Thus com-
bining Eqs. (6) and (7) with the first law, one has

The details of the gravity theory, and also the precise
functional form of S, are irrelevant to establish this result
for quasistationary processes. The key requirements were
the first law relating asymptotic variations to variations
of the horizon geometry, and the null energy condition to
be satisfied by the matter stress-energy. We emphasize
that this stress-energy tensor includes only contributions
&om the matter fields, and not contributions &om any
higher curvature interactions, as were considered in the
introduction. We have also made an implicit assumption
that the black hole solution is stable —i.e., the small per-
turbation introduced by matter falling in &om infinity
remains small (and does not lead to any unstable grow-
ing or oscillatory excitations) so that the system simply
settles down to a new black hole.

We fully expect that the above line of reasoning can be
generalized to cover arbitrary quasistationary processes.
For example, the result should hold for the case in which
(possibly charged) matter and electromagnetic radiation
fall into an electrically and/or magnetically charged black
hole. Indeed, we have carried out the analysis for the
case of charged rnatter (but no radiation) falling onto a
charged black hole. This case is somewhat more compli-
cated than the vacuum case above. If one allows infalling
electromagnetic radiation then, due to the nonlinearity of
the electromagnetic field stress tensor, there are generi-
cally cross terms between the background Geld and the
radiation field, yielding O(b') contributions to the stress
tensor and to the metric variation. This appears to re-
quire a much more involved, or a much more clever, anal-
ysis. Also, the above argument does not directly apply
in the situation where a packet of gravity waves drops
into the black hole although it can probably be adapted
to cover positive energy gravitational perturbations.

III. N + nR. THEORY'

In this section we establish the constancy of the surface
gravity for stationary solutions and the second law for
arbitrary dynamical processes involving black holes in
the theory given by a higher curvature action of the form

Now one can integrate the above expression over V and
apply Gauss' law to produce a flux integral. Since the
stress-energy vanishes on Z, and Zy, one finds

/2 + L g16mG
(9)

+(~ ) = f & (& ~ x ) &&

T gy dZ + T gy dZ

Here dZ is defined with an outward pointing normal

where I denotes a conventional Lagrangian for some
collection of matter fields, denoted @. The matter La-
grangian will also contain the metric, but we assume that
it contains no derivatives of the metric.

The gravitational Geld equations arising &om the ac-
tion (9) are
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R~b — g~—bR = 87rGT b(g, g) + 2a
~

V~VbR —g~bV2R
2

—RR b+ g—bR
4 (10)

We will assume that matter stress-energy tensor T &
——

does satisfy the dominant energy condi-
g grab

tion (1). However, if one regards the entire expression on
the right-hand side of this equation as the stress-energy
tensor in Einstein's equations (3), it is clear that this
total stress-energy does not satisfy any energy condition
because of the higher curvature contributions (i.e. , the
terms proportional to a). Thus, as discussed in the in-
troduction, Hawking's proof of the area theorem does
not apply here, nor can the proof of the zeroth law for
stationary black holes in Einstein gravity be invoked.

For this theory, the black hole entropy appearing in
the first law (2) can be written [10, 11,17]

8 = d x~h(1+ 2aR),1
4G „

where the integral is taken over a spacelike cross sec-
tion of the horizon 'R. The above forin of the black hole
entropy is not strictly justified unless we know that sta-
tionary black holes of the present theory possess a Killing
horizon with constant surface gravity. We shall show be-
low that, for n ) 0, the surface gravity of a Killing hori-
zon in this theory is necessarily constant. Note that a
number of ambiguities still arise in Wald's construction,
and so Eq. (11) is the result after making certain natu-
ral choices in the calculation. None of these ambiguities
have any e8'ect when the Noether charge is evaluated on
a stationary horizon [17],and hence Eq. (11)may be con-
sidered in the analysis of Sec. II since there the entropy
is only compared between the initial and final stationary
black holes. So one knows that the quantity (11) will
always increase in a quasistationary process in which a
packet of the matter is dropped into a black hole [since by
assumption, the matter stress-energy satisfies the domi-
nant energy condition (1), which implies the null energy
condition (4)].

We now extend this result to a classical entropy in-
crease theorem for any dynamical process involving black

de —y
l 1+2m a —n '

16vrG-

+1-(4,g)) . (12)

The P equation of motion is simply P = R, and one
recovers the original action upon substituting this equa-
tion into Eq. (12)—i.e. , I, (P = R) = I, . In the forin
of Eq. (12), the action contains no terms that are more
than quadratic in derivatives. This action contains an
unconventional interaction, rtiR, however. Hence in the
metric equations of motion,

R b
——g b R = 8mGT b(@,g) + 2a

~

V Vbp —g~bV

1 1—rtiR b+ —g b pR —4g~b4

the total stress-energy tensor appearing on the right-
hand side still contains some problematic contributions
(e.g. , V Vbg), which prevent the dominant or even the
null energy conditions &om being satisfied.

The rtiR interaction can be removed by performing the
conformal transformation

g b = (1+2ap) ~-~y b

In terms of g b, the action (12) becomes

holes in this theory. Our approach will be the following.
First, we show that the present higher curvature theory
is equivalent to Einstein gravity for a conformally related
metric coupled to an auxiliary scalar field, as well as to
the original matter fields. Second, we argue that the
black hole entropy in the higher curvature theory is iden-
tical to that in the conformally related theory. Finally,
since Hawking s area theorem holds in the Einstein-plus-
scalar theory, we conclude that the entropy never de-
creases in the original theory (9).

The equivalence of the higher curvature theory (9) to
Einstein gravity coupled to an auxiliary scalar field has
been discussed previously by many authors [18]. The first
step is to introduce a new scalar field P and a new action,
which is linear in B:

D —1( 2a D
I2 —— d zg —y R— V' rtiV P —a(1 + 2ag)

16vrG D —2 (1+2ag)

+(1+2ap) o-~ L [@,(1+2ap) ~-' y] (14)

which includes the standard Einstein-Hilbert action for g b and the auxiliary scalar P with less conventional couplings-
see below. The g g equations of motion are now

1 — 8' G D —1 r' 2a
R~b ——y~b R = T b[@,(1+2ap) ~-'y] +

~
~

V~rtiVbp
2 1+2a D —2 pl+ 2a )

1 D —1( 2a D—-yb V, rtiV P+ a(1+ 2ag)
2 D —2 (1+2ag)
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The most important feature of this final theory for our
purposes is that, assuming 1 + 2ng & 0, the total stress-
energy tensor appearing on the right-hand side above sat-
isfies the dominant (and hence the null) energy condition
for positive o. if the original matter Lagrangian satisfies
this energy condition.

Now suppose we have a stationary black hole solution
to (15) whose event horizon is a Killing horizon. Then,
since the dominant energy condition holds for o. & 0, the
surface gravity must be constant —i.e. , the zeroth law
holds [3]. We can therefore identify the entropy via any
of the usual methods, e.g. , Wald's derivation of the first
law.

Given the absence of higher derivative or unconven-
tional gravity couplings, the black hole entropy for I2 is
given by S = A/(4G), just as for Einstein gravity. Since
the equations of motion (15) are Einstein's equations,
and the null energy condition is satisfied by the total
stress-energy tensor, Hawking's proof of the area theo-
rem is valid for the I2 theory with the assumptions that
cosmic censorship holds for g q and that 1 + 2ng & 0.
(The latter assumption will be further discussed below. )
Hence there is a classical entropy increase theorem for
the theory defined by I2 in Eq. (14).

Now Eq. (13) along with P = R provides a inapping
between the solutions for the Einstein-plus-scalar theory
defined by I„and the original higher curvature theory
defined by I„in which the metrics are related by a con-
formal trans formation

2

g~g = (1 + 2cxB) ~ ~ g (16)

The conformal transformation (16) preserves the causal
structure of the solutions and, if g b is asymptotically
fIat, then so is g b. Thus, if g b is an asymptotically fIat
black hole, then so is g b, and they have the same hori-
zon and surface gravity [19]. In particular, stationary
black hole solutions of the I, theory have constant sur-
face gravity, provided they have Killing horizons. (Note
that, since a Killing vector remains a Killing vector under
stationary conformal transformations, the event horizon
of a stationary I, black hole is a Killing horizon if and
only if the same is true for the corresponding I, black
hole. ) The zeroth law therefore holds for I,.

On the other hand, since the asymptotic forms of g b

and g b agree, the mass and angular momenta of the
two spacetimes agree. Also the an.gular velocities agree,
since the null combination of time translation and ro-
tation Killing fields agree on the horizon. In short, we
have shown all of the ingredients, other than the entropy,
in the first law (2) agree. Thus, for all variations, the
changes in the entropies must also agree. Therefore the
entropies themselves are equal to within a constant in
each connected class of stationary black hole solutions.
Since the area increase theorem for the Einstein-plus-
scalar theory gives bS & 0 in any dynamical process con-
necting two station. ary states, we conclude that bS & 0
for the corresponding process in the higher curvature the-
ory. We have thus established a classical second law in
the higher curvature theory defined by the action Io in
Eq. (9).

It should be emphasized that the first law, which ap-
plies to variations away Rom a stationary black hole
background, does not uniquely determine the form of the
entropy for nonstationary states [9, 17]. In Einstein grav-
ity, since the entropy is proportional to the horizon area,
it has a natural extension to a cross section of an ar-
bitrary nonstationary black hole horizon, and the area
theorem shows that this nonstationary entropy never de-
creases, even during a dynamical process. We can obtain
a similar result for the higher curvature theory as follows.

Using the conformal relation (16) between the two met-
rics, the "barred" entropy (area) can be expressed di-
rectly in terms of g„:

(17)

For stationary black holes the right-hand side agrees with
the entropy in the higher curvature theory (ll) as deter-
inined directly from the first law in that theory (it was
already argued above that 'R corresponds to a cross sec-
tion of the event horizon for the metric g g as well). This
agreement is explained by the reasoning given two para-
graphs above. In presenting the result (11) for the black
hole entropy as determined by the first law, we chose the
simplest geometric formula which naturally extends to a
dynamical horizon. Here we have shown that, by virtue
of the area theorem in the conformally related theory, the
entropy given by that particular formula, reproduced in
Eq. (17), obeys the second law even during a dynamical
process.

The relation (16) gives an unambiguous result for the
dynamical entropy and so can be used to resolve the am-
biguities [17,11] inherent in the Noether charge construc-
tion of [9]. In the present case, the alternate proposal
for dynamical entropy of Ref. [11], which used a boost
invariant projection, gives a result for the dynamical en-
tropy that difFers froin (17) for nonstationary black holes.
Unless there are two difFerent entropy functionals obey-
ing a local increase law, it appears that the proposal of
Ref. [11] is inconsistent with the second law during dy-
namical processes in the present theories.

There is one considerable assumption in preceding dis-
cussion, which we have not yet addressed. For the map-
ping between the solutions of the two theories (16) to
exist and for the total stress-energy tensor in Eq. (15) to
satisfy the dominant energy condition (1), it is necessary
that the factor 1+ 2o.B is positive. Thus, given a black
hole solution of the higher curvature theory, one must
have B & —

2 (for positive n) everywhere outside of the
black hole and on the event horizon.

Prom the point of view of the Einstein-plus-scalar the-
ory, one requires that P & —

2 everywhere outside of the
event horizon for the mapping to a solution of the higher
curvature theory to exist. Recall that cosmic censorship
was assumed in the proof of the area increase theorem
for this theory. This assumption rules out dynamical
processes in which a black hole begins with a configura-
tion with &P & —

2 everywhere initially, and evolves to
one with P ( ——in some region outside of the horizon.
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The reason is that, by the equations of motion (15) when
()') = ——,the stress-energy tensor is singular and hence
the Einstein tensor, R t,

—2g ),R, is singular [20]. Cos-
mic censorship for g p would only allow such curvature
singularities to develop behind the event horizon, and
hence rules out any process in which (1) = —

2 is reached
outside of the horizon.

An alternative argument showing that it is consis-
tent to make the restriction P ) —

2 can be given by
considering the character of the potential term in the
Einstein-plus-scalar theory [21]. The iionstandard ki-
netic term for the scalar field P in Eq. (14) can be re-
placed with an ordinary one by defining a new scalar field
p:= P i ln(l+2a(t), where P = +87rG(D —2)/(D —1).
In terms of y the action I2 becomes

nation of the higher curvature equations of motion (10),
R = —

z does not appear to be singular. However, there
is no obstruction to mapping the initial part of the evolu-
tion to the Einstein-plus-scalar theory, where it becomes
a process leading up to a naked singularity at the point
where P = —2, as discussed above. Such processes were
ruled out by the assumption of cosmic censorship though,
and hence we have also ruled out the corresponding evo-
lution in the higher curvature theory.

IV. ACTIONS POLYNOMIAL IN R

The results of the previous section are easily gener-
alized for higher curvature theories with actions of the
form

1 — 1
Is —— d xQ —g R — V' pV'—p —V(p)16'G 2

I, = d+z —g R+P R +L,g (19)

2 Pv'I, (@ e L) gPÃg) (18)

D
where V(y) = s4 @ e L)-'~~(e) (' —1)2. Now the sin-

gular point P = —
2 corresponds to p —+ —oo. Pro-1

vided a ) 0, the potential V(p) rises exponentially as
p ~ —oo. The term involving the matter Lagrangian
has the same exponential for a prefactor, and so one may
worry that it may undermine the barrier due to V(p).
'She kinetic terms for the matter Gelds will include at
least one inverse metric which will bring the rate of ex-
ponential growth down by a factor of exp[2P&p/(D —2)]
for these contributions. We will assume that any matter
potential is non-negative, which is implied by the domi-
nant energy condition (1) for T &, so that these terms can
only increase the potential barrier as p ~ —oo. Thus, as
long as the metric and matter fields do not become sin-
gular, the dynamics of p as p ~ —oo will be dominated
by the potential barrier so p will not run off to —oo.
Therefore, initial data satisfying the bound P )
will evolve within the bound, as long as the other Gelds
remain nonsingular.

Note that the argument just given breaks down if n ( 0
since the potential is then negative and. exponentially
falling as p -+ —oo. Hence, the theory appears unstable
for negative n. The previous argument for nondecreas-
ing entropy did not seem to require that n be positive
because the null energy condition is satisfied for any n.
It did assume cosmic censorship however which, presum-
ably, would be violated in the unstable theory with n ( 0.
Note also that we previously used this condition on n in
order to establish the zeroth law.

Given the above arguments that P = —
2 is never

reached outside the event horizon for positive n, one may
also rule out processes in the higher curvature theory in
which a black hole evolves to reach R = —

2 somewhere
outside of the event horizon. From a superficial exami-

I

where P is a polynomial in the Ricci scalar, P(R)
2 a R". Introducing an auxiliary scalar field P, as

in (12) of the preceding section, this theory can be reex-
pressed using a new action linear in R:

Ii —— d x —g R+P + R — P'
16' G

+L-W, t1)). (20)

g = [1 + P'((I) )] — g

yielding the action[18]

(21)

Here, the primes denote differentiation of P with re-
spect to ~i.e., P'(P) = P 2 n a gP . The the-
ory defined by this new action is not precisely equiva-
lent to the original theory defined by Eq. (19). Rather
the (t equation of motion yields two classes of solutions:
i) P = R and ii) P = $0 where (t)0 is a constant satis-
fying P"($0) = 0. Substituting (i) back into the action
(20) yields (19). Thus these solutions correspond to so-
lutions of the higher curvature theory, which we wish
to study. Substituting (ii) into Eq. (20) yields Ein-
stein gravity with an efFective Newton constant, G ff
G[1 + P'($0)], and an efFective cosmological constant
A, )r = [POP'($0) —P(go)]/2[1+ P'( t())]0. Thus the latter
solutions are spurious for our purposes since they do not
correspond to solutions of the original higher curvature
theory. In the present analysis we only consider asymp-
totically flat solutions, which would rule out the second
class of solutions because of the presence of an effective
cosmological constant. Even in the case of an acciden-
tal degeneracy where A ff ——0, one still knows that the
asymptotically fiat solutions for action (20) include all of
those for the original action (19).

As in the preceding section, the action (20) can be
transformed to Einstein gravity coupled to a scalar Geld
via the conformal transformation

d *g gR — —~, l
&-&& &+ [1+P'(&)] ~-' V'(&) —&P'(&)

1 — D —1 f P"(Q) I D

16+G D —2 q1+ P'(P))

+16xGL (g, (1+ P'(1))) -'g))). (22)
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Equivalence of (20) and (22) holds provided the confor-
mal transformation is nonsingular —i.e., (1 + P') & 0.

If the matter Lagrangian I. yields a stress-energy ten-
sor satisfying the dominant energy condition (1), then the
action I2 also yields a stress-energy tensor satisfying the
dominant energy condition provided 1+ P'(P) & 0 and
PP'(P) —P(P) & 0. (These conditions on P will be dis-
cussed further below. ) In this case, it follows that the
surface gravity is constant over the Killing horizon of a
stationary black hole for I2. Further, with the assump-
tion that cosmic censorship applies in this theory, one
can prove the area increase theorem, and so then one has
shown that bS & 0 in any evolution of a black hole.

Assuming we have a solution in class (i), the mapping
between the theories takes the form of a conformal trans-
formation that goes to the identity at infinity. As above,
this means that a black hole in one theory is mapped
to a black hole of the other theory and, further, that
the event horizons, surface gravities, and entropies of the
two black hole solutions coincide. Thus the constancy of
the surface gravity and the area increase theorem of the
Einstein-plus-scalar theory translate to the zeroth law
and an entropy increase theorem for the original higher
curvature theory, respectively.

The mapping between the solutions of the two theories
yields a formula for the entropy in the higher curvature
theory:

S(y) = d 2x ~h = d x vh[1+P'(R)].=4G; ' =4G;
(23)

As expected one recovers the same expression for the
black hole entropy in the higher curvature theory that
was determined by directly examining the first law in that
theory for variations from stationary black holes [17).
Note that the conformal transformation yields an unam-
biguous definition of the dynamical (nonstationary) black
hole entropy for the higher curvature theory, whereas the
entropy functional determined &om the first law is not
unique [9, 17].

Of course, the equivalence of the dynamics defined by
the actions I, and I, required that P = R, and that
1 + P'(R) & 0 everywhere for solutions of the higher
curvature theory. The latter assumption requires that
B lie within some domain including zero, whose precise
boundaries will be defined by the couplings a appearing
in P(R). Alternatively, there are restrictions on allowed
values of the auxiliary scalar P in the Einstein-plus-scalar
theory. For our purposes it is enough that these restric-
tions hold outside the horizon and on an open set includ-
ing the horizon.

One can argue as in the preceding section that cos-
mic censorship rules out processes in which a black hole
evolves &om a configuration with 1 + P' & 0 to one in
which this inequality is violated. This is done by rewrit-
ing the action yet one more time, as in the preceding sec-
tion, with the change of variables &p:= P in[1+ P'(P)],
where P = +8vrG(D —2)/(D —1). In terms of rp the
action I2 becomes

1 — 1—
Is —— d xQ—g R ——V' (pV' p —V(y)16~G 2

+e ~ pP'Pl (g e ~ gPÃy )

where now

Equivalence of I2 and I3 requires that one can invert
1 + P'(P) = e~~ for P = P(p). This requires that P"
has a definite sign in the domain of interest for P (which
includes P = 0).

As before, the singular point 1+P'(P) = 0 corresponds
to p ~ —oo. There is a potential barrier as p ~ —oo
provided PP' —P is positive. Note that PP' —P vanishes
at P = 0, and (PP' —P)' = PP". If we restrict P" to be
positive, (PP' —P) will be positive for all P g 0. Thus we
can argue, as in the preceding section, that if P" & 0 (and
the matter stress-energy satisfies the dominant energy
condition), initial data satisfying the bound 1 + P'
0 outside the horizon will evolve within this bound, as
long as the other fields remain nonsingular outside the
horizon. As a bonus, P" & 0 implies the positivity of
PP' —P, which was required for the dominant energy
condition (and therefore the proof of the zeroth law) to
hold. Actually, given that P" & 0, 1 + P' (which is one
at P = 0) will generically reach zero at some negative
value of P, which then defines the boundary for the range
of interest. It is enough then to require P(P)" & 0 for
P & Pi, where Pi denotes the negative value of P nearest
the origin for which 1+P' vanishes. If P" & 0 in the
range of interest, the theory is probably unstable, as in
the B+aB theory with negative a.

V. DIRECT PROOF OF THE SECOND LAW

Our method of establishing the second law for certain
higher curvature theories used the fact that these theo-
ries are conformally related to ordinary Einstein theories
in which the area theorem holds. This special feature of
these theories is not shared by most higher curvature the-
ories, so it would be interesting to see how the second law
could be established directly in these theories, without
making use of the conformal transformation technique.
Such an exercise would be instructive for efForts to es-
tablish entropy increase theorems for theories that are
not susceptible to the conformal transformation "trick."
In order to gain some insight into this question, in the
present section we will construct such a direct proof.

Suppose that the black hole entropy of a gravity theory
takes the form

S = d xvhe~,1
4G „

where e~ is a scalar function of the local geometry at
the horizon. For the class of theories considered in the
preceding section one has e~ = 1+P'(R). The method
to be used here will rely critically on the fact that e~
is necessarily positive, and p = 0 when the curvature
vanishes.
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We wish to consider the change of this entropy along
the null congruence generating the event horizon under
any dynamical evolution. Let k be the null tangent
vector Geld of the horizon generators with respect to the
affine parameter A. Then one has

1
0&S = d x~he~8

4G ~
with

6':= ~+ ~p,

where 8 = d(ln~h)/dA = V' k is the expansion of the
horizon generators.

Now the question is whether or not there can exist a
point along the null geodesics at which 0 becomes nega-
tive. In order to answer this question, we use the Ray-
chaudhuri equation, as in the proof of area theorem, to
obtain an expression for t9po:

Og8 = |F0+ imp
282 —cr2 —k ksR s+ k k V V'gp, (26)

where 0 is the square of the shear.
For the R + P(R) theories, it is easy to see that the

equations of motion imply that k k (R s —V' V'sp)
(8mG e I'T

& + V' pV'sp)k k, which is non-negative pro-
vided the null energy condition holds for the matter fields
(and e~ ) 0). Thus in those theories one has

Og8 & — 02,

For the P(R) theories we have in particular Bpp
k V' p = (1+P') P"k V' R. In the preceding section
we argued that 1 + P' never goes to zero outside the
horizon in the case of a theory with P" & 0, so for these
theories the divergence of Bpp implies divergence of B or
k I7 R, but these divergences also violate cosmic censor-
ship. Therefore we conclude that cosmic censorship and
the null energy condition for the matter imply that the
black hole entropy (24) can never decrease for the sta-
ble theories. Note that in making this argument we have
used the condition 1 + P' & 0 that was established via
the conformal transformation trick, so we do not really
have a fully "direct proof" of the second law.

The above argument suggests that the "weakest"
naked singularity which creates a violation of the second
law would be a divergence in k V' R. It seems that this
could happen even if the curvature itself is nonsingular
everywhere. However, if one imposes also the equations
of motion of the theory, then a divergence in k V' B
would necessarily entail also a divergence in either the
curvature tensor or the matter stress tensor.

As a Gnal note, we demonstrate that the "extended"
Raychaudhuri equation (26) lends itself to a "physical
process" derivation of the first law [15], and also of the
form of the entropy, at least for the actions polynomial
in the Ricci scalar. A sketch of such a derivation follows:
Following the quasistationary process discussion in Sec.
II, one concludes that the Grst law is satisfied if there is
an entropy functional S satisfying the equality in (8),

or

Now we follow Hawking's proof of the area theorem,
with 0 in place of 0. Suppose at some point on the hori-
zon we have 0 ( 0. Then in a neighborhood of that point
one can deform a spacelike slice of the horizon slightly
outward to obtain a compact spacelike surface Z so that
9 ( 0 everywhere on Z, 0 being defined along the outgo-
ing null geodesic congruence orthogonal to Z. If cosmic
censorship is assumed, then there is necessarily some null
geodesic orthogonal to Z that remains on the boundary
of the future of Z all the way out to 2'+ [14]. Asymp-
totic flatness (where components of the Riemann tensor
in an orthonormal &axne all fall off at least as ri D) im-
plies that p + 0 like A at infinity, whereas 8 goes like

, where A is the affine parameter along an outgoing
null geodesic. Therefore 8/8 -+ 1 + O(A~i l), so the
inequality (27) implies that, as one follows the geodesic
outwards &om Z, 8 reaches —oo at some finite affine pa-
rameter. Since 8 = 0+ Bpp, this means that either 0 or
Opp goes to —oo. In the former case we have a contra-
diction, as in the area theorem, since it implies there is
a conjugate point on the geodesic, which cannot happen
since the geodesic stays on the boundary of the future of
Z all the way out to X+. In the latter case we have a
naked singularity, since Bpp = e ~t9pe~, and e~ was as-
sumed from the beginning in (24) to be a nonvanishing
function of the curvature.

Now on the horizon, where g is null, the equations
of motion imply that 8vrGT g y y = e~y g (R s—
V' V'gp —V' pV'sp) where e~ = 1 + P'(R). The hori-
zon generating Killing field y 0 = 0 is related to the
affinely parametrized null tangent to the horizon k 8
Bp by y 8 = KAk 8 where A = exp(vv) [15]. Panther
the volume element in the above Aux integral may be
written dZ = —d~ 2x~hdA k [15]. Hence using the
extended Raychaudhuri equation (26) and the equations
of motion, and neglecting terms of higher than linear or-
der in the perturbation, the above equation yields

—bS=v d xv hdAAk k T s2F

d x V h dA A e~ k k (R b
—V' V'sp)8xG

d x~h dA A e~8g8
8mG

Zy

d xv hAe~8
8mG

+ dA d x~h e~88' G

In this final expression, 8 vanishes on the final and ini-
tial horizon shces where the horizon is stationary, and
so the Grst contribution is zero. By the definition of
8 .in Eq. (25), we see that ~he 8 is the total deriva-
tive Og(~he~), so the second contribution is just 2 b, S
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VI. DISCUSSION

In this paper, we have presented two cases where a
classical entropy increase theorem applies in higher cur-
vature gravity. These are the following.

(i) For quasistationary processes in which a (vacuum)
black hole accretes positive energy matter, i.e., T bE E

0 for any null vector S, the second law is a direct conse-
quence of the first law of black hole mechanics, indepen-
dent of the details of the gravitational action.

(ii) For higher curvature theories of the form (19) the
black hole entropy is given by

S(g) = d xvh[1+P'(R)] (28)

This entropy satisfies the second law in any processes
involving matter fields that satisfy the null energy con-
dition. Our proof of the second law requires that the
coupling constants a„appearing in P(R) be restricted in
such a way that P"(R) is positive for positive R, and also
between B = 0 and the largest negative value of B where
1+P'(R) vanishes. The latter ensures that 1+P'(R) is
positive everywhere outside and on the event horizon of
the black hole spacetimes.

The expression 1 + P'(R) must be positive in order
to implement the conformal transformation between the
original higher curvature theory and the Einstein-plus-
scalar theory, and also to ensure the null energy condition
is satisfied in the latter theory. This positivity is also an
essential ingredient for the direct proof in Sec. V. It is
interesting that precisely the same expression plays the
role of the entropy surface density in Eq. (28). Thus
the positivity restriction translates on the horizon to the
condition that the local entropy density should be posi-
tive everywhere. In particular it requires that the total
black hole entropy is always positive. The latter is a min-
imum requirement that must be satisfied if this entropy
is to have a statistical mechanical origin. The fact that
we actually require a local positivity condition on the en-
tropy density is suggestively consistent with the idea that
this density may have a statistical interpretation. In any
event, these (and other higher curvature) theories may
provide a more refined test of the various proposals to
explain the statistical origin of black hole entropy.

The direct proof of the second law (in Sec. V) is
essentially a translation, via the conformal transforma-
tion, of Hawking's proof of the area theorem applied to
the Einstein-plus-scalar theory. Nevertheless, it provides
an illustration of how one might hope to prove an en-
tropy increase theorem for other higher curvature theo-
ries. Naively, with the assumption of cosmic censorship,
this proof can be extended to theories with interactions
of the form B + V~B. A closer examination of the lat-
ter theories indicates that they are unstable however, and
so the assumption of cosmic censorship appears unlikely
to hold. This highlights the problem that, in dealing

where S is precisely the entropy given in Eq. (23). The
form of the entropy functional for these higher curvature
theories can thus be inferred directly by consideration of
quasistationary accretion processes.

with the higher curvature theories directly, establishing
the stability of asymptotically Bat solutions requires an
involved analysis. In fact, even for our direct proof in
Sec. V, we relied on results about the stability of the
theories derived in Secs. III and IV by examining the
Einstein-plus-scalar theory.

An obstacle to constructing a direct proof of the sec-
ond law in general is that the entropy as determined &om
the first law does not uniquely determine the form of the
dynamical entropy. Thus, to begin, one would not know
for which entropy density one should be attempting to
prove an increase theorem. In the higher curvature the-
ories considered in Secs. III and IV, this ambiguity is
resolved by the conformal transformation, which yields
precisely Eq. (28) when inserted into S = A/(4G). In
Ref. [17], the present authors introduced an alternative
construction for black hole entropy involving field redefi-
nitions, which also appears to avoid any ambiguities. The
form of the higher curvature actions for which this ap-
proach is applicable is not completely general, but it does
extend beyond those theories considered in this paper.

In Einstein gravity, the zeroth law for a Killing hori-
zon can be proved if the dominant energy condition is as-
sumed [3]. Through the conformal transformation tech-
nique, this proof was extended to the higher curvature
theories introduced in Secs. III and IV, at least with cer-
tain restrictions on the coupling constants. In the case of
a regular bifurcate Killing horizon, one can show that the
surface gravity is constant irrespective of the underlying
gravitational dynamics [5]. However, there is no inde-
pendent proof that Killing horizons in a general theory
necessarily possess a regular bifurcation surface, and so
for general higher curvature theories the validity of the
zeroth law remains an important open question.

It is worth emphasizing that unless the event horizon
is a Killing horizon, the above-mentioned proofs of the
zeroth law are not applicable. In Einstein gravity, Hawk-
ing proved that the event horizon of a stationary black
hole must be a Killing horizon [14]. To our knowledge,
this proof has not been extended to general higher cur-
vature theories, or even to higher dimensional Einstein
gravity. For the higher curvature theories considered in
this paper, at least in four dimensions, it seems likely
that Hawking's proof can be imported via the confor-
mal transformation relating the theory to Einstein grav-
ity with matter. For stationary black holes in more gen-
eral higher curvature theories, whether or not stationary
event horizons are necessarily Killing horizons is another
important open question.

We now come to considering the two shortcomings
of the calculations presented in this paper. For all of
the cases considered here, the dominant energy condi-
tion must hold for the matter fields. Within the present
&amework, though, it is natural to include higher deriva-
tive matter couplings [e.g. , R(V'P)2 or (V P) ] as well as
higher curvature interactions. Generally the former will
spoil this positive energy condition. This is perhaps less
a criticism of the discussion of actions polynomial in the
Ricci scalar since they are already theories with a re-
stricted set of interactions.

The second shortcoming is revealed by the instabili-
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ties faced in Secs. III and IV. There our proof of the
second law failed for certain values of the coupling con-
stants (e.g. , n ( 0 for the Rz theory) because we found
these theories to be unstable, and hence it appeared
that the conformal transformation technique could not
be implemented and cosmic censorship was not a valid
assumption. Considering the B theory represented by
the action (18) with the auxiliary scalar p, we see that
the scalar potential is proportional to I/n. Thus the in-
stability is nonperturbative in the higher curvature cou-
pling constant. Fiirther, a perturbative analysis (around
flat space) reveals unstable modes with imaginary fre-
quencies of the order of I/n. We expect these remarks
also to be true of the unstable theories in Sec. IV. The
original &amework, which we set out for our investiga-
tions, though, was Einstein gravity perturbatively cor-
rected by higher curvature corrections. The problem
with the present analysis is that we are actually taking
these theories at their face value, rather than treating
the higher curvature terms perturbatively. This suggests
that our analysis should be modified to incorporate the
ideas of perturbative reduction [22]. One might hope
that the problems with instability and cosmic censorship
would be avoided in this way. Since the perturbative
treatment would extend to all of the higher derivative
interactions, including those of the matter fields, such an
approach may also be able to circumvent the requirement
that the full matter stress-energy tensor satisfy the null
energy condition [23].

Establishing the second law for higher curvature theo-
ries within a perturbative &amework would be a valu-
able extension of our present results, since we expect
nonperturbative instabilities to be a generic feature of
these theories when they are considered as fundamental
[24]. If one were to find that no second law holds even
perturbatively for certain interactions or certain values of
the coupling constants, one might suspect that those ef-
fective actions are unphysical. Perhaps the requirement
that the entropy (or even the entropy density) be pos-
itive might provide a further restriction on the form of
physically relevant effective actions.

In this paper we have only considered an intrinsic or
classical second law —i.e., we have only dealt with the
increase of the black hole entropy alone. In general rel-
ativity, we know that the effective transfer of negative
energy &om quantum fields to a black hole can lead to a

decrease in the horizon entropy (i.e., horizon area), and
the same is true for these higher curvature effective the-
ories since black holes still produce Hawking radiation
in these theories. Thus it is important to ask whether
a generalized second law [8(SBH + So„i„g,) ) 0] holds.
In general relativity, there are arguments that the gen-
eralized second law applies for quasistationary processes
involving positive energy matter [25]. These arguments
seem to carry over to stable higher curvature gravity the-
ories as well, since they do not involve the equations of
motion but rather lean on the first law and the maximum
entropy property of thermal radiation.

Another approach to this question would be to incor-
porate the effects of the Hawking radiation in the effec-
tive action by the introduction of nonlocal contributions
[26, 27]. In two dimensions where an explicit nonlocal
term can be calculated [27], Wald's techniques have been
applied to determine the nonlocal (radiation) contribu-
tion to the geometric horizon entropy [28]. Further, in
that model, one can show that the generalized entropy,
which now includes the contributions of the Hawking ra-
diation, will satisfy a second law, even for evaporating
black holes [29]. Some model-independent constructions
for the nonlocal action exist in four dimensions [26], and
so one could in principle apply Wald's techniques to de-
velop an expression for the black hole entropy in these
theories. Perhaps the requirement that this entropy sat-
isfies the second law would impose useful restrictions on
the underlying nonlocal action. In any event, address-
ing the validity of the generalized second law remains an
important open problem.
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