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Semi-infinite throat as the end-state geometry of two-dimensional black hole
evaporation
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We study a modified two-dimensional dilaton gravity theory which is exactly solvable in the semi-
classical approximation including back reaction. Infalling matter in an initially static radiationless
spacetime forms a black hole if its energy is above a certain threshold. The black hole singularity
is initially hidden behind a timelike apparent horizon. As the black hole evaporates by emitting
Hawking radiation, the singularity meets the shrinking horizon in finite retarded time to become
naked. A boundary condition exists at the naked singularity which preserves energy conservation,
stability, and continuity of the metric and results in a unique end state for all evaporating black
holes. The end-state geometry is static and asymptotically fiat at its right spatial infinity, while its
left spatial infinity is a semi-infinite throat extending into the strong coupling region. This end-state
geometry is the ground state in our model.

PACS number(s): 04.70.Dy, 04.60.Kz, 04.62.+v

Hawking's discovery that black holes radiate thermally
[1—3] gave rise to a long-standing question concerning the
consequences of combining quantum theory and general
relativity [4—8]. Does evolution from an initial pure state
take place untarily to a final pure state or nonunitarily to
a final mixed state? Intimately linked to this question is
the final geometry resulting from black hole evaporation.

Here we present a specific two-dimensional (2D) dila-
ton gravity model in which a black hole evaporates leav-
ing a static semi-infinite throat as the end-state or "rem-
nant" geometry. Our model is a modification of the
Callan-Giddings-Harvey-Strominger (CGHS) model [9].
We solve the semiclassical equations and get closed-form
expressions for the metric and dilaton field.

The classical 2D CGHS action [9] is

S i = — d xv' —g e ~[A( ) +4(V'P) +4A ]
1

2~

where P is the dilaton field, B(2l is the 2D Ricci scalar, A

is a positive constant, V' is the covariant derivative, and
the f; are N matter (massless scalar) fields. The action
(1) describes a 2D effective theory in the throat region
of a 4D almost extreme magnetically charged black hole
[10,11]. It may also be regarded as a 2D arena in which
some of the main questions about black hole evaporation
can be studied. Among the classical solutions stemming
Rom the action (1) are vacuum solutions, static black
hole solutions, and dynamical solutions describing the
formation of a black hole by collapsing matter Gelds. For
a review see [12].

To study one-loop quantum corrections and back re-
action one can use the trace anomaly for massless scalar
fields in two dimensions, (T„")= (h/24) Rl i, and find the
efFective action SpL for which (T& ) = —

&
—

& „Spi,.
This is the Polyakov-I iouville action [13]

Spi. = — d xQ—g(x)
96m

g ~I ~(2) ~ G ~ ~~ ~(2) ~~ (2)

d2 ~ 2 ~(2)

Now the total modified action including the one-loop
Polyakov-Liouville term is

where G(x, x') is a Green's function for V2. Here we take
the large-N limit, in which 5 goes to zero while Kh is held
fixed. In that limit the quantum corrections for the grav-
itational and dilaton fields are negligible, and one needs
to take into account only the quantum corrections for
the matter (scalar) fields. The one-loop effective action
is then S(i) ——S l + NSpL. There are no known ana-
lytic solutions to this one-loop efFective theory, though
there are some numerical ones [14]. In order to find an-
alytic solutions including semiclassical corrections, one
can inodify the action as in. [15—17]. Our approach is
similar in that we modify the original CGHS action (1)
and find analytic solutions to the modified equations in-
cluding back reaction. However, our analytic solutions
yield closed form express-ions for the metric and dilaton
field. This allows us to fully analyze the solutions.

We add to the classical action (1) a local covariant
term of one-loop order:

Smod = Scl + Scorr + +SFL (4)
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Using null coordinates z+ and conformal gauge g++ ——

g = 0, g+ ———2e (ds2 = —e ~dz+dz ), the action
(4) can be written in the form
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1 +S~ g = — dz+dz c) (P —p)0+ e ~ ——(P —p)
7r )

N

+c) ((b —p)0 e ~ ——(P —p) +A e ( ~)+ —) 0 f;8 f; (5)

g g (
—2p(x+, ~ )) g g (

—2$(x+,x ))

(6)

0+0 f (x+, x ) =0, (7)

where r. = Nh/12. The kinetic action density is a bi-
linear symmetric form (8+8)M(P)(c) 0), where 0 is a
vector comprised of the (N + 2) fields p, P, and the N
matter fields f; and M(P) is an (N + 2) x (N + 2) sym-
metric matrix. One can verify that the determinant of
M is proportional to e ~, and unlike in other models of
modified dilaton gravity [15—17], here this determinant is
nonvanishing for all real values of (b. Problems involving
curvature singularities associated with the vanishing of
this determinant are relevant only as e ~ ~ 0, which is
a region of in6nitely strong coupling. In the semiclassical
theory, the strong coupling region is excluded by impos-
ing suitable boundary conditions as discussed below [see
the discussion of Eq. (17)]. [From the point of view of
string theory, the action (5) with free fields X—:e
and Y—:(b —p (which are flat target space coordinates),
describes a conformal 6eld theory with tachyon and dila-
ton backgrounds T = —4A e and 4 = —2X + 2rcY
[18], if conformal boundary conditions are imposed at
2C = 0 [19].] The action (5) is also invariant under the
transformationi [15] bP = bp = ee2~, with the conserva-
tion equation B„O"(P —p) = 0. We therefore can com-
plete the gauge Axing by choosing the "Kruskal coordi-
nates" x+(z+) in which P(x+, x ) = p(x+, x ). In this
Kruskal gauge the equations of motion derived &om the
modified action (5) are the same as the classical ones

while the constraints get modi6ed by nonlocal terms
t~(x+) arising froin the Polyakov-Liouville action. In
conformal gauge, one can use the trace anomaly of N
massless scalar fields J; to obtain (T+f ) = rB+8—p
and integrate [20—22] the equation V'"(Tf„) = 0 to get
the quantum corrections to the energy-momentum tensor
of the f; matter fields:

(T+'+) = KP+'~ —(~+~)' —t+(z+)1 (8)

mod 0 ~2 (
2y(~+, ~ ) )

g

—(T~~~),i+ et~(x ) = 0, (9)

where (T++),q =
2 P, i(c) ~ f,)2 is the classical (zero

order in 5) contribution to the energy-momentum tensor
of the f; matter fields. (T~„) in (8) is the one-loop quan-
tum correction of order 5, so the full energy-momentum
tensor of the f; fields is (T~„),i + (T~„)+ O(52).

For a given classical matter distribution and a given
t~(x+) one finds the solution for the equations of motion
(6) with the constraints (9)

where t~ (z+) are integration functions determined by the
specific quantum state ~4') corresponding to the expec-
tation value (4~T~„~4) = (T~„). These functions can be
determined by boundary conditions. Alternatively, Eq.
(8) can be obtained by varying NSpi, . Then the functions
t~(z+) arise &om the homogeneous part of the Green's
function in Eq. (2). Our modified constraints (in Kruskal
gauge) are

~+ ~+
2

e '& = e "=—A'x+x — dx~+ dx+ T,) —rot+ x+

X2

dx2 dx, [(Tf ),i —Kt (x, )]+a+x++ a x +b,

where a~ and 6 are constants. First, let us consider the
linear dilaton flat spacetime solution,
—A x+x . It corresponds to the choice (Tf„),i = 0 and
t~(x+) = a~ = b = 0. To determine the corresponding
quantum state ~4) one must calculate (T+~) in (8) us-
ing the given t~(x+). In fiat coordinates o, which are

Unlike in the Russo-Susskind-Thorlacius (RST) model [15],
in this model the transformation is exactly the same as in the
classical case.

related to the Kruskal coordinates x+ by the conformal
+An+coordinate transformation +Ax+ = e+", the expecta-

tion values (8) are (T++(0.+)) = vA2/4. We see that
unlike in the RST model, in our model (T+~+(o.+)) g 0
for the linear dilaton solution. Because (T+f+) = m%2/4

and (T+ ) = 0, the quantum state ~%') correspondingf
to the linear dilaton solution may describe a system in
therinal equilibrium at temperature T = A/2a.

In our model we also have static black hole solu-
tions [23]. These correspond in Eq. (10) to the choice
(Tf„),i = t~(x+) = a~ = 0 and b = M/A For these.
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solutions at future and past null infinity (2+ and 2'

respectively) one has (T++) = rA /4; the solutions ev-
idently describe a black hole in thermal equilibrium at
temperature TBH = A/2vr. This is as we would expect:
A static black hole solution in a self-consistent semiclas-
sical theory of Hawking radiation including back reaction
is possible only if the black hole is in thermal equilibrium
with incoming radiation.

In order to find the solution corresponding asymptoti-
cally to the Minkowski vacuum we can use (8) to find the
solution for which (T+~+(cr+)) = 0. The functions t~( x+)

are determined by imposing appropriate boundary con-
ditions on 2+. We assume that on these boundaries the
metric is Hat, such that p(cr+) and its derivatives vanish
in the asymptotically Bat coordinates sr+. Then the first
two terms on the right hand side of (8) vanish on the
boundary and we get

P++(0 )) ~boundary &t+(0 )
f

We see &om (11) that the Minkowski vacuum corre-
sponds to t~(0 +) = 0. To find the corresponding t~(x+)
in "Kruskal coordinates" one can use the tensor transfor-
mation of (T+~+) in Eq. (8) (under a conformal coordinate
transformation) and get

t+(* ) =
& + (t+( ) —-D +I.* ]k =

(12)

where D~[z] is the Schwarz operator D~[z] = Bsz/

(B„z)—2 (B„z/O„z) and we use t~(rr+) = 0. Using (10),
(12), and (Tf„),i = 0, we find that the general asymptot-
ically Minkowski vacuum solution is

time solution is that the coupling, e @, of the rnatter to
the geometry vanishes exponentially fast at X+.

Before we turn to the question of the ground-state solu-
tion, let us consider the Arnowitt-Deser-Misner (ADM)
masses of the various solutions we have found. Let us
choose as reference solution one of the static radiation-
less solutions (14) with C = Co. Then the ADM mass
[24,25] of any other static solution (14) is A(C —Co). On
the other hand, the ADM mass of the linear dilaton so-
lution as well as the static black hole solutions (relative
to this ground state) is infinite. This is already clear
Rom the fact that these solutions have nonvanishing ra-
diation on 2+ and can be checked explicitly by using the
ADM mass definition [24]. Because the solutions (14)
have lower ADM mass, it is plausible that the ground-
state solution is one of these static radiationless solutions.

We next turn to the dynamical scenario in which the
spacetime is initially described by one of the static so-
lutions in (14) (not necessarily the reference solutions
with C = Co), and in which a black hole is formed by
collapsing matter fields. First we consider the simple
shock wave solution, but our results can be easily ex-
tended to general infalling matter configurations. The
shock wave of infalling matter is described by (T+f+),i ——

(M/Axo+)h(x+ —xo+) and (Tf ),i = 0 [9]. Unlike the
RST model in which a shock wave always forms a black
hole, here we take a general initial state geometry (14),
and the shock wave forms a black hole only if M, the en-
ergy of the shock wave, is above a certain critical energy
M„. For M & M„, the solution is stable and energy
conserving [26,27]. Integrating (T++),i in (10) and using
(12) and a~ = 0, we find the solution

K
e ~ = e ~ = —A x+x ——ln( —A x+x—)4

K
e ~=e ~= —A x+x ——ln( —A x+x )+C, (13)

ds = [1 —e (vAo/2 —C)] (—dt + der ),

,„.t'~A
P(o) = —Ao ——ln 1 —e " cr —C

2 i 2 )

(14)

where C is a constant. In asymptotically fIat coordinates
cr+ =t+o, we have

M
+ (x+ —xo )O(x+ —xo ) + C, (15)
0

C* = —-[1—in(~/4)] .
4

(16)

where 8(x) is the standard step function.
Before the shock wave, i.e., in the region x+ & xo,

we have a static solution (14) which is not globally flat.
Consider this static solution in the cases when C & C*
and C ) C*, where

This solution is static, depending on the spatial coordi-
nate 0 alone. On the boundaries Z'+, the solution ap-
proaches the linear dilaton fIat spacetime solution, justi-
fying our assumption. The reason this solution with no
radiation at 2+ and the earlier ones with radiation there
all asymptotically approach the linear dilaton fIat space-

Since in 2D the Hawking temperature is mass independent,
one may regard the linear dilaton solution as the zero mass
limit of the static black hole solutions. This may explain
the nonzero temperature of the linear dilaton solution in our
model.

If C & C*, then the scalar curvature B~ ~ = Se ~8+0 p
diverges on a timelike curve 0. = 0„for which e
0. Of course this is a region of strong coupling and
one would expect to have higher-order quantum correc-
tions there. On the other hand, if C ) C*, then the
scalar curvature diverges on the null curves x+ = 0
and x = 0. This null singularity is a finite affine-
parameter distance away from any interior point in the
spacetime. For C ) C*, the static solution has a region of
strong coupling lying inside the spacetime near the curve
o = o;„=(1/2A)ln(m/4), where e 2& has its minimum.
In both cases, C & C* and C & C*, the region of strong
coupling can be avoided in the semiclassical approxima-
tion by imposing boundary conditions on a suitable time-
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like hypersurface [28,15,19]. Such a hypersurface can be
chosen to be the curve e2& = const. For static solutions
this is equivalent to choosing this hypersurface to be the
curve cr =const. For the static solutions (14), (T++(o'+))
and (Tf (o +)) are constant on any timelike hypersurface
u = const. Moreover,

(T+ (~+))I-=-. = (T-'-(~+))I-=-.
for any constant cr& . (17)

This means that we can limit our model to a region in
which the semiclassical approximation is valid by im-
posing reflecting boundary conditions (17) on any given
timelike hypersurface o = op that lies outside the region
of strong coupling (these boundary conditions are also
conformal [19)). The geometry before the shock wave is
therefore a static geometry, de6ned in the region o ) o,
in the case C ( C' (or 0 ) 0;„in the case C ) C*),
with re8ecting boundary conditions on o'b = o', + h (or
on o's = 0;„+b) where b is a positive constant.

In the dynamical scenario, a shock wave moving along
the null curve x+ = xo+ hits the boundary curve o. = o.p
when x = xo, where xo —— (A2—xo+) exp(2Acrs) For.
all values of M and C, the solution to the future of the
shock wave (x+ ) xo+) is [see (15)]

e '~ = e '~ = —A'x+(x + A)

——ln( —A x x )+ —+C,M
4

where E = M/(Asx~+). In the subcritical case (M ( M„)
we find that no black hole forms and this solution is valid
to the past of the null curve x = xo . In this case we can
choose boundary conditions in which the incoming shock
wave is reQected, enabling us to continue the solution to
the future of x = xo . This subcritical solution is stable
and unitary [26]. In the supercritical case (M ) M„),
the solution (18) describes a black hole with a singularity
at e ~ = 0. In the remainder of this paper, we describe
the properties of this dynamical black hole solution. The
black hole singularity curve is

This is the "standard" Hawking radiation in 2D, where
the Hawking temperature T~ = A/2m is a constant [9].
One can further verify that when the black hole evap-
orates over a long period of time, i.e., if M &) mA, the
spectrum of the Hawking radiation is indeed Planckian
[2,30].

As the black hole evaporates by emitting Hawking radi-
ation, the apparent horizon shrinks and eventually meets
the singularity in a finite proper time. They intersect at
(see Fig. 1)

~+ 1
x,.„,— exp

(4(M+ XC)
4

and

Kx. = —L 1 ——expint
(4(~+wc), 1

)
(22)

At this point the singularity becomes naked. We show
below that it is possible to impose a boundary condition
in which a weak shock wave emanates &om the intersec-
tion point, resulting in a solution that is stable (having
non-negative ADM mass), conserves energy, and has a
continuous metric.

Before considering the solution to the future of the null
curve x = x,„~ (i.e., the end-state solution), we calculate
the amount of energy E, d radiated by the black hole up
to the null curve x = x,.„~. Integrating (21) over 2'+ (up
to x,.„~) gives the exact closed-form result

—A2x+(x, + 4) ——ln( —A'x+x, ) + —+ C = 0 . (19)

Initially the singularity is behind an apparent horizon
8+e 2~ = 0 [29], which is the curve

.0
l

—~'x~(x~ +&) =—
4 (20)

When the apparent horizon is formed, the black hole
starts radiating. One can see this by calculating (Tf'„)
at future null infinity (x+ -+ oo). From (18) we see that
the asymptotically Bat coordinates on X+ are o, re-
lated to x+ by the conformal coordinate transformation,
Acr+ = ln(Ax+) and —Ao = ln[ —A(x +b, )]. Using (11)
and (12) we get

FIG. 1. Penrose diagram describing formation and subse-
quent evaporation of a black hole in our model.
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pc% ]cAL= M+ AC — [ln(r/4) —1]—
4x;„

where cr,.„t = 0 (x,„~). The ADM mass [23,24] of the
dynamical solution (15) (relative to the reference solution
with C = Cp) is M~DM = M + A(C —Cp). We see that
the black hole radiates almost all of its initial energy. The
unradiated mass bM remaining as x + x,„~ (which is
the Bondi mass) is

MADM Erad
KA v.AL

[ln(~/4) —1] —ACp +
4x,„ (24)

e ~=e ~= —A x+(x +A)
——ln[ —A2x+(x + 4)] + C .

4
(25)

We would like to see if there exists a constant C such that
on the null curve x = x,.„~ the solutions (18) and (25)
can be matched continuously. This is indeed the case and
f'rom (22), (18), and (25) we find that the unique solution
has C equal to C' defined in (16). The end-state solution,
or "remnant, " is, therefore,

e ~=e ~= —A x+(x +b, ) ——ln[ —A x+(x + b, )]4
——[1 —ln(~/4)], (26)

where z ) x,„~. From the constraint equations (9) we
find that

N

[&-' (~ )] i = 2) (~-&')'
i=1

8'(cr —o,„).

We now consider the solution to the future of the point
of intersection (x+i, x,.„i). One candidate for such a solu-
tion would be the smooth continuation of solution (18).
This solution is unstable because the total energy reach-
ing 2' diverges as can be seen &om Eq. (23) with o,„~
replaced by oo. As was shown by RST in [15], one can
avoid this instability by introducing a small outgoing
shock wave originating at (z,„i,z,„t) such that this so-
lution is matched to the stable ground-state solution to
the future of the outgoing shock wave. In our case as
well, the black hole solution can be matched to the sta-
ble ground state of our model by introducing a small
outgoing shock wave. In this matching, the metric is
continuous and energy is conserved. As we already dis-
cussed, the ground state in our model is one of the static
solutions (14). Thus we try to find boundary conditions
that match the solution (18) continuously to one of the
static solutions (14). Remember that the asymptotically
flat coordinates are cr+, so one should replace o. in (14)
with 0 = 2(o+ —0 ). In the x+ coordinates this static
solution is [see (13)]

—dt +A
2A2e2 + O(es) ' (28)

where t = 2i(o+ + o ). The first nonvanishing terxn in
the denominator of (28) is of order e2, which means that
the geometric structure near e = 0 is that of an infi-
nite throat. Consider for example the distance along a
t = const curve. The distance to 0 = o„diverges log-
arithmically, as it does in higher-dimensional extremal
black holes. The end-state spacetime is geodescially com-
plete. On the curve o. = o„, the Ricci scalar has the
constant value R~ ~ = —4A and the geometry is regular.

An appropriate choice of ground state is the static ra-
diationless solution (14) with C = C*. The solution is
everywhere regular. Any solution (14) with smaller ADM
mass (C ( C') has a naked tixnelike singularity. Also
if we choose the reference solution as the ground state
(i.e. , choose Cp ——C'), then the mass remaining after
the thunderpop (27) is zero. The end-state solution (26)
resulting &om black hole evaporation is the same as the
static radiationless ground-state solution proposed here.
Its geometrical structure is independent of the initial con-
ditions. In our model it is a semi-infinite throat extending
into the strong coupling region.

In this 2D semiclassical model when M ) M„one does
not recover all the information of the initial state &om

This describes a shock wave originating at the intersec-
tion point and carrying a small amount of negative en-
ergy, +AD, /(4x;„~), to null infinity. One may call it a
"thunderpop" [15]. The solution (26) is one of the static
solutions that is asymptotically fiat (with no radiation)
on X+. This means that there is no Hawking radiation
after the thunderpop (27). Thus Eq. (23) gives all of the
energy emitted in the form of Hawking radiation.

The xnass remaining after the shock wave (27) has been
emitted is bM —rAA/(4x;„~). One readily verifies that
this is equal to the mass of the "remnant" (relative to the
reference solution with C = Cp) M = A(C —Cp). The
fact that energy is exactly conserved, including terms of
order h, supports the self-consistency of our semiclassical
theory. Notice that C* and therefore the "remnant" mass
is independent of the mass M of the infalling matter and
of the constant C describing the initial static geometry.
Even more interesting is the fact that the end-state solu-
tion (26) with C = C' is the critical solution separating
the space of static solutions (25) into two classes: Those
with a timelike singularity (C ( C*) and those with a
null singularity (C ) C').

Consider the late-time spacelike hypersurface Z shown
in Fig. 1. Its right boundary (0 -+ oo) is i, , while its left
boundary is the curve o = &„, for which e @ = 0. For
the critical solution we have 8 + (e 2&& -1) = e
0 and the curve o. = o.„is the analytical continuation
to the region x ) x,.„~ of the curve that is an apparent
horizon in the region x ) x,.„~. Note that in the region
x ) z,.„~ the curve o. = 0, is not an apparent horizon.
In fact the static solution (26) has no apparent horizon.
To study the behavior of the spacetime near the curve
cr = u„ let us define e = 0 —b„and calculate the metric
near e = 0. From (26) we get
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the end-state solution. For infalling matter described by
a general (T+I+),~ of compact support, the solution (10)
will depend only on the first two moments of (T++),i,
M = A jx+(T+I+),~dx+, and P+ ——J'(T++),~dx+ [15];
the end-state solution will still be (26), but with 4 =

2P+. The information encoded in this "remnant" (or
more precisely, in its past null boundary x = x,.„t) is
only about P+ and M. Thus in our model this end-state
solution does not qualify as the "cornucopion" of [31].
However, the semi-infinite throat extends to a region of
very strong coupling. There may be sufficient &eedom in
this strong coupling region to encode more information

through strong quantum gravitational efFects.
In this work we constructed an action in 2D dilaton

gravity and showed that there exists a boundary condi-
tion preserving energy conservation, stability, and conti-
nuity of the metric, &om which it follows that all evapo-
rating black holes end in a unique ground-state geometry
having a semi-infinite throat.
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