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Classical moduli O(n') hair
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We extend existing treatments of black hole solutions in string gravity to include moduli fields.
We coinpute the external moduli and dilaton hair, as well as their associated axions, to O(o. )
in the framework of the loop-corrected superstring effective action for a Kerr-Newman black hole
background.
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Superstring [1] theory is our best existing candidate for
a consistent quantum theory of gravity which also has the
prospect of unification with all other interactions. Ein-
stein's theory, which has been very successful as a clas-
sical theory of gravitation, is incorporated in this more
general &amework. However, superstrings involve a char-
acteristic length of the order of the Planck scale and are
expected to lead to drastic Inodifications of the Einstein
action at short distances. These modifications arise ei-
ther as a result of the contribution of the infinite tower
of massive string modes, appearing as o.' corrections, or
as a result of quantum loop e8'ects. An effective low en-
ergy Lagrangian [2] that incorporates the above, involv-
ing only the massless string modes, can be derived &om
string theory using a perturbative approach in both the
string tension o.' and the string coupling. The relevant
massless fields, apart &om the graviton and other gauge
fields, are the dilatons, which play the role of the field-
dependent string couplings that parametrize the string
loop expansion and the moduli fields that describe the
size and the shape of the internal compactification man-
ifold.

In Einstein gravity, minimally coupled to other fields,
the most general black hole solution is described by the
Kerr-Newman family of rotating charged black hole so-
lutions [3]. In agreement with the "no-hair" theorem [4]
at the classical level, the only external fields present are
those required by gauge invariance. A qualitative new
feature present in the superstring effective action is the
appearance of external field strength hair for the axion
and dilaton fields [5—11]. The tree level efFective action
has been calculated up to several orders in the n' ex-
pansion. It turns out that there is no dependence on
the moduli fields at the tree level. The one-loop cor-
rections to gravitational and gauge couplings have been
calculated in the context of orbifold compactifications

of the heterotic superstring [12]. It has been shown
that there are no moduli-dependent corrections to the
Einstein term, while there are nontrivial R contribu-
tions appearing in a Gauss-Bonnet combination multi-
plied by a moduli-dependent coefFicient function. This
term is subject to a nonrenormalization theorem which
implies that all higher-loop moduli-dependent R contri-
butions vanish. It is interesting to note the existence
of singularity-free [13] solutions of the field equations
in a Friedmann-Robertson-Walker background depend-
ing crucially on the presence of the Gauss-Bonnet (GB)
term.

In the present article we extend existing treatments
[5—11] of black hole solutions in string gravity to include
moduli fields. Our action is the low energy effective ac-
tion derived in the context of orbifold compactifications
of the heterotic superstring to one loop and o.' order.
We compute to o.' order the moduli and dilaton hair to-
gether with the corresponding two-axion hair. The result,
although expected &om previous existing investigations
without the moduli fields, serves to establish even better
the qualitatively new features of string gravity in contrast
with Einstein gravity characterized by the "no-hair" the-
orem. In our action we have not introduced any potential
for the above fields, although it is likely that in the full
quantum string theory such a potential and (small) mass
are generated through nonperturbative eH'ects. Never-
theless, if the black hole size or the distance &om the
black hole is small compared to their inverse mass, the
solutions found are valid to a good approximation.

Let us consider the universal part of the efFective ac-
tion of any four-dimensional heterotic superstring model
which describes the dynamics of the graviton, gauge
fields, the dilaton S, and, for simplicity, the common
modulus fields T. At the tree level and up to first order
in n', it takes the form

S,~ —— d xQ —g ~
2B+ + 3 + —(ReS)(7ZGn —F" F„„)+ —(ImS)(R'R —FF) ~,

(o)

(S+ S)' (T + T)' 8 Gn "" 8

where

R~B = BpvwAB —4Rp, vB + B

aIld
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EF:—g""p E„Ep . (4)

In what follows we shall consider only the case of an Abelian gauge field. Note thati g~"~ = e""~ (—g) i~2. We
have chosen units such that k —= g8n G~ = 1.

The one-loop corrections give a modulus dependence to the quadratic gravitational and gauge terms that are of the
form

8,& —— d x —g o.'4 T, T RGB + n'8 T, T R'R+ n'4 T, T E""F„„+n'8 T, T EF .

The functions A(T, T), 0(T,T), A(T, T), and e(T, T) have been derived in Ref. [12] and depend multiplicatively
through a coefBcient on the supermultiplet content of the string model. Introducing the notation

S = (e~+ ia)/g, T = e +ib,

and referring to P as the dilaton, 0 as the modulus, a and b as the axions, and g as the string coupling, we can write
the efFective one-loop, O(n') Lagrangian as

ed'
Z,g = 2R+ 4(B„Q) + 4e ~(B„a) + 4(B„cr) + 4e (B„b) +n'

~
+ 4

~

RGB+n'
~

+0
~
RR

(8g2 ) (8g2 )
, f e& -l „,( a+n'

~

—,+ ~
~

F."F„„+n'
I
—,+ e

~

FF.

The equations of motion resulting from (6) are four equations for the scalar and pseudoscalar fields,

I

B„[g gB"P) = ——e (B„a) + e (RGB —F""F„„), (8)

I

B„[g ge —~B"a] = (RR —FF),

(b~) '+ 3 Eb~)

the gravitational equation

R„—2g„„R+ (ng„pg„g + g„gg„p)rI"" D~(R~~ pD„fi) —8n'Dp(R„"„~D),f2) + 4n'fs(F„F„4g„„F~Fp~)—

~
—2@

', (B.4)(B-4) + .'—g-~-(B.&)' — —(B~a)(B-a)+ 4g.-e "(B.a)'
—2s(B„o)(B„cr)+ 4g~„(B~o) —2e (B„b)(B„b)+ 4e g„„(B~b) (12)

and the equation for the gauge 6eld

1 1
B~[v' gfsF""] + — B~[v' gf4F""] = o. —

v' —g
"
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We have introduced the functions

e@ G e& Qfi=, +& f2=—,+0 f2= —,+&, f4=——,+O
8g2 ' 8g2 ' 8g2 ' 8g2

(14)

At this point we introduce the Kerr-Newman metric, the most general black hole solution of the standard Einstein
equation minimally coupled to an Abelian gauge field. It is

f'p —2Mr + q l 2 p2 2 2 2 2A sin 0(2Mr —q2) sin 0

P P

where p = r +A cos 0 A = r +42 —2M@+@ and
Z2 = (r2 + A2)2 —AA2 sin 0. A stands for the angular
momentum per unit mass and q = q + q for the total
charge of the black hole. It will be shown very shortly
that the Kerr-Newman metric satis6es our gravitational
equation (12) to O(n').

Since, as we declared in the Introduction, we plan to
determine solutions to O(a'), let us first obtain the ze-
roth order solutions for the scalar and pseudoscalar fIelds.
Introducing a rescaled axion 6eld tea = e @t9„a,we can
write the dilatonic-axion equation of motion for a Kerr-
Newman background in the form

8 t9G 1 0 . BG
(r —2Mr+A +q ) + . —sin0 —=0.

Bp OT Sin 0 00 t98

(16)

It has a general evolution of the form

a = ) P~ (cos 0) [Ai Qi (z) + BiP~ (z)],
L=O

where z = (r —M)/QM2 —A2 —q2. Imposing the black
hole boundary condition r ~ r~ or z —+ 1 forces us
to require A~ ——0, Vl. On the other hand, requiring
6niteness at r -+ oo or z —+ oo forces us to set B~ ——

0, Vl & 1. Thus only the constant solution a = Bo
is possible. Using that, the dilaton equation reduces,
to zeroth order, to the form D2$ = 0, which for the
same reasons as in the case of the axion a leads us to the
conclusion that to this order the dilaton is a constant.
Following the same procedure for the modulus and its
associated axion, we also arrive at constant zeroth order
values.

The gravitational equation to O(n') takes the form of
the minimal Einstein- Yang Mills equation

R„„g„„—4 (f )y„, ,(F„F — g„F F ).

At this point we can introduce for the gauge field the
ansatz

A = A„dx" = '
[dt —Asin 0d(p]

p2

+ [Adt —(r + A )dp]. (19)

This ansatz describes a dyon since it possesses both an
electric Q, and a magnetic Q charge. Note that for
vanishing q the gravitational equation can be satisfied
with the standard Kerr metric and there is no correction
of O(n'). In the opposite case, there must be a O(n')
correction &om the gauge sector in the metric. Thus the
charge q should come out to be O(o.'). We can easily
derive the relation

~40
q2 = n'Q2, —2[A(T, T)], g,4g2

(20)

where Q = Q2+Q . Because of the fact that the source
terms are already of O(a'), any O(a') correction to the
metric will not affect the solution for the 6elds. Also,
in the limit cr' -+ 0, with Q fixed, q2 -+ 0, and we can
use the Kerr metric [which follows from Eq. (15) if we
set q2 = 0] for our computations. For this metric we can
calculate

192M2Ar cos 0(3r —A cos 0) (r —3A cos 0)
(r2+ A2cos20)s

48M (r2 —A cos 0)[(r2+ A cos 0)2 —16r2A2cos20]
(r2+ Azcos 0)

Similarly, in terms of the A expression and the Kerr metric, we can calculate

(21)

(22)

2(Q, —Q ) [(r —A cos 0) —4A r2 cos 0] 16Q,Q Ar cos 0(r2 —A2 cos2 0)
(r2+ Azcos20)4 (r2+ A2 cos2 0)4 (23)

The horizon of a Kerr-Newman black hole is r rr = M + gM —A —q2.
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16(Q, —Q )Ar cos 8(r —A2 cos 8) 8Q,Q [(r2 —A2 cos2 8)2 —4A2r2 cos~ 8]
(rz+ Az cos28)4 (r2 + A2 cos2 8)4 (24)

Following the same procedure as with the Kerr-Newman metric, we can see that the zeroth order solutions for the
Kerr metric are still constants. The solution for the dilaton, modulus, and axion fields will be derived from the O(o. )
equations (8)—(11) setting the zeroth order solutions for the fields in the right-hand side. As a result, the kinetic
terms (B„a) and (B„b) vanish, the derivatives of 4, 0, A, and 8 are taken at the point (cr = harp, b = bp), and the
quadratic gravitational and gauge terms are given from expressions (21)—(24).

In order to proceed and obtain the O(n') solutions, we need the static axisymmetric Green's function defined by
the equation

0„[g gg""B„—G(x —y)] =—g
(25)

which for the Kerr metric becomes

8 2 2 BG 1 8 . DG
(r + A —2Mr) + —sin 8 = h(r —rp)—8(cos 8 —cos Hp) b(p —pp)Bf' Br sin 8 88 88

for a point source located at rp Op pp. Demanding 6niteness at r = r~ and at in6nity, we obtain

G(r, 8, p; rp, Hp, pp) = ) Bi(r, rp)Pi(cos f),
L=p

(27)

with

cos p = cos 8 cos 8p + sin 8 sin Hp cos(&p —
&pp) (28)

and

2l+1 ( rp —M ) ( r —M
4z-QM2

( r —M l ( rp —M
+Pi i 8 rp —r

4 +M~ —A2 J (v'Mz —A2) (29)

Using the Green s function, we can write the external dilaton solution as

OO 1 2'
P(r, 8, p) = dr p d cos 8p dip (rp + A cos 8p) G(r, 8, p; rp, Hp, pp) J'(rp, Hp, yp),

+H —1 p
(30)

where the source J is the right-hand side of Eq. (8). Similar expressions hold for the rest of the scalar and pseudoscalar
fields4 O., a, b in terms of the corresponding source terms. It is straightforward but tedious to obtain the O(o.')
expressions for these fields. The O(a') fields are

4(r, H) = 4p—
o.'e&' 1 (r —M+ v M2 —A2) 2A2 —M2 vr r

}n
i + ——arctan-

g2 A2 ( QA2+ r2 ) 2AsM 2 A

(A2 + r2)2 2A2(A2 + r2) 4AM 2

3a'Q, Q e~' (r A+ '
~

—arctan ——1
~

Pi(cos 8) + .
4AMg2 (A
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n'Q, Q &3 '(q.' —q') ~.
a(r, 8) = ao+ ——arctan —

! Po(cos8) + '
!
—arctan ——1

~AMg2 2 A& 2AM g2 A r

6n'A
g2 (M2 —A2) ( ™ A4

2A'+ Mr —M' A' —M'
2A'(A'+ r')

3M —4r~ M(M2 + r2)

2ra ( +" )

~r —M+ QM2 —A2)
QA2+ r2 )

(32)

KM, 'I 1 ~r —M + QM2 —A2 l
ln

gBrT) b
A'

(
2A +Mr Mr

2 A 2A'(A'+ r') (A'+ r')

2n'(q.'—q' ) ~ r &aO'!
3AM 2 A ~Do)

8o.'
~(r, 0) = rro + (—3

2A2 —M2

2A3M

Sn'Q, Q vr

3AM 2

r——arctan — Po (cos 8)
A

2A + Mr —M A.2 —M2 ~ r A2/M2 —A2

2A2(A2 + r2) AsM 2 A Mr~~

3M —4r„M(M'+ r')
2r~~ (A2 + r2)2 ( Brr )

4n'(Q' —Q' ) ( r A
!
—arctan ——1

!
Pq(cos 8) +.. .

3AM gA

(ao)
+

) ...b.

&@i~+ I

( (cte) 48n'A A' —M' (r —M + gM' —A2)
(r —M) 1n

qBo. ) b 3(M' —A') gA'+ r'

(33)

t'a&i+! 8n'Q, Q
3AM 2

p——arctan — Po (cos 8)
A

M(M'+ ") &a~ )
+ 2 +2r2 (A2 + r2)2 ( Bb )

+
~G)~O

T'OO&+' Ob!) ...b.

4n'(Q2 —Q2 ) ( r A—arctan ——1 ! Pj (cos 8) +
3AM qA

8n' I'M, l 1 ~r —M+ QM2 —A21
b r 8 = bo + —

l

1n
3 I, ab). b A

I gA2+r2

2A2 —M vr r 2A +Mr Mr
2AsM 2 A 2A2(A2+ r2) (A2+ r2)2

2ni(q2 Q2 ) ~ r &ae1
b)

( (88 l 48n'A A' —M' (r —M + QM2 —A2 )
( —M) 1

( ( Bb ) b 3(M2 —A2) A4 ( gA~ + r2 )
2A +Mr —M A —M2 m. r A QM2 —A2

2A2(A2 + r2) AsM 2 A Mr~~

(34)

The leading modulus and b-hair behavior is that of a monopole term analogous to the dilaton and a hair. This is
evident &om the slovr rotation limit of the dilaton solution
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n'e&' 2 ( M 4M i A
~(" ') = ~'+ ~ ~

'+ + ~ [+ 2M 2+4g' M i, 3 ') 2M ~2

(Q'.—Q' ) &Q.Q+ I (0c soo) - -pi(cos &) +
I

and the a-hair solution

12M 6M 64M )

+ 2 + 3 + 4

(35)

Q.Q-
xx(r, 8) = ap+- '- + . Pp(cos0)

g2 Mr

(Q2 Q2 )Q2

2Mr2
5A ( 2M 18M2 )1+ + [+''' P x(c os') ~'

4Mr2 g r 5r2 (36)

Note that the coefIicient functions [12] b, , 8, 6, and 0 could be such that they have an extremum at the self-dual
point op ——bp

——0. Perturbing around the self-dual solution leads to vaxushing modulus hair to O(xx'). The infinite

continuum of nonzero op bp values allows for the nonvanishing modulus and b-axion hair given by (33) and (34).
Although the existence of nontrivial dilaton, moduli, and axion fields outside a Kerr-Newman black hole seems to

violate the letter of the "no-hair theorem, " it does not violate the spirit since the solution is uniquely characterized
by mass, charge, and angular momentum. In the terminology introduced by Coleman, Preskill, and Wilczek [14], the
external moduli and dilaton hair are examples of "secondary" hair.

We thank I. Antoniadis, N. Mavromatos, and J. Rizos for illuminating discussions.
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