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Background thermal contributions in testing the Unruh efFect
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We consider inertial and accelerated Unruh-DeWitt detectors moving in a background thermal
bath and calculate their excitation rate. It is shown that for fast moving detectors such a thermal
bath does not affect substantially the excitation probability. Our results are discussed in connection
with a possible proposal of testing the Unruh effect in high energy particle accelerators.

PACS number(s): 04.60.—m, 03.70.+k

I. INTRODUCTION

It is already two decades since Hawking discovered the
striking result that quantum mechanics may induce black
holes to evaporate [1]. Many difFerent questions related
with such an efFect have been clarified since that time,
and a number of other ones are presently under investi-
gation [2]. The so-called Unruh efFect [3,4] has played an
outstanding role in emphasizing some of the exquisite fea-
tures present in the Hawking effect. According to the Un-
ruh effect, a detector uniformly accelerated through the
inertial vacuum responds as being in a thermal bath char-
acterized by a temperature proportional to its proper ac-
celeration. We call inertial vacuum the no-particle state
as described by a family of observers following an inertial
timelike Killing field le in Minkowski space. The Unruh
effect is a direct consequence of the fact that the particle
content of a field theory is very frame dependent [3,5].
Later, Bell and Leinaas [6] raised the very interesting
possibility of interpreting the observed depolarization of
electrons in particle accelerators in terms of the Unruh
effect. They argued that electrons could be used as sen-
sitive thermometers because of the fact that the coupling
between the spin and the magnetic field induces a split-
ting between the "spin up" and "spin down" levels. Thus,
the observed depolarization of electron beams might be
interpreted in the electron's rest &arne because of the
thermal bath predicted by Unruh. Since electrons in lin-
ear accelerators do not have time to reach equilibrium in
the polarization distribution, Bell and Leinaas decided
to consider electrons in storage rings [6]. In this case,
ultrarelativistic electrons following uniform circular mo-
tion experience in their rest &arne an "effective" thermal
bath characterized by a temperature which differs &om
the original Unruh temperature by a numerical factor
m /~3 [7,8]. Although other efFects [9] may play an impor-
tant role in this phenomenon, Bell and Leinaas' results
can be used to analyze the depolarization phenomenon
apart &om Thomas precession contributions. At condi-
tions reached at the CERN e+e collider LEP, electrons
are typically accelerated at a = 2.9 x 10 sm/s2, which
corresponds to an Unruh temperature of ha/2m ck = 1200
K. This is only 4 times larger than typical laboratory
temperatures. In this vein, it would be desirable to con-
sider a detector accelerated in a background thermal bath

rather than in the inertial vacuum in order to investigate
in what extent finite-temperature corrections should be
taken into account when testing the Unruh effect un-
der real laboratory conditions. The detector excitation
will represent the electron depolarization, since both ones
share the common feature of being two-level systems [6].
We show that in real accelerator conditions the major
contribution to the detector's response comes &om the
inertial vacuum rendering the contribution because of the
presence of the background thermal bath unimportant.
It corroborates the usual assumption, when testing the
Unruh effect in storage rings, of considering the electrons
as being accelerated in the Minkowski vacuum [6,10].

The paper is organized as follows: In Sec. II we study
inertial detectors evolving in a background thermal bath
and show that because of time dilatation the faster the
detector moves, the less it interacts with the thermal
bath. In Sec. III we replace the inertial detectors by uni-
formly accelerated ones, and calculate finite-temperature
corrections in the detector's excitation rate because of
the external thermal bath. In Sec. IV we consider de-
tectors moving circularly with constant speed, and dis-
cuss our results in connection with the proposal of test-
ing the Unruh effect in storage rings. Final conclusions
are summarized in Sec. V. Natural units will be used
(h = c = k = 1) unless stated otherwise, and the signa-
ture adopted is (+ ———).

II. INERTIAL DETECTORS
IN A BACKGROUND THERMAL BATH

We will show in this section that the faster a detector
moves in a background thermal bath the less the detector
interacts with the bath. This i.s so because time dilata-
tion induces a fast moving detector to interact prefer-
entially with low frequency modes. Although a thermal
bath is rich of low frequency modes, the phase space vol-
ume element (oc io dio) suppresses infrared contributions.

Let us begin considering an Unruh-DeWitt detector
[3,11]. It is basically a two-level device which may be
either in the ground state ~Eo) or in the excited state
~E). The detector will be described by a monopole m(r)
coupled to a massless scalar field P(x") through the in-
teraction action
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where z"(r) is the detector's world line and 7 is its proper
time. Here c(~) is a switching function through which
the detector is turned on or off, and plays the role of
a small coupling parameter. In this section it will be
enough to consider a permanently switched on detector,
i.e., c(w) = co ——const. In the Heisenberg picture the
monopole operator is time evolved as

Pexc

Tfo(

m(w) = e' ' m(0)e (2.2)

where HolE) = EIE) for any detector's energy eigenstate
IE) .

The amplitude for the detector to be excited and si-
multaneously absorbing a particle lk) is

(2.3)

FIG. 1. The excitation probability of an inertial detector
moving with speed v in a thermal bath characterized by a
temperature P is plotted. Faster the detector moves less it
interacts with the thermal bath. Here we have chosen arbi-
trarily P = 2.5 x 10 s, and AR = 9.7 x 10 s

Using the expansion of the scalar field in plane waves
(see, e.g. , [12]), and assuming that our detector follows
an inertial world line x = y = 0; z = vt; t = ~/gl —v2

(where v = lvl is the detector's speed with respect to the
background thermal bath), we obtain

gexc +2
p

Ttot 2' e~+E 1 ' (2.7)

cp M —kzv

+4vr~ /1 —v' (2.4)

where AE = E —Eo, and tu = lkl. We will assume the
selectivity (Elm(0) IEo)—:1 since it only depends on the
internal details of the detector, and it can be always fac-
tored out. The amplitude for the detector to be excited
and simultaneously emitting a particle into the vacuum
vanishes because of energy conservation. Thus, at the
tree level, the total excitation rate per total proper time
T of the detector will be

as expected, while as v ~ 1 the excitation rate per total
proper time vanishes (see Fig. 1). This suggests that in
testing the Unruh effect in ultrarelativistic regimes as in
particle accelerators [6,10], background thermal contri-
butions should be small. This issue will be investigated
in detail in Sec. IV.

III. UNIFORMLY ACCELERATED DETECTORS
IN A BACKGROUND THERMAL BATH

pexc
+tot , , f d k~iA'~'. ~i' (2.5)

where T t = 2vrb(0) [12], and we have added into brack-
ets the usual absorption weight associated with a thermal
bath at a temperature P

As a consequence of (2.4), fast moving detectors will
only interact with low frequency modes. The very be-
havior of the detector will be determined in (2.5) by the
competition between the thermal bath, which is rich of
low &equency modes, and the phase space volume ele-
ment (oc ur du) which tends to suppress infrared contri-
butions. Substituting (2.4) in (2.5), and performing the
integrations, we obtain

Before analyzing the most interesting case of circu-
larly moving detectors, let us investigate the response of
a uniformly accelerated detector in a background ther-
mal bath. By uniformly accelerated detectors we mean
linearly accelerated detectors with constant proper accel-
eration. The total excitation probability for a detector
evolving in a background thermal bath characterized by
a temperature P can be written as [13]

+OO +OO

P = d'rc(r) dr'c(r') e

Pexc c2P—1+1 v2 1 e
—P&K/1+v/v 1—v

ln
e —P&E+i—v/gl+v

x Gp+ [z"(~), x"(~')],

where

Gp [*"(~) *"(&')]

(3.1)

(2 6)

In the limit v + 0 the detector responds with a Planckian
spectrum

(4~2)-'
(t —t —'pn —ze)n= —OO

(3.2)
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is the Wightman function, z~(w) is the world line of the
accelerated detector, and w is its proper time. The world
line of a detector moving in the z axis with constant
proper acceleration a is

1. 1
t = —sinhav, z = —cosh a7, x = y = 0. (3.3)a a

Substituting (3.3) in the Wightman function (3.2) we ob-
tain

a2 +~ 1G+ ~, ~' =—
16vr [sinh ada/2 + i(nba —e)e &/2] [sinh ah, 7/2 + i(nPa —e)e &/2]

' (3.4)

where A7—:v —w', and (—:(w+ w')/2. Using the identity (the prime indicates that n = 0 is excluded from the sum)

1 2 . 1 2 . 1

(A + iBn) (A + iCn) C(C —B) ~ (A /C + n ) B(C —B) (A2/B2 + n2) ' (3.5)

in conjunction with [14] The erst term in (3.7) corresponds to the pure vacuum
contribution [13]:

1 1= —cothex-):., +„,=, 2X2'
n=1

we can cast (3.4) in the form

(3.6)
Q2

G+, (Aw) = — sinh (aA~/2 —ie),
16m2

(3.8)

Gp (~, ~') = G„+,(Av) + G,+„„(A~,(). (3.7)
while the second term corresponds to the background
thermal bath contribution

Gt'~., (&~ ~) = a a 2vr sinh(aAw/2) 2vr sinh(a47 /2)sinh aA~ 2 coth —coth
16vr 167rP sinh a( sinh(aAw/2) aPe aPe~&

(3.9)

The fact that G&& depends on ( reflects the fact that this is a nonstationary situation. Notice that G~& (D7, () does
not diverge at any point. In particular Gt+&„(b,7. = 0, () = 1/12P . Asymptotically Gth„(A&, () behaves as (see Fig.
2)

G,+„.,[I&~l)) (a ', &), (1-e ' ~, G+ [Wr go, I(l)) (a-', P)]-e- ~~~. (3.10)

e02 AE
(3.11)

Notice the linear dependence with To (see Fig. 3), which

Clearly, Gt+h„vanishes in the limit P ~ +oo, and thus
Gp+ + (~, ~') = G+, (A~).

Now, we are ready to investigate the total excitation
rate, P ' = 7 ~~; + Pthe'„of a detector uniformly accel-
erated in a background thermal bath. Here, we shall
consider the detector as being switched on only dur-
ing a finite period of proper time ~7~ ( Trj/2, where
To ——const g K+. Concerning the pure vacuum con-
tribution 7, it could be calculated for some continuous
c(7.) by letting (3.8) into (3.1). Notwithstanding, we will
use directly the results of Ref. [15] where the calculations
were performed in the detector's rest frame. The exci-
tation probability for a detector uniformly accelerated
in the inertia/ vacuum, and kept switched on for long
enough, To ))a,LE, is

exc 2
&~ter = ~0

+Tp/2

Tp /2

+Tp/2
G+ (~ g)

—Tp /2

(3.12)

where we have already considered the fact that the de-
tector is kept switched on only during a finite amount
of proper time Tq. The integrals above were solved nu-
merically for the arbitrary values QE = 9.7 x 10 s
a = 9.7x 10 s i, P = 2.5 x 10 4 s (see discussion in the

is exactly what one should expect due to the Unruh effect
[13]. Here co ——const is the coupling constant between
the field and the monopole while the detector is kept
switched on. In the regime considered above, the detailed
form of c(w) is not i.mportant. The only restriction is
that e(7) g C, since discontinuities in c(7 ) would result
in ultraviolet divergences [15].

The thermal correction 7 th,', on the pure vacuum term
(3.11) will be obtained by introducing (3.9) in (3.1),
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FIG. 2. G+z (B,T, () is finite everywhere, and asymptot-
ically it decreases exponentially except along the ( axis on
which it is constant. Notice that G,h„(Ar, () is completely
symmetric in the other quadrants. Here we have chosen arbi-
trarily P = 2.5 x 10 s, and a = 9.7 x 10 s

FIG. 3. 7 „'", and P,h', are plotted as a function of To. 7 '"',
which is represented with a full line, increases linearly for
large To, while V,i"„'„which is represented with a dotted line,
increases much slower. This is a consequence of the fact that
G,+h„decreases exponentially for large To, except along the
"monorail" A7. = 0. Eventually, it reBects the fact that faster
the detector moves with respect to the background thermal
bath, less the detector interacts with it. Here we have chosen
P = 2.5x10 s, a = 9.7x10 s, and b,E = 9.7x10 s

next paragraph), and plotted as a function of TQ in Fig.
3. It is clear from this figure that the pure vacuum con-
tribution P"; increases with To much faster than the
background thermal contribution Pt'h', . Actually, the
background thermal bath is only important in a transient
initial period when the velocity of the detector is small.
This is a consequence of the fact that Gth, decreases ex-
ponentially for large TQ (see Fig. 2), except along the (
axis. The situation above is clearly nonstationary. Even-

tually, Fig. 3 just refIects the fact that faster the detector
moves less it interacts with the background thermal bath
as discussed in Sec. II. In order to obtain a closed form to
the background thermal contribution 'Pt&,', when P is
small, we can expand Gt+&„(Ar, () in terms of P factors.
For this purpose, we have used Eq. (1.411.8) of [14] in
(3.9) obtaining

+ 1
~

(47r) B2~ sinh (aAw/2) sinh[(2n —1)a(]
teer (2rt)!a2 2P sinh a(n=2

(3.13)

where B are the Bernouili numbers, and p
2a ~e & sinh(a47/2) ~. Substituting (3.].3) in (3.12)
gives, up to first order,

bET 2
ther Q

The values of AE, a, and P used above were arbi
trarily chosen in this section just to illustrate the role
played by the background thermal bath in linearly ac-
celerated detectors. Nevertheless, as explained below,
they will have a clear physical motivation in the next
section, where we analyze detectors moving circuLarly.
Electrons in particle accelerators have their spin cou-
pled to the magnetic field. It induces a splitting of the
"spin up, " and "spin down" levels. The energy gap as-
sociated with such a splitting is AE = 2~ p) (B~, where
p, = e/2m, is the electron's magnetic inoment (it is as-
suined the gyromagnetic factor to be g = 2), and B is
the magnetic field. Following [6] we consider the de-
polarization of an accelerated electron as representing

[

the excitation of the detector, since both ones share the
common feature of being two-level systems. Apart &om
Thomas precession contributions more detailed calcula-
tions are not supposed to change the order of magnitude
of the results obtained, and consequently our conclusion
that the depolarization of accelerated electrons is usu-

ally a vacuum effect rather than a background thermal
bath effect. At LEP cond. itions an electron has a typical
Lorentz factor of p = (1 —vz) ir 2 = 10s, and proper ac-
celeration of a = 2.9 x 10zsm/ s2, which corresponds to
a = 9.7 x 10 s in natural units. The energy gap be-
tween the two spin levels is b,E a = 9.7 x 10 s i [6].
The lab time for building up the polarization is about 2 h,
which corresponds to 7.2 x 10 s in the electron's proper
time. Finally, the background thermal bath has a tem-
perature corresponding to P = (300 K) i = 2.5 x 10
s. It is also interesting to give an approximate numerical
value for the coupling constant co. Although co does not
affect the relative contributions of the background. and
Unruh thermal baths, it does determine the overall exci-
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tation rate. In order to obtain a physical estimate for cp,
we compare the depolarization of an accelerated electron
at zero temperature coupled with an electromagnetic field
as obtained in Eq. (24) of [6] with our Eq. (3.11). This
leads us immediately to

where

Dp (A7)=. D+, (A7 ) + D~+„,(A~),

D+..(S~) = (4~')-' —q'(A~ —ie)'

+4v p sin (aAw/2vp)/a

(4.2)

(4.3)

= 10 (3.15) and

where e, m is the electron's charge and mass, respec-
tively. The important point to notice here is that cp (( 1,
which corroborates our tree-level calculations.

Before finalizing this section, we recall the importance
that the Unruh efFect may have in hadronic physics. It
may be possible that the large acceleration present in
some heavy-ion processes induce the appearance of a rel-
evant Unruh thermal bath in the rest kame of the in-
volved particles producing observable effects. Barshay
and Troost [16], for instance, suggested that the large
transverse acceleration of projectile and target which oc-
curs in high-energy hadronic collisions is connected with
the thermal emission of particles at Unruh temperature
of about 100 MeV 10 K. Other recent papers suggest-
ing the possible relevance of the Unruh effect for quarks
can be also found [17]. Quarks in bag models can be
seen as having a high acceleration corresponding to an
Unruh temperature of about 140 MeU. Our results sug-
gest that the background thermal bath may be neglected
in these cases. This is so because in the typical regions
where heavy ions (or quarks) are free, they have small ac-
celeration, and high velocity. Thus, in this regime both
the background and Unruh thermal baths are not im-
portant. In the region where the heavy ions (or quarks)
interact, the acceleration is very high corresponding to
an Unruh temperature of 10 K. Since in the "moment"
of the interaction the typical velocities are small, we can
compare the Unruh temperature above, 10 K, directly
with the background temperature of 300 K. This corrob-
orates the usual procedure of neglecting the background
thermal bath in these cases. Although some points like
whether the heavy ions (and quarks) have time to ther-
malize in the Unruh thermal bath deserve a more careful
investigation, the results obtained so far are stimulating.

IV. CIRCULARLY MOVING DETECTORS IN A
BACKGROUND THERMAL BATH

Now, let us analyze the most favorable case to identify
observable effects due to the existence of the Unruh ther-
mal bath: circularly moving detectors. The world line of
a detector describing a circular motion with radius B and
constant speed v is

t = pw, x = Bcoscup7, y = Rsinupr, z = 0, (4.1)

where w = v/B. The proper acceleration of the detector
is a—:pa~a& = v p /B, where a& = u"9'„u".

Substituting (4.1) in (3.2), and using (3.5) and (3.6) we
decompose the relevant Green function again in a pure
vacuum part and in a background thermal part as

( 4v sin (AA7/2v) —1A24~2
1 1

4~2p2A~2 (
+AORS~

+4". (~~:)2.) ("'"
l( 2v2 AD&)

x~ 1 — sin
~

—(v~ —v)AAr 2v )
(4.4)

Dt+h. ,(&&) =—

—a'Av-'/12+ O(p ')]. (4.5)

Substituting (4.5) in (3.1), we obtain, for p )) 1,

pexc C Ge ~12&&/a
vRc ~ 0

4vr ~12
(4.6)

which was first obtained in [7]. Thus at LEP we expect
d'P'";/dT 7.0 x 10 co. We can also obtain an ap-
proximate physical value for the coupling constant co by
comparing (4.6) with Eq. (10) obtained by Jackson [18]
for electrons circulating in the vacuum. This leads us to
the value cp 10 as in Sec. III.

In order to compare the vacuum contribution (4.6)
with the average thermal contribution, d'Pth, ', /dT, we
substitute (4.4) in (3.1) obtaining

gpexc +~
ther c2 d(QT) e ~AEA~D+ (Q&)dr ther (4 7)

Evaluating numerically this expression with LEP values
we obtain d'Pt'&,', /dT 3 x 10 c20. Thus, after the equilib-
rium in the polarization distribution is reached the pure
vacuum contribution is expected to be about 3 orders of
magnitude larger than the background thermal contribu-
tion.

Before concluding, we notice that for "quasi-inertial"
detectors, i.e. A && 0, LE, the background thermal con-
tribution for circularly moving detectors (4.7) can be ap-

Here A = a/p, and 0 = p/P play the role of an efFective
proper acceleration, and an effective background tem-
perature, respectively. D~&„(Aw) is finite everywhere.
In particular, lim~ ~o Dt+h„(Aw) = 1/12P . Asymptoti-
cally, D~&„(K7 )) 1) (4n p Aw ) . This guarantees
that the detector's response per unit time is Gnite. The
fact that D+ does not depend on ( reflects the fact thatP
this situation is stationary.

In order to calculate the average vacuum excitation
rate, d'P„'";/dT, for ultrarelativistic detectors it is conve-
nient to express (4.3) as

D+.(a~) = (4~')-'[—(ar —i~)'



52 BACKGROUND THERMAL CONTRIBUTIONS IN TESTING THE. . . 3471

proximated by the background thermal contribution for
inertial detectors (2.6). (Notice that these two situations
are stationary in contrast with the linearly accelerated
one. ) In particular, in the limit A -+ 0, (4.7) turns out
to be exactly (2.6). This is a consistency check for the
results obtained in Secs. II and IV. This is so because
a detector moving with some Rnite velocity v, but with
A —+ 0, means that it is circulating in a ring with arbitrar-
ily large radius. In this case, we must expect the detector
to behave as an inertial detector moving with the same
velocity v, as we have indeed obtained. At LEP condi-
tions we have A = 9.7 x 10 s, 0 = 4.0 x 10 s, and
LE = 9.7 x 10' s . Since A &( O, LE, as required to
consider the detector as "quasiinertial, " one could have
used directly (2.6) to estimate the average thermal con-
tribution obtaining d'P~h,', /dT = 2.9 x 10 co2.

V. CONCLUSION

through the Unruh effect, i.e., because of the appearance
of a thermal bath in the electron's rest &arne of about
1200 K. In their analysis it is assumed that the electrons
are accelerated in the inertial vacuum. We have esti-
mated whether considering the fact that the electrons
are actually accelerated in a background thermal bath of
about 300 K would add or not any substantial contri-
bution in the depolarization rate. We obtain under LEP
conditions the interesting result that although the Unruh
thermal bath is only about 4 times hotter than the back-
ground thermal bath, the term 'Pth,', because of the exter-
nal bath is various orders of magnitude smaller than the
pure vacuum contribution 'P„'";. Concerning the proposal
of testing the Unruh eKect in storage rings, it corrobo-
rates the usual assumption of considering the electrons as
being accelerated in the inertial vacuum [6,10]. Accord-
ing to our results background thermal corrections will be
only relevant in nonultrarelativistic situations with mod-
erate acceleration.

We have derived the response of inertial and acceler-
ated detectors in a background thermal bath. Faster the
detector moves, less important will be the background
thermal bath. This is so because time dilatation in-
duces the detector to interact only with the low &equency
modes present in the bath. Although the thermal bath is
rich of low frequency modes, the phase space volume ele-
ment suppresses in&ared contributions in the excitation
probability. Bell and Leinaas suggested that the depo-
larization of electrons in storage rings could be explained
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