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Static black hole solutions without rotational symmetry
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We construct static black hole solutions that have no rotational symmetry. These arise in theories
(including the standard electroweak model) that contain charged vector mesons with mass m g 0.
In such theories, a magnetically charged Reissner-Nordstrom black hole with a horizon radius less
than a critical value of order m is classically unstable against the development of a nonzero vector
meson Geld just outside the horizon, indicating the existence of static black hole solutions with
vector meson hair. For the case of unit magnetic charge, spherically symmetric solutions of this
type have previously been studied. For other values of the magnetic charge, general arguments
show that any new solution with hair cannot be spherically symmetric. In this paper we develop
and apply a perturbative scheme (which may have applicability in other contexts) for constructing
such solutions in the case where. the Reissner-Nordstrom solution is just barely unstable. For a
few low values of the magnetic charge the black holes retain a rotational symmetry about a single
axis, but this axial symmetry disappears for higher charges. While the vector meson Gelds vanish
exponentially at distances greater than O(m ), the magnetic field and the metric have higher
multipole components that decrease only as powers of the distance from the black hole.

PACS number(s): 04.40.Nr, 04.70.Bw

I. INTRODUCTION

One of the many remarkable features of black holes
is the symmetry and simplicity of the time-independent
black hole solutions. The static vacuum black holes are
all spherically symmetric and determined by a single
parameter. Adding electromagnetism gives the possi-
bility of endowing the black hole with electric or mag-
netic charge, but the static solutions remain spherically
symmetric, with purely Coulomb electromagnetic fields.
Even if one considers solutions that are stationary, but
not static, a rotational symmetry about one axis remains.
This situation stands in contrast with that of electromag-
netism in fiat spacetime, which possesses static (even if
singular) solutions corresponding to point multipole mo-
ments of arbitrarily high order. An explanation for the
absence of static gravitational solutions with higher mul-
tipoles comes &om the no-hair theorems [1] that sharply
constrain the possible structure of black holes both in
the electrovac case and for gravity coupled to a number
of types of matter.

However, it has become clear in recent years that if the
theory governing the matter fields has sufBcient struc-
ture, it is in fact possible to have black holes with non-
trivial static fields outside the horizon; i.e., black holes
with hair. In particular, theories with electrically charged
massive vector mesons can have two types of magnetically
charged [2,3] black hole solutions. One is the trivial gen-
eralization of the Reissner-Nordstrom solution to the cou-
pled Einstein-Maxwell equations. The other, which exists

For other types of black hole solutions in theories with mas-
sive vector inesons, see Ref. [4].

only if the horizon radius is suFiciently small, has nonzero
massive vector fields just outside the horizon. For the
case of the SU(2) gauge theory with a triplet Higgs field,
which has a nonsingular magnetic monopole solution in
Hat spacetime, one finds a new solution with unit mag-
netic charge that may be viewed as a Schwarzschild-like
black hole embedded in the center of a 't Hooft —Polyakov
monopole [5]. Although this solution was first found
directly, a signal of its existence is the fact that the
Reissner-Nordstrom black hole develops a classical insta-
bility when its horizon radius becomes smaller than the
radius of a magnetic monopole core [6].

Siinilar arguments [7] based on instabilities of Reissner-
Nordstrom solutions suggest the existence of new black
hole solutions with higher magnetic charges. However, in
the presence of a magnetic monopole a spherically sym-
metric charged spin-one field is possible [8,9] only if the
product of the magnetic charge of the monopole and the
electric charge of the field is unity. Hence, these new
black holes can be at most axially symmetric. Whether
or not they actually possess such symmetry is a question
not of general principle, but of detailed dynamics. In this
paper we will show that, at least for certain ranges of pa-
rameters, such black holes have no rotational symmetry
at all.

This follows from the absence of vector spherical harmon-
ics with total angular momentum zero. The absence of such
harmonics can be understood by considering the motion of a
particle with electric charge e about a monopole with mag-
netic charge QM. The total angular momentum is the sum of
the spin angular momentum, the orbital angular momentum,
and a contribution of magnitude eQ~ directed along the line
from the monopole to the charge; if eQM g 1, the sum of
these three terms can never vanish.
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A theory with sufficient structure to yield these new
black holes has matter fields described by the fiat-
spacetime Lagrangian

/pl/ ~i' ~pl/ 2~iic ~gL

F""(W„'W—W„'W„)

Ae2
/

W„'W„—W„'W„f

where

(1 2)

D„W„=(8„—ieA„)W„. (1-4)

Egg = —sin 0g
e

corresponding to a magnetic charge Q = q/e (where q is
restricted by the Dirac quantization condition to integer
or half-integer values) and vainshing W field. The metric
is

ds = B(r)dt + B (r—)dr + r (d8 + sin 8 dP )

(1 6)

with

2MG 4vrGq (r —r~) (r —r )B r = 1 — + = . 1.7
r e2r2 r2

We choose the mass M to be such that the outer hori-
zon radius r~ is less than r„,the critical value for in-
stability. It is in this mass range that we expect there

The fourth term in the Lagrangian is an anomalous mag-
netic moment term, with the constant g arbitrary. In
order that the energy be bounded &om below, we must
require that A & g2/4 [7].

If we add to the theory a neutral scalar field P with
appropriate self-interactions and give the vector field a
+dependent mass m = eP, then for g = 2 and A = 1,
Eq. (1.1) is simply the unitary gauge form of the La-
grangian for an SU(2) gauge theory spontaneously bro-
ken to U(1) by a triple Higgs field. Similarly, for g =
2, A = 1/ sin 8~, and m = eP/2 we obtain the unitary
gauge form of the standard electroweak Lagrangian, but
with all terms involving the Z or fermions omitted. It
is a straightforward matter to extend the analysis of this
paper to such models.

We are seeking static black hole solutions to the the-
ory obtained by coupling the Lagrangian of Eq. (1.1) to
general relativity. In the absence of rotational symme-
try, the static field equations are a set of coupled partial
differential equations in three variables. An exact ana-
lytic solution of these is beyond our abilities. Instead, we
use a perturbative approach. We begin by considering a
Reissner-Nordstrom black hole with radial magnetic field

II. A TOY MODEL

Consider a real scalar Geld whose dynamics is governed
by the Lagrangian

8 = ——(8„$)——F(~)P
1 2 1 2 A 4

2 4
(2 1)

where E(w) arises &om the coupling to a spatially inho-
mogeneous but static external source. Static solutions
obey

0 = [
—V'+ E(~)]P+ AP'

= MP+ AP (2.2)

and, to have Gnite energy, must satisfy the boundary
condition that P vaiush at spatial infinity.

The trivial configuration P(z) = 0 is a solution for
any choice of E(w). It is easy to see that this is the only
static solution if M is a positive operator. However, if~
has negative eigenvalues, this trivial solution is unstable,

to be a second black hole solution with nontrivial TV

field and with electromagnetic field strengths and metric
that di6'er &om the Reissner-Nordstrom form. It is of-
ten the case that the exponentially growing eigenmodes
about an unstable static solution give a good indication
of the nature of a nearby stable solution, particularly in
the case where the original solution is just barely unsta-
ble. Guided by this intuition, we linearize the static field
equations about the Reissner-Nordstrom solution. This
leads to an eigenvalue problem that is closely related to,
although not exactly the same as, that encountered in
the stability analysis [10]. For rH close to r„,there is
a single negative eigenvalue, whose magnitude tends to
zero as rH ~ r„.With r„—rH sufBciently small, this
eigenvalue becomes a small parameter that can serve as
the basis for a perturbative expansion.

In Sec. II, we illustrate our method with a simple toy
model consisting of a scalar Geld coupled to a Gxed, but
spatially inhomogeneous, external source. In Sec. III,
we set up the formalism for treating the case in which
we are actually interested, that of a black hole in the
theory described by the Lagrangian of Eq. (1.1). We
assume that Gm2/e2 is small; this allows one to solve
(to leading order) for the charged vector field and the
perturbations of the electromagnetic field before dealing
with the metric perturbations. For technical reasons, it
turns out that the details of the subsequent analysis are
considerably simpler if g is positive and q & 1. We ex-
ploit these simplifications in Sec. IV, where we determine
the leading perturbations of the electromagnetic Geld in
terms of those of R'&. In Sec. V we examine the low-
est order contributions to the charged vector field and
show that there is a parameter range for which the solu-
tion is not even axially symmetric. In Sec. VI we obtain
the leading corrections to the Reissner-Nordstrom met-
ric. Some concluding remarks are included in Sec. VII.
An appendix describes some results needed to construct
Green's functions that we use.
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implying the existence of a new, spatially inhomogeneous,
solution whose form we seek. To this end, let us assume
that M has only a single negative eigenvalue, with an
eigenfunction @ obeying

tional equation

BI
ak (2 9)

b—Q (2 8)
Wllel'e

and normalized so that

(2 4)

I= dz —k M + —k
2 4

= —-k'b' ~ — d'x(k@ + P)' .
2 4

(2.1o)

&(&) = k@(&) + &(&) (2.5)

d'x g(x)P(x) = 0 . (2.6)

The static field equation (2.2) then implies that

We now write P as the sum of a term proportional to
@ and one orthogonal to it; i.e. ,

Thus far we have made no approximations; together,
Eqs. (2.7), (2.8), and (2.9) are completely equivalent
to Eq. (2.2). We now recall that if b = 0 the scalar
field P, and therefore k and P, must vanish. Hence, for
small b it should be possible to expand these quantities as
power series in b. Furthermore, since it is the existence of
the negative eigenvalue which makes a nontrivial solution
possible, we may view k@ as providing the source for P
[through Eq. (2.7)]. We therefore expect that P is of
higher order in b than k@. Assuming this to be the case,
Eqs. (2.9) and (2.10) give

Wy+ X(k@+y)'+ r@ = o, (2.7) b2
- - —1

k' = — d'x v)4(x) + O(b ),
A

(2.11)

I' = —A d3x k (2.8)

where I' is a Lagrange multiplier that enforces. the orthog-
onality condition (2.6). It can be calculated by multiply-
ing both sides of this equation by i)'d and then integrating
over all space to obtain

+ O(b') .

while Eq. (2.8) implies

I'= —Ak d z ~ +Ob

b3
- —i/2

f d'x d'(x)
W

(2.12)

Variation of the action with respect to k gives the addi- These may be substituted into Eq. (2.7) to give

ddt(x) = —bb d (x) —Q(x) f d yd (y) + O(b4)

b3
- - —3/2

d'( ) d'( ) —d'( )fd yd (y) +O(b). (2.18)

This shows that P is of order b, and justifies the as-
sumption above that it is of higher order than kg. Thus,
to leading order the static solution is approximated by
the negative eigenvalue fIuctuation about the vacuum
solution, multiplied by a scale factor whose magnitude
is determined by the nonlinear term in the Lagrangian.
By substitution of the lower order results back into the
original equations, k and P, and hence P itself, can be
calculated to arbitrarily high order in b.

III. CHARGED VECTOR MESON MODEL

We now apply this method to the theory in which we
are actually interested, namely that described by the La-
grangian of Eq. (1.1). The first step is to identify the un-

stable (i.e., exponentially growing in time) modes about
the unperturbed Reissner-Nordstrom solution. This was
done in Ref. [10], whose results we now briefly summa-
rize. When the field equations are linearized, the pertur-
bations in the gauge field and the metric decouple &om
those in the massive vector field. The linear perturba-
tion problem for the former two modes is the same as
in the pure Einstein-Maxwell theory, where it was shown
some tiine ago [ll] that the Reissner-Nordstrom solution
is stable. Hence, the stability analysis reduces to a study
of the linearized TV Beld equations. It is convenient to
define M~ by

~""W = — D (~yW ")+ m W"1

F "R' (3.1)
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where here, and for the remainder of the paper, we adopt
the convention that g„„,A„,and E„„denotethe corre-
sponding unperturbed quantities while D~ is the gauge
covariant derivative taken with respect to the unper-
turbed potential; indices are raised and lowered with the
unperturbed metric. The unstable modes are solutions
of

M„"TV„=0
whose time dependence is of the form

(3.2)

W„(x,t) = f„(x)e' (3.3)
with real ~. The spherical symmetry of the unperturbed
solution allows one to choose the solutions of Eq. (3.2)
to be eigenfunctions of both J2 and J, where J is the
total angular momentum operator. Because of the ex-
tra angular momentum of an electric charge in the field
of a magnetic monopole, the corresponding eigenvalues
are not the usual ones. Instead, J runs in integer steps
upward &om the minimum value J;„=q —1, unless

q = 1/2, in which case J;„=1/2. For each value of J,
unstable modes exist if the horizon radius rH is less than
a critical value r„(J)that is of order m i, provided that
g lies in an appropriate range (g ) 0 for J = q —1, g ) 2
for J = q, andeitherg (Oorg ) 2 for J ) q). For
a given value of g, r„(J)is greatest for the smallest J
that can have unstable modes with that g. Thus, if J
denotes the value that maximizes r„,we have J = q —1
for g ) 0 and J = q + 1 for g & 0 and q & 1. If q = 1/2,
J = 1/2 if g ) 2 and 3/2 if g & 0; if 0 & g & 2, there is
no instability.

The modes that will form the basis for our new solu-
tions are the static eigenfunctions of M with negative
eigenvalue; i.e., the time-independent solutions of

M„"@„=—P m Q„ (3.4)
with real P. (A factor of m2 has been extracted to make

P dimensionless. )
This eigenvalue equation must be supplemented by

boundary conditions. At spatial infinity we merely re-
quire that @„notdiverge. For negative eigenvalues (in-
deed for all eigenvalues less than mz) this implies that
vj„in fact vanishes as r -+ oo. A second boundary con-
dition is obtained at the horizon, where we require that
g„beregular, in the sense that its components measured
relative to a coordinate system that is nonsingular at the
horizon (e.g. , Kruskal-like coordinates) be regular. Be-
cause of the manner in which the singular metric factors
enter Eq. (3.4), this constrains the behavior of vf„near
the horizon, as we will see more explicitly in the next
section, and causes the spectrum of negative eigenvalues
to be discrete. For this portion of the spectrum, we can
require that the eigenfunctions satisfy the normalization
condition4

(3.5)

(3.6)

Thus, by taking r~ —r„(J)(& r„(J),we ensure that
P « 1, thus providing the small parameter needed for
our perturbative calculation.

In general J is nonzero, so that, in contrast to the
model of Sec. II, in which there was only a single nega-
tive eigenvalue mode, there is a degenerate multiplet of
negative eigenvalue solutions Q„ to Eq. (3.4) that are
distinguished by the eigenvalue of J . Proceeding as in
that section, we write the W field as a linear combina-
tion of the unstable modes plus a remainder orthogonal
to these modes:

J
W„=V„+W„=m~ ) k~@„+W„,

M= —J
(3.7)

where

where, both in this equation and hereafter, the spatial
integration is understood to be restricted to the region
outside the Reissner-Nordstrom outer horizon.

Because of both the nontrivial metric component git (r)
and the possibility of a nonvanishing R'q in the time-
dependent case, the eigenfunctions @„arenot in general
the same as the f„that appear in Eq. (3.3); the spectra
of the u and P are not even the saine. However, a zero
eigenvalue for the static operator does correspond to a
zero &equency of the small oscillation problem and, fur-
thermore, the static problem has negative eigenvalues if
and only if the Reissner-Nordstrom solution is unstable.
Hence, the conditions for instability enumerated above
are also the conditions we need to be able to construct
our new solutions.

In fact, the static eigenmodes for real P can be obtained
from the u = 0 solutions of Eq. (3.2) with different val-
ues for the parameters. This can be seen by bringing the
right hand side of Eq. (3.4) over to the left; the resulting
equation is precisely that satisfied by f~(x) for ur = 0,
but with m2 replaced by m2(1+ P2). It follows that the
value of r~ that leads to a given P for W mass m is
equal to the critical value r„for a W mass m/1 + P2.
If m (& Mpi (the case with which we will be primar-
ily concerned), r„is much greater than the horizon size
for an extremal Reissner-Nordstrom black hole and its
dependence on the inner horizon r can be neglected.
Dimensional arguments then show that r„is inversely
proportional to m. It then follows that

It might seem strange that the nature of the spectrum
should be determined by the singularities of a metric at a
horizon that is only a coordinate singularity. This happens
because the condition we are imposing on the eigenfunctions,
that they be static, is de6ned in terms of a coordinate t that
is singular at the horizon.

Since, as is easily shown, static solutions of Eq. (3.4) must
have Qq ——0, g„g"is positive.

d x vg (@„)'W"=0.

It is useful to define a quantity a by

J
) fkM/ = a2

M= —J

(3.8)

(3 9)
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so that

V„=O(a) . (3.1o)

Since, as will be displayed explicitly below, the source for
the perturbations of the electromagnetic field is quadratic
in V„and contains an explicit factor of e

sical context. ) The source for the metric perturbations is
the perturbation of the energy-momentum tensor. The
leading contribution to this, of order a, is Rom terms
quadrat;ic in V„and &om terms linear in bA„.However,
these enter the field equation multiplied by a factor of G,
and so hg„„=h„„mustbe suppressed by an additional
factor of roughly Gm = (m/Mpi) . Hence,

hA„=O(ea ) . (3.11) hg„„=h„„=O(Gm a ) . (3.12)

(Note that the quantities ea and Gm /e2 are truly di-
mensionless, whereas e is dimensionless only if one sets
5 = 1, which would not be natural in this essentially clas-

Finally, the magnitude of YV can be determined &om
the field equation

W = Ae —(V*"V"—V'"V")V„+ V„bF" —i ebA„(D"V" —D"V")P

+ D [gg(V~bA" —V"bA~)] —) r q. q. .M (3.13)

Here the ellipses represent terms which are either O(e as)
or O(Gm2a ) or sinaller, while the rM are Lagrange mul-

tipliers introduced to enforce the orthogonality of TV~ and
the gM. One can solve for the rM by multiplying both
sides of this equation by gM and then integrating over
all space outside the horizon. Inserting the result back
into Eq. (3.13), we see that

e"" ~O„bFp ——0 . (3.18)

In addition to these, we need the equations obtained
by varying the action with respect t;o the kM. In deriving
these, we need only take into account terms in the action
of up to order e a and so can approximate the action by

W~=O(e a ). (3.i4)
S pp, „—— d x g —V„'M""V— V„*V—V„*V„

~,(vs bF"") = ~~(v~u p"") + j"
g g

(3.i5)

where

p„„=— (V„*V„—V„'V„)+ (3.16)

We will assume that Gm, /e « 1. The leading behav-
ior of V„,t/V~, and bA„can then be obtaining by solving
the field equations in the background of the unperturbed
Reissner-Nordstrom metric. Having done this, the lead-
ing perturbations of the metric can then be obtained.
In fact, for calculating the lowest order metric perturba-
tions, only bA„and V„areneeded. For the remainder
of this section, and the next two, we will concentrate on
the determination of these two quantities. We will then
return to the calculation of the metric perturbations in
Sec. VI.

Linearization of the electromagnetic field equation
about the unperturbed solution yields

(F„.+ bF—„—„)(F""+hF" ) + bF„.p""-V V

—bA.j" (3.19)

(Terms linear in both W& and V, which would be of order
e2a4, are absent because of t;he orthogonality of R'„and
the g~.) There are two ways of proceeding &om here.
One can substitute the expansion of Eq. (3.7) for V„and
then vary the above expression with respect to kM, thus
obtaining an equation involving both the k~ and bA„.
Alternatively, one can first use Eqs. (3.15) and (3.18) to
solve for bA~ and bF~„in terms of V~ and then substitute
the resulting expressions back into Eq. (3.19) to obtain
an action which is a function of only the kM, we will
follow this second approach. A number of simplifications
are possible. First, the eigenvalue equation (3.4) and the
normalization condition (3.5) can be used to integrate the
term quadratic in V„.Next, by multiplying both sides of
Eq. (3.15) by ~g b'A and then integrating by parts, one
obtains the identity

and

j"= ie[V*(D~V" —D"V~) —V„(D+V*"
D"V*")]+ . — (3.17)

d T~y liI"„bP" = f d z/g[SFj P" dA j 'l'I4 ~
~V

V ~~ 4 ~~~
~ ~

~

~
I V 1~
(3.2o)

with the ellipsis signifying higher order terms. Similarly,
the Bianchi identity gives

which can be used to eliminate the term quadratic in
bF~„. A similar procedure applied to the source-&ee



STATIC BLACK HOLE SOLUTIONS WITHOUT ROTATIONAL. . . 3445

equation obeyed by the unperturbed fie1d strength shows
that

D„(~yC ") = 0 .
1

y
(4.5)

d x~yE„„hF"= 0 . (3.21) A convenient choice of normalization condition is

(In both cases, one can verify that the surface terms &om
the integration by parts vanish as long as the total mag-
netic charge is held fixed. ) The terin quadratic in E„„
is obviously independent of the kM and can be ignored.
Finally, since all quantities are independent of time, it is
sufficient to integrate over the spatial variables. We are
thus led to the equation

dgd8 sin8[C„(8,$)]*C "(8,P) = —.~

~

1
(4.6)

A~ = —(1 —cos 8),q

e
(4.7)

To obtain an explicit expression for the C„,we must
choose a gauge. If the electromagnetic vector potential
has a single nonvanishing component

then

where

Ae21 = —P mu + f d 2:~g ~V„'V„—V„'V„~2

Cs = a Me'~(1+cos8)~ '

where

- q+M —1sin 0 e'
1+cos6t

(4.8)

(3.23)
1 (2q —1)!

(q + M —1)!(q—M —1)!

- X/2

(4.9)

and b'A„ is understood to be given in terms of the kM.
Since the integrand on the right-hand side is of order
e a, we see that a is proportional to P/e, indicating that
our perturbative expansion is justified for r~ sufBciently
close to r„.

IV. THE CASE q ) 1, q & 0

We now specialize to the case q & 1,g ) 0 for which,
as was noted above, J = q —1. This allows us to take
advantage of the special properties [9] of the J = q —1
vector spherical harmonics, which lead to a number of
technical simplifications in the analysis. For J = q —1,
and only for that value, there is but a single monopole
vector spherical harmonic [9,12] for each value of J, =
M. Hence, if we denote this harmonic by C„(8,P), the
unstable modes in this case can be written in the form

+ m — f= —Pmfdf& 2 w
dr E dr& 2r2 (4.10)

where f(r) can be chosen to be real. Equations (3.5) and
(4.6) fix the normalization of f to be

(4.11)

Given r„,and hence P, Eq. (4.10) can be integrated nu-
merically to obtain f(r). This function is monotonic, has
no zeros, and vanishes exponentially with r as r ~ oo.
Near the horizon it behaves as

f(r) = A[1 —b(r —r~)] + O[(r —r~) ], (4.12)

With the aid of these properties, the eigenvalue equation
(3.4) reduces to

yM f( )CM(8 (4.1) —m'(1+P') [B'(r~)] ' )0. (4.13)

CM CM P (4.2)

and their two angular components are related by

where f (r) does not depend on M.
The J = q —1 harmonics have a number of special

properties. Their radial and time components vanish,
V„=m '~ f(r)C „(8,P) (4.14)

where

Proceeding with the construction of the solution, we
write

C@
——i sin0 C& (4.3) @~(8 &) =

M= —(q —Z)

CM (8 y) (4.15)

D CM —D„CM=p, (4.4)

as does their covariant divergence

In addition, their covariant curl, evaluated in the back-
ground Dirac vector potential, vanishes, Equations (4.2) and (4.3) imply that 4„=4q ——0 and

Gx the ratio of 4g and 44, . Note that 4~ has exactly
2(q —1) zeros as 8 and P range over the unit sphere.
To show this, we use the explicit expression (4.8) for the
vector harmonics and write
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+@MkMZ q+M —a

48 (0, P) = e'~(1 + cos 0) i

q —a

x )
M=-(q-a)

(4.16)

0„(~yhE"') = 0,

B„(~yhE"") = 0,

(4.24)

(4.25)

where

sin 0
z = e'

1+cos0 (4.17)
g„(~y$F" ) = — e r f Os(4*4' ),

g 2m
(4.26)

(4.1s)

where e~„is an antisymmetric tensor whose only nonzero
components are

eg@
———egg ——sin 0 . (4.19)

The entire complex z plane maps onto the unit sphere,
with ~z~ = oo corresponding to the south pole, 0 = vr. I,et
M be the largest value of M for which kM is nonzero. The
sum in Eq. (4.16) is then a polynomial of order M+g —1 in
z, and thus has M+q —1 zeros at finite z. In addition, the
prefactor multiplying the sum combines with the M = M
term to give a zero of order q —1 —M at 0 = vr. Adding
these together, we obtain the promised result.

The properties of the C„alsolead to the useful iden-
tity

where we have adopted the convention that Roman in-
dices &om the beginning of the alphabet take only the
values 0 or P. (In obtaining the last of these, we have
used the fact that ~ye is a function only of r.)

Because we are seeking time-independent solutions, the
equations for the electric and magnetic fields decouple.
For the former the source term vanishes, and so the
equations are the same as those encountered in study-
ing perturbations of the pure Reissner-Nordstrom solu-
tion, where the only allowed static perturbation of the
electric Geld is a radial field corresponding to a variation
of the black hole's electric charge. Since we are assum-
ing vanishing electric charge, this perturbation must be
excluded, and so bF" = 0.

The equations for the magnetic field can be solved by
separation of variables. We first expand bE„ in terms of
vector spherical harmonics:

We will encounter the quantity 4*4" in the source
terms for the perturbations of both the electromagnetic
field and of the metric. Since we will solve these equa-
tions by separation of variables, it is useful to define the
expansion

8Fgp = ) F~~ (r) sin0Y, (0, P)
3m

hF = ) [Ez' (r)~ BgYj (0, P)
I

+Es (r)~-&~-(0 &)j (4.27)

r 4'„(0,$)4"(0, $) = a ) o, Y~ (0, $),

where

(4.2o) where it is understood that F2 ——F3 ——0. Substituting
this expansion into Eq. (4.25) and using the identity

r2
o~ = — dP d0 sin 0Y * (0, P)4„*(0,P)4"(0, P),

(4.21)
we find that

F~~ = 0.

(4.2s)

(4.29)

(4.22)

The properties of the J = q —1 harmonics also simplify
the electromagnetic field equations. All components of j"
vanish, while

ppv= e~vr f C O
2m

(4.23)

as
The various components of Eq. (3.15) can be written

and a is as defined in Eq. (3.9). Ordinary, rather than
monopole, spherical harmonics enter here because we are
dealing with a neutral quantity. Hence, j runs over inte-
ger values although, since 4~ is a linear combination of
monopole harmonics with angular momentum J = q —1,
the oz vanish for all j ) 2(q —1). Note that, as a
consequence of the normalization condition (4.6),

dE,' j(j+ 1)
(Jp p

(4.3o)

For j & 1 this can be used to eliminate F2, while for
j = 0 it implies that Fa is a constant. Since a constant
Fa corresponds to a change in the magnetic charge, we
set F' = 0.

Finally, Eq. (4.26), together with Eqs. (4.20) and
(4.30), yields

d ( dF&~ j(j + 1) ~ ega
dr ( dr ) rz 2mrz

(4.31)

It will be convenient to write

Next, the p = t component of the Bianchi identity,
Eq. (3.18), leads to
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where Tj obeys

d ( dh, & ~(~+1) ~(~+1),
dr q dry r2 ' mr~

(4.32)

(4.33)

the quantity a that was defined in Eq. (3.9), determines
the magnitude of the departure of our solution from the
Reissner-Nordstrom black hole. The relative sizes of the
various kM determine the angular dependence, i.e., the
shape, of the solution; for studying these it is convenient
to deGne

By multiplying this equation by T~ and then integrat-
ing over r from r~ to oo, one can show that for f = 0
and j & 0 the only regular solution is the trivial one
Xz(r) = 0. Hence, in the presence of the source one can
solve, at least formally, for Tj by inverting the opera-
tor on the left-hand side of Eq. (4.33). To construct the
appropriate Green's function we need the two solutions

g (r) and g+ (r) of . the homogeneous equation that are
regular at r = r~ and r = oo, respectively. Using the
fact that B(r) tends to unity at large r, one immediately
finds that these two solutions behave asymptotically as
r~+i and r ~. (Explicit forms for these solutions are
given in the Appendix. ) If they are normalized so that
r ~&+iong. (r) and r&g+(r) both tend to unity as r + oo,
then

(4.34)

(5.1)

that satisfy

(5.2)

Substitution of the results of the preceding section into
Eq. (3.23) gives the quantity

Ae'ma4I = —P2ma'+ p) (o,
Zm

(5.3)

whose minimum determines the kM. In this expression p
and qj denote the positive integrals

where (5.4)

and

(4.35) (5.5)

Note that neither g+(r) nor g (r) can have any zeros for
r ) rH (i.e. , in the region where B(r) ) 0). This fact,
together with Eqs. (4.34) and (4.35), implies that X&(r)
is positive everywhere outside the horizon.

Because f(r) falls exponentially for r )) m, the con-
tribution &om the first term in the Green's function dom-
inates at large distance and so

e'g'ma4I = —P ma + Ii(nM), (5.6)

which are all of order unity.
Equations (4.15) and (4.20) show that the cr~ are ho-

mogeneous polynomials of degree 2 in the kM. This sug-
gests that we rewrite Eq. (5.3) as

where

Sj phoo2 rj' (4.36)

(5 7)

(4 37) and the rotational scalars

As a check that this is indeed the proper behavior, note
that this implies that the 2~-pole components of bFgy fall
a,s 1/r~, while the unperturbed monopole component of
.Fey is independent of r. Since a is of order p/e, the mag-
netic Geld perturbations that we have found correspond
to magnetic 2~ poles with components equal to the oj
times quantities of order P rH/e P2/em~.

V. DETERMINATION OF THE k~ AND THE
SYMMETRY OF THE SOLUTION

We can now use our results for V~ and bE~„to deter-
mine the kM. The overall scale of these, measured by

m= 2

(5.8)

are homogeneous polynomials of degree 4 in the n~.
Minimization of I requires

(5.9)

The nM are determined, up to an ambiguity corre-
sponding to the rotational and global gauge symmetries
of the theory, by minimizing I1. We begin by considering
individually several low values of q.
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A. Case (i): q = 1, J = 0

The solution with unit magnetic charge is spherically
symmetric (indeed, it is the only case for which spherical
syminetry is possible). There is only a single nM, of unit
magnitude, whose phase has no physical significance.

n~g ——0 . (5.15)

It then follows that

choosing their direction to be along the z axis and then
applying a global phase rotation, we can bring the solu-
tion into the form

B. Case (ii): q = 3/2, J = 1/2 (5.16)

There are two nM that form a complex SU(2) x U(1)
doublet, where the former factor refers to spatial ro-
tations and the latter to global phase rotations of the
charged fields. It is always possible to find a symme-
try transformation that brings such a doublet into the
standard form nqy2 ——1, n qy2

——0. The solution is axi-
ally symmetric in the sense that it is left invariant by a
combination of a rotation about the z axis and a global
gauge transformation. In particular, all gauge-invariant
quantities are manifestly axially symmetric. One finds
that

and that

1
000 ~ 1

1

i/20~
(5.17)

with all other o~~ vanishing.
If instead the coefBcient is negative, then Iq is min-

imized when v and w are perpendicular and of equal
length. Any such solution can be rotated so that v
—iv„=—1/~2 with all other components vanishing.
This gives

Qr 4'4" = —(1 —cos8),
4~

so that the nonzero 0~~ are

1 1

(5.10)

(5.11)
3a

r 4*4"= (1 —cosg)
16~

(5.18)

(5.19)

The solution has a net magnetic dipole moment that can
be attributed to the asymmetric distribution of the mag-
netic dipole density of the charged vector field.

The nonzero cr~ are

(5.20)

C. Case (iii): q = 2, J = 1

This case is somewhat less trivial. The three complex
nM are equivalent to a pair of real vectors v and w obey-
ing v+ w = 1, with the correspondence being given by

Both solutions are axially symmetric; the former is
manifestly invariant under rotation about the z axis,
while the latter is invariant if the rotation is supple-
mented by a global gauge transformation.

1
n~i —— [p(v +in ) —i(vw+i~w)j

2

o = vz+~~z .

Using Eqs. (4.21) and (5.8) we find that

1
@o = —,

4'r '

=3 2vxw
47r

(1 —3~v x w~ ),
20m

and hence that

(5.12)

(5.13)

D. Case(iv): q=3, J=2

~=) l~'-I'
2m

1
dP d8 sin g r (4*„4")~

~ (5.21)

For larger q, the minima of Iq depend on the actual
values of the integrals p and q~, which we can only deter-
mine numerically. However, if 4A/g is sufficiently large,
the first term in Eq. (5.7) is dominant and the depen-
dence on the qz can be ignored to leading order. In fact,
one only has to minimize

1 t'24%

20m. ( g2

3 (Sw+
I

—2p —5qi+q2
I
I» wl'.

20vr (g2 )
(5.14)

The integral in the second line is a sum of integrals of
products of four vector harmonics. Using the explicit
expressions given in Eq. (4.8), we obtain

The nature of the minimum depends on whether the co-
efficient of ~v x w~ is positive or negative. In the former
case, I~ is minimized when v and w are parallel. By

Although these expressions for the vector harmonics are
gauge dependent, the result for Z is gauge independent.
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Mi, Mg, Mg, M4

+Mi, Mz Mg ~ M4 nMi nMg nMg nM4 (5.22)

where

[(2q —I)!] (2q+ Mi + M2 —2)!(2q —Mi —M2 —2)!
Mi, Mg, Mg, M4 ~(My+My ),(Mg+M4 )

4m-(4q —3)! g, , (q —M —1)~(q + M, —1)!
(5.23)

Our problem has now been reduced to the minimiza-
tion of a quartic polynomial in 2J+ 1 = 5 complex vari-
ables. Even after using the rotational and phase &ee-
dom to 6x some of these, one is still left with a rather
formidable task. We therefore used MATHEMATICA to
search for minima, 6nding a solution that can be rotated
into the form

1 1
n~g ——0, n~2 ——+—.2' ' 2

(5.24)

From this one finds that the nonzero 0.
~ are

+4vr
' 4+14m

1 v70
24~~' '+' 336~~

'

(5.25)

This solution has no continuous rotational symmetry, al-
though it is invariant under the group of 6nite rotations
that leave the tetrahedron invariant. This is illustrated
by Fig. 1, where we present a three-dimensional plot of
r 4„'4I'as a function of angle. Note that 4„vanishes
at the center of each of the faces of the deformed tetra-
hedron in this 6gure, in agreement with our previous re-
mark that it should have 2(q —1) zeros.

Including the eH'ects of the terms involving the q~ shifts
the location of the minimum of Iq. One can verify that

l

(in contrast with the q = 2 case) the @z contain terms
that are linear in the deviation of the nM from the values
given above. As a result, the full solution for the nM
changes continuously as Ajg is varied.

Since the minimum found here was obtained by numer-
ical methods, we do not have an analytic proof that it is
in fact the global minimum (although we are fairly confi-
dent that it is.) However, we can demonstrate unambigu-
ously that the global minimum is not axially symmetric.
To do this, we note Grst that any con6guration with all
but one of the nM equal to zero is invariant under rota-
tions about the z axis (possibly supplemented by a gauge
transformation). By evaluating the o~ with m g 0, it is
easy to show that these are the only con6gurations with
this symmetry. Explicit calculations for the 6ve configu-
rations of this form shows that they all give higher values
for E than does the configuration of (5.24). Hence, the
global minimum cannot be achieved by a configuration
that is axially symmetric about the z axis; the rotational
symmetry of the theory then extends this result to an
arbitrary axis of rotation.

E. Larger charges

We have applied the methods used for the q = 3 case
to higher charges also. For q = 4 (i.e. , J = 3), the lowest
minimum we 6nd for Z has

(5.26)

with all other nM vanishing. The nonzero o~ are

&oo = 1

4m

04p =—

~13
572~~'06o =—

7 ~m
44~or ' ' 88~sr '

7~13
572/14m.

FIG. 1. A three-dimensional spherical plot of the quan-
tity r O'„'C'" for the q = 3 solution described in Eg. (5.24).
If we denote the spherical coordinates of a point as (R, 8, P),
then this plot shows the surface R(8, P) = r C'„'(8,P)4'"(8, P).
While 8 and P represent the corresponding spatial coordi-
nates, R is unrelated to any physical spacetime coordinate.
Note the tetrahedral symmetry of the surface.

A three-dimensional plot of r 4„'4"for this solution is
shown in Fig. 2. As suggested by the plot, this solution is
invariant under the discrete rotational symmetries of the
cube. 4~ has a zero on each face of this roughly cubic
shape.

As we go to higher values of q, the solutions develop
more small-scale structure, while at the same time ap-
pearing more symmetric when viewed on a large scale.
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were obtained in Secs. IV and V.
The first step is to calculate t„.The full energy-

momentum tensor can be written as

(6.2)

where

= g +p,ex+a P gp, vg g +a.A+Pp
EM aP cxP Ap

4

is the purely electromagnetic part and

FIG. 2. A spherical plot, similar to that shown in Fig. 1,
for the q = 4 solution of Eq. (5.26). The cubical symmetry of
the solution is apparent.

(Note that a discrete polyhedral symmetry such as that
exhibited by the q = 3 and q = 4 solutions is impossi-
ble for most values of q. ) What we see happening is that
there is a tendency for the 2(q —1) zeros of 4~ to be dis-
tributed as evenly as possible over the unit two-sphere.
Lying between these zeros are maxima of 4*4~. This
behavior can be seen, for example, in Fig. 3, where we
show a solution with q = 12.

VI. PERTURBATION OF THE METRIC

The deviation h„„ofthe metric &om the Reissner-
Nordstrom solution is determined to leading order by the
linearized Einstein equation

bG„„=—8' Gt„

Here bG~ denotes the terms in the Einstein tensor that
are linear in h„while t„is the leading correction to the
energy-momentum tensor.

In doing this calculation, we continue to restrict our-
selves to the case where Gm2/e is very small; it was
this assumption that allowed us to decouple the deter-
mination of bE~ from that of 6&„.For our perturba-
tive scheme to be valid, the horizon radius of the un-
perturbed solution must be close to r „andhence must
be of order m . When this is the case, the difference
between the Reissner-Nordstrom and Schwarzschild met-
rics with the same value for M is never greater than order
Gm je anywhere outside the horizon. Hence, in solv-
ing for h„we can approximate the metric by the cor-
responding Schwarzschild metric. We will consider only
the case q ) 1, g ) 0, so that we can use the results for
the R' field and the electromagnetic perturbations that

FIG. 3. (a) A spherical plot, similar to those in Figs. 1 and
2, for a solution with q = 12. There is no apparent symmetry.
(b) Another presentation of the same solution. The ~alue of
the function r 4„'4"on the unit hemisphere (0 & P ( z)
is represented by one of 16 gray levels, with black being the
minimum (zero) with white being the maximum. One can see
the fairly even distribution of the zeros.
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T„„=g p[W„' W„p+W„' W„p]+m (W„'W„+W„'W„)

+ g P [F„(W„'Wp—Wp W„)+ F„(W„'Wp—Wp W„)]

—g„„—W„'„W""+m W„'W"+ F""(W„'W„—W„*W„)+ O(W ) .
2 P 4

(6.4)

The O(a ) corrections to T„„arethe sum of a part linear in bF„„anda part linear in h„„that arises lrom the
corrections to the metric in Eq. (6.3); because the latter is suppressed by an additional factor of Gm~az, we can
ignore it here. The dominant part of T„,which is also O(a ), is obtained by substituting the unperturbed metric
and field strength into Eq. (6.4). Using Eq. (1.5) for the only nonzero component of the unperturbed electromagnetic
Geld strength, together with the results of Sec. IV, we Gnd that the nonzero components of t~„canbe written as

where

tgg
——B Ksx + B ' + m

t„„=—— Kp., + B(f )—+ m
1 I 2 2

gg
tab = gab KFl z f KW2r2
t~a —&Z2 )

2

K~ = (r O'4 ) = ) o.
~ Y~ (e, $),

)m
2

jm Q9~KF, = ) F, Y, = ) so, Y,er4 2r4
2m

2
gaga 1

KF2 =
4 ) Fz ~a+jm =

& ) . . +~ojm~a+jmer4 2r' . j j+1
2m 2m

(6.5)

(6.6)

[In the last two lines we have used Eqs. (4.30) and (4.32)
to relate the perturbations of the Geld strengths to those
of W„;it should be recalled that Wo ——0.]

The next step is to expand the components of h~„in
terms of spherical harmonics. The space-space compo-
nents of h„„canbe decomposed into a spin-0 field and
a spin-2 Geld, the time-time component corresponds to a
spin-0 Geld, and the time-space components can be cho-
sen to vanish because the solution is static. Thus, there
are potentially seven functions of r entering this expan-
sion for each value of j and m. However, examination
of the parity of t„„andt+ shows that it is sufEcient to
consider only those terms corresponding to perturbations
of parity (—1)~. (In the terminology of Ref. [13], these
are polar perturbations. ) In general, this leaves only five
modes for each value of j and m: two, with / = j, for the
spin-0 Gelds, and three, with l = j —2, j, and j + 2, for
the spin-2 Geld. Hence, there are five radial functions,
which we define by

hing = B(r) ) H (r)Y (e, y),
2m

+a+bY1M (e~ 4') —
z Y1M (e~ 4') (6.8)

shows that the H4 is redundant and can be set equal
to zero. Similarly, there should be only three radial func-
tions for j = 0, and the fact that Ypp is a constant allows
us to set H4 ——H5 ——0.

Further simpliGcation can be achieved by utilizing the
freedom to perform coordinate transformations, which
change the metric by an amount

k~g~~ = V~e~ + V~ep (6.9)

Writing

I

where V'„denotes the generally covariant derivative with
respect to the unperturbed metric. For j = 1 there is no
mode with l = j —2, and so there should be only four
radial functions. Indeed, the identity

) H,'-(r)Y, (e, y),
Jm

h b = ) [g bHs' (r)Y, (e, p)
2m

+H~~ (r)V' V'be (e, p)),
h„=) H5 (r)V' Y~ (e, P),

2m

(6.7)

e~ ——0,
e- =).f1' (r)Y-(e 4)

1m

e- =) .fl (r)7-&~-(e &)
2m

we find that

(6.10)
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HQ I'll

bG H2~

Hgm

H)m

H Jm

Blam

2Bf f2m+ Bff2
28

a

2fJm

fJm + ffgm fg m

(6.11)

gag ——B(r) —1+) ) H~~ (r)Y~ (8, P)
j=o

g„„= 1 + H2PP (r) YppBr
(6.14)

For j ) 2, we choose fz~ so that H&~ ——0 and then
f~~ so that H~~ = 0. For j = 1, we choose fz~ so that
H~~ = H~~ and then choose f2 so that Hs = 0.
Finally, for j = 0 we choose f~PP (the only coordinate
freedom variable) to set Hs = 0.

We next note that t g is proportional to g g, even
though it could in principle have also contained terms
proportional to V' ')7sYgM(8, $). The absence of such
terms implies that

sin 8 bGss —bGpp ———) (H2 —Hf )
2m

x (sin 0V'sV'e —V'yVy)Y~

=0, (6.12)

j=-1 7n

All of the H~ must vanish as r ~ oo. At the horizon,
the tt and ab components of the metric, as well as its
determinant, are nonsingular. We require the same of the
perturbed metric, and hence require that BHy H2

Hy, and H3 all be nonsingular at r = r0 . We will see
that the field equations place further restrictions on the
behavior near the horizon.

Differential equations for the various H~ are obtained
by expanding both sides of the linearized Einstein equa-
tion (6.1) in terms of spherical harmonics. Because of the
Bianchi identity, as well as the symmetry of the problem,
many components of the resulting equations are redun-
dant. In particular, if we write

from which it follows that

H~™= H2™, j & 2 . (6.1S)

bG« = ).bGlP(r)'-(g &)
2m

bG„=) bG~„(r)Y~ (8, P),

bG„=) bG'„(r)V' Y, (8, $),

(6.15)

This leaves only two independent radial functions for
each value of j and m and gives us a metric of the form

I

2Tn

then it is sufficient to calculate

8G&z ———[(1 —rB' —B)(Hz + H2 ) —H2 —rB(H2 )']00

, (rBH2P)' + O—(—Gm'/e2),

bG,„= [rB(H )'+ H ],

BlbG'„=—[(H' )' —(H,' )'] — H,', & 1 . (6.16)

In. the second equality for bG~~ we have used the fact that, with the approximations we are making,

1 —rB'(r) —B(r) = O(Gm /e ), (6.i7)

everywhere outside the horizon; for a Schwarzschild metric the left-hand side of this equation would vanish identically.
We start with the j = 0 modes, for which we can use Eq. (4.22). To leading order, the tt component of Eq. (6.1)

leads to

(EBB,")' = B(f')'+ (m' —,) f' (6.18)

A second equation is obtained by multiplying the rr equation by B(r) and the tt equation by 1/B(r), and then adding
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these to give

(HOO)I (HOO) I (f )
4& mr (6.19)

These two equations can be immediately integrated, using the boundary condition that Hi00(oo) = H200(oo) = 0, to
give

B()H ()= 2i/4vrGbM f ds B(s)(f'(s)) + (ms— (6.20)

B(r)Hi (r) = 2/4vr Gb'M
(6.21)

where (I)M is an arbitrary constant that may be interpreted as a shift of the black hole inass. Because f(t') fails
exponentially fast at large distance, so do the integrals on the right-hand sides of these two equations.

Turning now to the j g 0 modes, we find that the ra components of Eq. (6.1) give

B(H'-)' —B(H'-)' —B'H'- = 8 G ' o BT'.
~

(
~ +1) 2 i 2 (6.22)

while the rr component leads to

B(H )'
(

B
[ (H )' [H —H j2 )

= 8vrGa (r — B(f') + —m — f + X, j ) 1 . (6.23)2r'

It was noted above that the nonsingularity of gzz required that BH& be regular at r = r~, this leaves the possibility
that Hi™might be singular there. This can be ruled out by multiplying Eq. (6.22) by r and then adding the result
to Eq. (6.23). The resulting equation can be solved to express H~~in terms of Hz~ and (Hz~ )', thus showing that
it is regular at the horizon. Hence, (Hi )' is finite at r~. Using this fact in Eq. (6.22), we find that

H~~ (rH) = 0, j ) 1 . (6.24)

For j = 1, the fact that Hs only enters Eqs. (6.22) and (6.23) through its derivative simplifies matters considerably.

By using Eq. (6.23) to solve for (Hs ) and then substituting into Eq. (6.22), we obtain a first-order equation involving

only Hz . This can be easily integrated, and the result then used to obtain H3~ . The two constants of integration
are fixed by the boundary conditions that H~~ (rjr) = Hs~ (oo) = 0. The result is that

+——B(s)(f'(s))'+ (ms ——
) fs (6.25)

OO
8m Ga20.

+ B(s)(f'(s))'+ (m' ——
)

—f* (6.26)

To obtain the asymptotic behavior of these expressions,
we recall that f(r) vanishes exponentially fast at large
r, while Xi 1/r. This behavior is just sufficient to
guarantee the convergence of the integral in Eq. (6.25),

l

with the result that Hii ~ 1/r2. Inserting this into
Eq. (6.26) and again using the asymptotic behavior of
T~, we And that H3 has the same asymptotic behavior,
and in fact that the difference Hii —Hsl™ 1/rs.
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In solving for the modes with j & 2, it is useful to
de6ne

By substituting this result back into Eq. (6.28) and using
Eq. (4.36) we obtain the asymptotic behavior

T~ = Hi —H3

and to then rewrite Eq. (6.22) as

(6.27)

where

~m SvrGa oem A~
Hi ) Taboo(2j+ 1)mr~ r&+' ' (6.34)

B' '- qj(q+1) y

Substitution of this equation and its derivative into
Eq. (6.23) leads to a second-order equation involving only
Tgm '

A = dr 2(j+2)r2Bh [B(f')2 —m2f2]
&H

+wi g, f.'
(6.35)

r2BT"+2(.r B)'T,' —(j —1)(j+2)T,

(6.29)

The resulting large distance behavior of gqq corresponds
to that one would obtain &om a mass distribution with a
2~-pole moment whose components are equal to the 0~
times quantities of order P2r~ /e2 P2/e2m~

[In obtaining this result, both Eqs. (4.33) and (6.17) have
been used, and terms of higher order in Gm /e have
been dropped. ]

In the absence of the source term there are no nontriv-
ial solutions for T~ that are regular at both the horizon
and spatial infinity. (This can be readily seen by examin-
ing the explicit solutions given in the Appendix. ) Hence,
the inhomogeneous Eq. (6.29) can be solved by Green's
function methods similar to those used for Eq. (4.33).
Let h (r) and h+(r) be the solutions of the homogeneous
equation that are regular at r = rH and r = oo, respec-
tively. At large r these behave asymptotically as r~

and r ~~+2&. If they are normalized so that r ~~ lh. (r)
and r~+2h+(r) both tend to unity as r + oo, then the
desired Green's function is

(6.30)

VII. CONCLUDING REMARKS

In this paper we have exhibited black hole solutions
with fields on the horizon that, contrary to common ex-
pectation, are not spherically symmetric. As the mag-
netic charge increases, the structure of these black holes
becomes more detailed, with higher multipole compo-
nents appearing in the long-range electromagnetic and
gravitational fields. At the same time, the lower multi-
pole moments decrease in magnitude, with the result that
the solutions do begin to approach the expected spherical
symmetry, if only in an averaged sense.

Although these solutions display some unusual, and
perhaps unexpected, properties, there are rigorous gen-
eral results on black holes that they must obey. We con-
sider here two of these, the zeroth and second laws of
black hole dynamics, that are concerned with the proper-
ties of the black hole horizon. At constant t, the horizon
can be described as the two-dimensional surface

and the only regular solution for T~~ is
r = r~+ A(0, $), (7.1)

T, (r) = 16'Ga2o.
~

x dr'G~ l(r, r')(r') B(r')
&H

x(—B( ')If'( ')I'+ 'If( ')]') . (6.31)

BI
E(8, P) = ) H', (r~)Y~ (0, Q) .

2

(7.2)

where rH is the horizon radius of the unperturbed metric.
To leading order, the vanishing of gqq on this surface gives

H& can be obtained immediately from this equation
together with Eqs. (4.34) and (6.28).

At large r the source term in Eq. (6.29) is exponentially
small, so the first term in the Green's function dominates
Eq. (6.31); thus

Equation (6.24) implies that the terms in the sum with
1 all vanish, so that A is a constant independent

of angle. Using the solution in Eq. (6.21) for Hi (with
hM = 0), we find

where

C~
+jm, &j vn r2+2 (6.32)

ds B(f')* + (m' ——,) f*
mr~B'(r~) „„s2

=2a P Gm (7.3)

dr r2Bh,. [B(f') —m f ] . (6 33)(2j+ 1)m

where the second equality follows from the eigenvalue
and normalization Eqs. (4.10) and (4.11), as well as
Eq. (6.17). Because the integral in the first line is it-
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self of order P~, our result for 4 is proportional to P4,
rather than the P~ one might have expected. Since the
higher order corrections to W„and bE~„could also shift
the horizon by a distance of order P, our result is really
that 4 vanishes to leading order.

The zeroth law of black hole dynamics states that
the surface gravity, which corresponds quantum mechan-
ically to the black hole temperature, is constant over the
horizon. For a stationary black hole the surface gravity
r is given by [14)

(7.4)

= ——g g (oigu)(~jgtt) . (7.5)

Expanding this equation to first order in h~ and taking
into account the fact that the horizon has been shifted

by an amount 4 gives

where the right-hand side is to be evaluated on the hori-
zon and y& is a Killing vector that is orthogonal to the
horizon. If the metric is actually static, and is written in a
manifestly t-independent form with vanishing time-space
components gq~

——0, then the only nonzero component
of this Killing vector is yt, ——gqi and Eq. (7.4) reduces to

I
——) (BH,' )'Y,

' + Yoo(H—, —H ),

~l gy/l ~ jul
r. = —+ —O.h„+—(B 'h„—Bh,„„)

2 2
"

2
gyl gy/I ~——+
2 2

(7.6)

where all quantities are to be evaluated at r = r~. Be-
cause of Eq. (6.24), all terms in the sum with j ) 1
vanish. Hence, K is independent of angle and therefore
constant over the horizon, as required.

The second law of black hole dynamics is the statement
that the area of a black hole horizon never decreases.
Let us apply this to the case of an unstable Reissner-
Nordstrom black hole that is perturbed and eventually
evolves into a static black hole with hair. By making the
perturbation suKciently weak, we can arrange that the
mass decrease 6.om radiation be negligible, so that the
Gnal state will be a black hole with hair that has the same
value for M as the original Reissner-Nordstrom solution.
(Indeed, the area law can be used to place an upper limit
on the mass loss from radiation. ) The area of its horizon
is

(7.7)

where the integration is over the surface r = r~+L. The
angular components h p of the metric perturbation only
have terms involving spherical harmonics with j & 1.
The contributions linear in these vanish after the inte-
gration over angles, and so for calculating the leading
correction to the area we can replace g p by the unper-
turbed metric g g and obtain
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APPENDIX

B(r)g"(r) + B'(r)g'(r) — g(r) = 0 . (Al)

As we explain in Sec. VI, in the approximation to
which we are working B(r) may be replaced by the
Schwarzschild metric function 1 —r~/r. It is convenient
to define a variable x = r/r~ and rewrite Eq. (Al) is

(A2)

This has a polynomial solution of the form

The Green's functions used to solve Eqs. (4.33) and
(6.29) were constructed &om the solutions of the corre-
sponding homogeneous solutions. In the former case, the
solutions obey

A = 4m. (r~ + 2r~A) . (7.8) ( )
' ' P(' (2% —1)g ~ Z = . Z i Z— (A3)

From this, together with Eq. (7.3), we see that the second
law is verified, to leading order.

The methods we have used to construct our solutions
have limited us to the case where the horizon radius
is close to the critical radius for the instability of the
Reissner-Nordstrom solution. However, there seems to
be every reason to expect that the solutions with smaller
horizons will display similar behavior. The construction
and study of such solutions, which include new extremal
black holes, remains an open problem.

where P 'i (z) is a Jacobi polynomial [15], and the nor-

malization has been chosen so that x (~+i&g (x) tends
to unity as z ~ oo. Its value at x = 1 (i.e. , the horizon)
is

To find the other independent solution, we first note that
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any two solutions g and f of Eq. (Al) obey

&( ) [g'( )f( ) —g( )f'( )] =

where c is a constant. In particular, if we write

( 1)
g+(x) = g. (x) ln

~

1 ——
~

+ k(x),

then k(x) obeys

(A5)

(A.6)

equation corresponding to Eq. (6.29) becomes
d2h dh

(x2 —x) + (4x —2)——(j —l)(j+2)h = 0.
dx2 dx

(A10)
This has a polynomial solution of the form

(A11)

whose value at the horizon is

(g;)'
g. ——k + =c.&*r (A7) h (1) =

(2j)' (A12)

From the fact that g. (x) is equal to x times a polyno-
mial of order (j—1), it follows that this last equation has
a solution for k(x) as a polynomial of order j.

Explicit forms for low values of j are h,+(z) = h;. (z) ln
~

1 ——
~
+(

*(*-1)' (A13)

By methods similar to those used to find g+(x), one finds
that the solution that is regular as x -+ oo is of the form

g, (x) = x

g. (*) = *
I

x ——
[4) '

4
gs(x) =x [x' ——x+ —

i5)

(AS)

where l(x) is a jth order polynomial.
Explicit forms for low values of j are

1
62 (x) = x ——2' (A14)

and

(
gi+(x) = —3x ln

~

1 ——
~

—3x ——,
z) 2'

, ( 3) (
g2+(z) = —So*'

[
z ——

~

ln
~

1 ——
~

—S0z'+ 20z
4) & *)

10+—
3

(A9)

h, (z) =x —x+ —,2 1

5 '

and

h2 (x) = 60(2x —1) ln
~

1 ——
[ + 120—+ ( 1i 10

x) x(x —1)
(A15)

, (,gs+(z) = —157»'
[
z' —-*+—

I
»

I
1 ——

I

—157»'*)
2625 35x' —105x ——,

2 4

where the g+(z) have been normalized so that z~g+(z)
tends to unity as x ~ oo.

With the same approximation for B, the homogeneous

hs (x) = 35 12(5x —5x+ 1) ln
~

1 ——
~

+ 2 (
z)

2x —1+60+ —30+
x(x —1)

where the normalization conventions are analogous to
those used for g+(x).
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