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Isotropization of Bianchi-type cosmological solutions in Brans-Dicke theory
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The cosmic, general analytic solutions of the Brans-Dicke theory for the flat Friedmann-
Robertson-Walker (FRW) models containing perfect, barotropic, fluids are seen to belong to a wider
class of solutions, which includes cosmological models with the open and the closed spaces of the
FRW metric, as well as solutions for models with homogeneous but anisotropic spaces corresponding
to the Bianchi-type metric classification, when all these solutions are expressed in terms of reduced
variables. The existence of such a class lies in the fact that the scaled scalar field ¥ = ¢a®*~?
(with a® = aiazas the “volume element” and 3 the barotropic index, p = Bp) can be written as a
quadratic function of the scaled time and this solution is independent of the metrics here employed.
This reduction procedure permits one to analyze if explicitly given anisotropic cosmological solutions
“isotropize” in the course of their time evolution. If this can happen, it could be claimed that there
exists a subclass of solutions that is stable under anisotropic perturbations: This seems to be the

case for the Bianchi type I, V, and IX.

PACS number(s): 04.20.Jb, 98.80.Hw

I. INTRODUCTION

The first authors to realize the possibility of giving a
reason for the viability of the “cosmological principle”
without the necessity of imposing highly special initial
conditions before the “inflationary program” was devel-
oped were Hoyle and Narlikar [1]. However, their ex-
planation came also before the cosmic microwave back-
ground (CMB) radiation was discovered, and nowadays
most investigators believe that the steady state theory
is untenable from the observations. Other investiga-
tors within Einstein’s general relativity (GR) theory, no-
tably Misner [2], tried to demonstrate, unsuccesfully,
that the large-scale structure of the Universe, in par-
ticular its isotropy, could be attributed to the nature
of the matter processes, such as dissipation, that took
place at a very early stage of development of the Uni-
verse, independent of its initial conditions (chaotic cos-
mology), that is, that the Universe lost memory of any
initially imposed anisotropy or inhomogeneity (Barrow
and Matzner [3], Doroshkevich et al. [4], Misner [5], Rees
[6], and Zel’dovich and Starobinsky [7]). More to the
point, within theoretical cosmology in general and in the
context of GR in particular, one is still looking for a sat-
isfactory explanation to the following observational facts:
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the formation of galaxies and clusters of galaxies, which
means that the Universe is not homogeneous locally, and
on the other hand the CMB radiation that seems to be
very nearly isotropic on account of its Planck spectrum
and the lack of structure in its intensity, from which it
has been concluded that the large-scale structure of the
actual Universe must be homogeneous and isotropic. The
standard big bang model, thought to give the most ac-
curate description of the Universe, has the peculiarity
that it appears to need a very special set of initial con-
ditions to be viable. This state of affairs has produced
several studies in different but related directions to ob-
tain reasonable explanations to this conundrum, such as
the “inflationary program” which nowadays is a popular
approach, though not without some drawbacks, to solve
also some other problems in cosmology (for a present re-
view see Olive [8]). A most important reason why cosmo-
logical models that predict inflation in the early Universe
are interesting is the hope they will explain the observed
state of the Universe without appeal to highly special
initial conditions. Even so, most inflationary cosmolog-
ical models have assumed Friedmann-Robertson-Walker
(FRW) symmetry from the outset. The horizon size in
the FRW models suggests the possibility that physical
interactions could have homogenized and isotropized the
Universe, and therefore that its present state could have
evolved from more general initial conditions.

In the context of general homogeneous cosmologies
Barrow [9] has recently shown that by appealing to the
Planck initial conditions for all stress energy densities,
the Planck equipartition proposal (PEP), the “isotropy
problem” is not present: A high level of CMB isotropy
is predicted, in accordance with the bounds made by
the Cosmic Background Explorer (COBE) satellite [10].
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Therefore, noninflationary theories of structure forma-
tion need no longer explain it as a separate issue.

Nevertheless, present observations are still far from
elucidating all the properties that an actual model of the
Universe should have. Even the degree of anisotropy of
the primeval radiation or the counts of radio sources or
galaxies in the various directions in the sky involve some
uncertainties and agreement between the observed chem-
ical composition and the predictions of the Friedmann
models merely signifies that the time rate of change of the
volume occupied by matter and the rate of expansion of
a Friedmann model concide. On the other hand, astro-
nomical observations seem to imply that isotropization
must have occurred at a rather early epoch, maybe even
for z > 10°. It is feasible that for particular anisotropic
models this could be achieved for the instantaneous val-
ues of the anisotropy parameters. But the case is that
there are observational properties that depend on the de-
gree of anisotropy over an extended period of time, again
like the CMB isotropy. Therefore, it is interesting to find
cosmological models which indeed tend to isotropize as
the Universe evolves.

In GR, without the aid of a cosmological constant or in-
flation, Collins and Hawking [11] examined the question
in terms of an “initial conditions” analysis. They ob-
tained that the set of spatially homogeneous cosmological
models approaching isotropy in the limit of infinite times
is of measure zero in the space of all spatially homoge-
neous models, which in turn implies that the isotropy of
the models is unstable to homogeneous and anisotropic
perturbations. However, their definition of isotropiza-
tion demands asymptotic stability of the isotropic solu-
tion. An asymptotic stability analysis of Bianchi models
in GR [12] shows that, i.e., in the Bianchi type VII, the
anisotropy will not exactly vanish but can be bounded.
In this sense, there the open FRW model may be stable.

Yet, other authors define the concept of isotropization
in a different way (see Novikov [13], Mac Callum [14], and
Zel’dovich and Novikov [15]). Therefore, in the literature
concerned with the mathematical analysis of anisotropic
models the term “isotropization” is often mentioned but
its precise definition is author dependent. For Bianchi-
type models it is claimed that a positive cosmological
constant provides an effective mean of isotropizing ho-
mogeneous universes (Wald [16]). The “cosmic no-hair”
conjecture has been proved for a number of models (see
Refs. [17]), but in several cases it has assumed restric-
tive conditions (see Ref. [18]). In this context Barrow
[19] has shown that contrary to previous expectations,
perfect fluid cosmologies need not approach isotropy and
homogeneity as t — oo.

Following the general line of thought on this subject
put forward by Zel’dovich and Novikov, one declares
that homogeneous cosmological models that isotropize
are those that “approach a Friedmann model in the
course of time as the Universe expands,” which means
that “its geometric and dynamic parameters as well as
those concerning the distribution and motion of mat-
ter and radiation are nearly the corresponding quanti-
ties in a Friedmann model.” Accordingly, one assumes
that the idea conveyed by isotropization is the property
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that an arbitrary solution possesses to model our Uni-
verse which permits it to evolve from an initial, general
state, into a state that is presently isotropic on a large
scale and is, therefore, well described by a Friedmann so-
lution. We reduce the general scope of the problem by
assuming initial homogeneity, limiting ourselves to test
the isotropization properties of certain specific noninfla-
tionary solutions in the Jordan-Brans-Dicke (JBD) cos-
mological theory. So, if at its outset the Universe was
not in isotropic expansion, the above ideas imply that
one can examine, in a first approximation, the proper-
ties of homogeneous but anisotropic models assumed to
describe correctly the early stages of its expansion. Of
these, only those Bianchi-type models whose group type
comprises FRW models may isotropize: types I, V, VII,,
VII;, and IX.

In this paper the above concept of isotropization is
dealt with in a direct, but admittedly limited, way by
qualifying and quantifying it through a “Raychaudhuri-
type” equation common to all Bianchi-type models:
Given an explicit solution, one can directly check if it
may or may not approach a Friedmann regime in the
course of its cosmological time evolution, specifically, if
the different anisotropic scale factors of a Bianchi model
in the various directions approach arbitrarily near to a
Unique, single function of time. By this procedure one
can then answer the question, at least for some represen-
tative spatially homogeneous models of the Bianchi type
(1, V, IX), of whether, and if so, how in the JBD cosmo-
logical theory a present large-scale isotropy resulted from
an initially anisotropic but homogeneous expanding uni-
verse.

II. FRW FIELD EQUATIONS

The JBD field equations for the FRW cosmology with
a barotropic, perfect fluid, p = Bp, —1 < 8 < 1 (the
B = %, equation of state for incoherent radiation or ul-
trarelativistic matter is excluded) are

pad+h) — Mg, Mg = const, (1)

3(1— ﬂ)%l - (%’) _a- Sﬂ);”ﬁﬂ + 0
(2)
_ 87TM3
e =3 + 2w’

The dynamic equation is

(¢_~) _ [2(2-3B) +3(1 - B)*wlmg _ —6(1 — B)k
1/) ,(/) a2(1—3.3) ’

k=0, 1, (3)

and the constraint equation is
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where ¥ = ¢a*1~P) ¢ is the JBD scalar field, a is the
scale factor, w the coupling parameter of the theory, n the
“cosmic time parameter,” 7y an integration constant, and
() = 8y, where dt = a®Pdn (for details see Chauvet and
Pimentel [20] and references therein).

For k = 0, Eq. (3) is directly integrated. One gets

¥ = An’ + Bn+C,

where A, B, and C are constants such that
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[2-38+3(1 - B)w)] ((1 — 3B)mgn + 770)2 + 32+w(l-p)(A+3B)mg _ 0, (4)
(1-p)? ¥ 21-8) ’
_ —(1-3p)*my
A= (1+38) ’
1-3
B=—2<1+3g)no , (10)
___ m
1+3
%) o Grom
Its determinant is then
A =B?—-4AC =0. (11)

A= [2—3ﬂ+ 2(1-,3)%] mg (6)
Substitution of (5) and (6) in the constraint equation (4)
hands out the following results. The constant B is unde-
termined and so, up to B, C also remains undetermined.
Therefore, three different possible cosmic solutions to the
FRW flat space (k = 0) exist distinguished by the sign of
the determinant, A = B? — 4AC, which itself depends
on the relation between the equation of state, through 3,
and the coupling parameter w in a rather complex way.
The behavior of the scalar field ¢ implies, for each type
of determinant, A > 0, A < 0, and A = 0, the possi-
ble existence of two branches: essentially, ones with ¢
an increasing function of time and the others with ¢ a
decreasing function of time (the solutions are given ex-
plicitly and have been thoroughly discussed by Gurevich
et al. [21], Ruban and Finkelstein [22], and Morganstern
[23]; see also Chauvet [24] and Lorenz-Petzold [25] and
also in other scalar-tensor gravity theories by Chauvet
and Pimentel [20] and Barrow and Mimoso [26]).
¢ is obtained by the straightforward integration of

¢ _ (1= 38)man+mo -
¢ ¥
and the scale factor a found from it through the definition
of :

2

G31-p) _ An +fn+ c (8)

Equation (4) does not involve the curvature constant

k explicitly and so ¢ = An? + By + C is also a solution

to actually both the open and closed space dynamics Eq.
(3) provided that

24 (1-B)(1+38)w
2(1+ 3B)k b
The same as in the flat space case 4, B, and C are

obtained from the constriction equation (4). For both
k = +1 and —1, it is valid that

$a(1+38) —

9)

The explicit solutions for these two models are

P ([2 +(1-8)@1+ 3ﬂ)w]m,,2> T
(1 + 3,3)mg —2k
x[(1 = 38)mgn + no] " 135 (12)
and .
o —2k -,
- \[2+ (1 -8)1 + 38)w]m?
x[(1 = 38)mpn + 1] =57 (13)

Solutions for the JBD nonflat space were previously
obtained by several authors (Morganstern [23] Lorenz-
Petzold [27] and references therein). Recently, the vac-
uum and 8 = 1/3 solutions for all k in scalar-tensor theo-
ries with w(¢) (including JBD) were presented by Barrow
[28] and extended for a stiff fluid by Mimoso and Wands
[29], where use of the conformal invariance properties of
these theories was made.

Next, we present the anisotropic Bianchi field equa-
tions in the above variables in order to analyze later their
asymptotic solutions.

III. ANISOTROPIC FIELD EQUATIONS

Three extra equations, and simple modifications to the
FRW equations (1)-(4) presented above, describe the
Bianchi types I, V, and IX examined in this paper. Equa-
tions (1) and (2) remain formally the same, while Eq. (3)
gets its “curvature” term modified and is then written

<1_/£) _ [2(2=38) +3(1 — B)*w]myp
¥ 4

= (1-p)a% °R; . (149)

The constriction equation is a “Raychaudhuri type” so
that the left hand side of Eq. (4) remains unaltered, but
instead of being equal to zero as in the FRW cosmology,
it is, in this case,
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3 (z_/)_)_ 1 (i’)z_(l—?:ﬂ) ((1—3ﬂ)man+no) (g)
20-/)\v ) (@-82\v 1-p)? ¥ b
L[2-38+ fw(1 - )] ((1 — 3B8)mgn + m)z L 32+ w(1 = B)(1+38)mg
(1-5)2 ¥ 2(1 - B)¢

o is, for short, the “shear.” o = 0 is a necessary condition
to obtain a FRW cosmology since it implies H; = Hy =
Hj3 (see Chauvet et al. [30]). If the sum of the squared
differences of the Hubble expansion rates tends to zero, it
would mean that anisotropic scale factors tend to a single
function of time which is, presumably, the scale factor of
a corresponding Friedmann model. However, in general
not all Bianchi models contain a FRW space-time.
Three extra equations describe the dynamical evolu-
tion of the “anisotropic scale factors” a;, a3, and as:

I \'%

0, 2/a2,
*R;; = 0, 2/a2,

0, 2/a2,

In the next section it is first shown that ¢ = An%4Bn+
C includes solutions for the above, purposely chosen ho-
mogeneous but anisotropic, cosmological models. It will
be shown that the obtained v class of solutions consists of
two parts: the isotropic and the anisotropic one. Then, it
will be clear that the latter approaches zero as the cosmic
time parameter evolves, i.e., these solutions tend asymp-
totically to their corresponding isotropic group solutions,
the FRW models.

IV. ANISOTROPIC SOLUTIONS
AND THEIR ASYMPTOTIC BEHAVIOR

We show next that ¥ = An®? 4+ Bn + C is a solution
for the homogeneous but anisotropic, Bianchi-type cos-
mological models.

A. Bianchi type I

For this Bianchi-type model, *R; = 0. It is straight-
forward to see by substituting

% = An®*+ Bn+C
into Eq. (14) that A has the same expression as the one

—(Hy — H2)? — (H; — H3)? — (Hs — H;)® = o(n) . (15)

(WH;) =1+ (1 - B)wlmg + 9 a%® *R;j, i= 1,2,3.)
(16

From Egs. (14)—(16), and for the rest of this paper, we
use the following notation and conventions: a is presently
the mean scale factor, a® = ajaszas, the H;’s i = 1,2,3
are the Hubble expansion rates, H; = a}/a;, *R; is the
“spatial three-curvature” that belongs to a given Bianchi-
type model, *R; = E?=1 *R;; is a column sum, and the
*R;; are “partial curvature” terms pertaining to specific
scale factor dynamic equations: in our case,

X
[a1 — a3 — aj + 2a3a3]/(—2a°),
[a7 — a3 — af + 2afa3]/(—24°), o
[a3 — a% — a} + 2a2a2]/(—2a8).

given by Eq. (6) (from now on we attach a subindex
to the A, B, and C to distinguish between the different
Bianchi models):

A, = [2-38+3(1 - B)’wlmg (18)

By direct substitution of the above results into Eq.
(15) one finds that B, remains undetermined and may
be put equal to any convenient, but arbitrary value, and
that

3(1 — B)*(3 + 2w)mg C,

1— 2
= D02 4 3 4 1) — mpnda, + B

+(1—-3B8)mgnoB, , (19)
where the h;’s are constants such that
1 a3' hi
==+ — 20
Hi=3m+3 (20)
The nonvanishing constants h;’s determine the
anisotropic character of the solutions. They obey the
condition

hl + h2 “+ h3 = 0. (21)

By integration of Eq. (20), using Eq. (2) and Eq. (5),
one finds explicitly a = a(n) (first obtained by Ruban
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and Finkelstein [22]; see also Chauvet and Guzmaén [31]).

For the Bianchi models in general, when Eq. (5) is
substituted into the Raychaudhuri equation (15), one ob-
tains the shear as a function of ¢ and the h;’s (with

ny n2 h3 - 0)1
3 h2 + h2 + h2
0,( ) ( 1 22 3) i

This term permits, in addition to the only one allowed
A = 0 solution for the k& # 0 FRW models, two other
solutions with A # 0 such that! ¢ — 0 as n — oo (or
t — 00). It is in this sense that these solutions may evolve
in the course of their time evolution to their isotropy
solutions, depending on the value of the discriminant,
discussed in Ref. [22] (note a mathematical characteristic
of the anisotropic solutions shown by the above results,
i.e., the relation between the exponents h;, and the B
and C coefficients). Similar results have been recently
reported in the context of more general, w(¢), scalar-
tensor gravity theories; see Ref. [33].

(22)

B. Bianchi type V

Equation (5) is a solution for this Bianchi model, with
A, B, and C equal to

_ _(1-38)%mg
v 1+38) ’

1-383
B -2 — .
v (1 ¥ 3ﬂ> o
A, and B, are equal to the ones obtained for the
isotropic, k = %1 cases, but

_(1+38)%(hi+R3+AHY)

A (23)

I

mg (1+3B8)C, = 186 + w(1 + 30) U
(29)
so that
o [Er0 —m(1+sﬂ>w]mﬁr’?‘l‘—'—s”ﬁ’f
—2(1+ 30)
x [A,n? +B‘,n+c‘,]“ﬂ1‘¥%f (25)
and
lela_g"__ai=_ 1 (1-3B8)mgn+mo
3a2 a 1+38)(Ayn?+B,n+C,)

(26)

In fact, one does not need to impose this condition, but
just 7 > 7n. to warrant that the o can be bounded from
above. The value 7. should be such that it corresponds to
times before nucleosynthesis takes place (or much earlier);
otherwise, the standard nucleosynthesis can be altered (see
Ref. [32]). Nevertheless, by assuming the PEP, this is even
not necessary [9].
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The scale factors are

- [ —2(1+ 36) ]Wi—sﬂ
T RT A =B)(T+38)wlmg
x [Ayn? + Byn + C,] 1 (27)

and

[_2’12 rctanh
az = aj exp arctan
vA

—2(1 —3p8)[(1 — 38)mgn + o)
X( (1+38)VA )] a0
(28)

or

— 2hs ct
az = aj exp mar an
y (—2(1 —3p)[(1 — 38)mgn + ’70])} , A<o,

(1+38)vV-4A
(29)

with

azaz = af . (30)

These solutions are new (some other Bianchi type-V so-
lutions in the JBD theory are also given in Ref. [34]).
However, for A =0,

ag = az = ax (31)

is obtained. This last solution is clearly seen to be the one
previously obtained for the isotropic, FRW model, with
an open space (k = —1). Again, the A = 0 is obtained
only if hl = hz = h3 = 0.

Independent of the value A might have, hy+ha+h3z =0
is always true. In the type-V models with A # 0 one

must have that h = —h3z with A; = 0. For the latter
case, truly anisotropic solutions are obtained with
—8(1 — 2
A=B2 -4A,C, (1 - 36) R: . (32)

T 188+ (1 +30)%w

C,, being proportional to the sum of the squares of the
constants hy and hg, carries information concerning the
nature of the anisotropic character of this Bianchi-type
model. For instance, by setting B, = C, = 0 from the
beginning and by trying to solve the field equations one
obtains just the isotropic part of the solutions; see Ref.
[31].

Since Eq. (22) holds for all type-V models, the A # 0
solutions could have had asymptotic behaviors to call
them “nearly isotropic in appearance” if 0 — 0, when
n — oo. In this regard one finds that for the A < 0
solution a; tends to a; exp(mwhy/+/—A) and a3 tends to
ay, exp(—mhy/+/—A), and so when 7 reaches the value
(100v/—A — B, )/2A, these two scale factors differ from



each other by 1%, and this solution is then “99% near”
the A = 0 solution, corresponding to the FRW cosmol-
ogy for k = —1 [see Egs. (12) and (13)]; a similar be-
havior was also found for w(¢) theories; see Ref. [33].
On the other hand, for the A > 0 model the scale fac-
tors can never approach to a same, single, function of 7,
because 7 is bounded; see Eq. (28). Nevertheless, it is
significant that this last can be an inflationary solution
without the need of an inflaton potential; however, the
“no-hair conjecture” is not automatically satisfied, since
the solutions are highly anisotropic. Then, the sign of
the discriminant determines the type of solution. In GR
the Bianchi type-V 8 = 1/3 (Ruban) solution tends to
isotropize as the time goes to infinity. This is consis-
tent with the asymptotical stability analysis for which
the perturbated vacuum (Joseph) solution is asymptot-
ically stable if B > —1/3; see Ref. [12] and references

J
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P —[2(2 - 3B8) + 3(1 — B)2w|m,
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therein. Here, in the JBD Bianchi type-V model to find
isotropizable solutions one must have A < 0, implying
that 183 + (1 + 33)2w > 0, which for the experimentally
required w > 500, is clearly satisfied. Indeed, not only
the fluid type (3) but also w plays a very important role
in the solution’s behavior.

C. Bianchi type IX

We analyze the solution for this model with the H;’s
given by Eq. (20). However, in this case the h;’s cannot
be constants. Instead, the h;’s = h;(n)’s are now new,
and unknown, functions of 7.

With Eq. (20) substituted into Eq. (16), one must
solve for

R = a%y *R. .. — P = . 33
1 a "/) R-lx 3(1—ﬂ) k) ? 1’2’3 ( )
The sum of the above three equations is
" 2
68, x _ P —[2(2 - 368) + 3(1 — B)*wlmg 34
a*P *Riy (1 —B) ’ ( )
given explicitly in terms of a;, a2, and ag,
a} + a} + aj — 2(a?a? + a?a? + aal) _ ¥ —[2(2-38)+3(1 - B)2wlmg (35)
24501=F) (1-A)¥ ’
from which any chosen scale factor can be solved as function of the other two remaining ones.
Now, assuming the solution for v, given by Eq. (5), also to be valid, one has from Eq. (15) that
2 2 2 = g2 _ Pn? S 36
RE+h b= KD = —onm o [Pt Qn+ 8] (36)
where P, @, and S are constants, given in terms of A, By, and C\,, which stand for
P=XA, —[44,x - Y]1-38)*mg ,
Q=XB, — [4Alx770 - 2Ym,g170 + 2(1 - 316)le](1 - 3;B)mﬂ ’ (37)
S =XCyx —[2A + 2(1 — 38)mgnoB,x — Ymgng] s
where
X =3(1+36)(1 - B)’wmg + 6(1 — B)mp — 2(1 + 30) A ,
Y =2(2-38) +3(1 — B)*w (38)
[
The isotropic model solution that belongs to this K244k 41
Bianchi-type model is obtained when A = 0, where one hy = — [m] K,
has that hi(n) = ha(n) = hs(n) = 0 (see Sec. II). et R+
Under any circumstance the functions h;’s, which must 2
still obey the condition h; + hy + hz = 0, determine the hy = [ —K"+2k+2 ] \ (39)
anisotropic character of the solutions. V6(k2 +K+1)

The h,’s can be given as

and
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22 + 2k — 1
hy= | TR | g,
° [\/é(n2+n+1)]

where now k is another, new and yet unknown, function
of n: Unfortunately, for A # 0 we were not able to obtain
the explicit functional dependence of k = k(7). Even so,
an asymptotic isotropic behavior, similar to other mod-
els, for the present solutions is also expected based on
the strength of Eqs. (22) and (36).

V. DISCUSSION AND CONCLUSIONS

The JBD cosmological equations for barotropic perfect
fluids are seen capable of being displayed, through the
use of reduced variables, in a way which first permits one
to obtain nontrivial, significant solutions with little effort
and next, but more importantly, to express them in terms
of the single function v = An? + Bn + C. The fact is
that the aforementioned solutions belong to a class which
embraces Bianchi-type models, some of which, in turn,
comprise the FRW isotropy groups. Moreover, stated ex-
plicitly this class contains the general (analytic) matter
solutions for the Bianchi type-I model as well as solutions
for the other two Bianchi types examined in this paper,
which in turn include special ones, a subclass, that tend
asymptotically, as n > 7., to the corresponding FRW
solutions. The reason for the existence of this set is that
the functional form of the product of the scalar field ¢
times a power of the mean scale factor, a® = ajazas, as a
function of the time parameter 7 is a solution to the equa-
tions used in this work independent of the metrics that
give rise to any possible present anisotropy for Bianchi
types-1, -V, and -IX models, and it has the FRW form.
In other words, for a perfect fluid with a barotropic equa-
tion of state, we have shown that there exists a class of
solutions for the Bianchi I, V, and IX types that contain
their corresponding FRW models. The type-V solutions
are new, as well as those for the type-IX, but in the lat-
ter case because of the complexity of the curvature terms
it is only possible to give the explicit form, in terms of
1, of the scale factors a;’s up to the single, unknown,
function k£ = k(7). Nevertheless, if n > 7., an asymp-
totic isotropic behavior for a A # 0 solution should be
expected in view of Egs. (22) and (36). Moreover, there
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are also other solutions obtained from %, through Egq.
(5), which describe other Bianchi-type models; see Chau-
vet and Guzmdn [31]. All of the above are salient and
remarkable properties of the class of solutions that we
have found. Even more, the v solutions also include the
asymptotic solutions, the type-I models (A = 0,> 0, and
< 0 ), for all Bianchi types near the initial singularity,
when spatial curvature terms can be neglected. They are
in this sense, up to the matter terms, comparable to the
Kasner vacuum solution of GR.

We want to note that in JBD theory the separate cos-
mological models are to be distinguished between them-
selves in a first instance, through the different values
that the constants A, B, and C obtain. Also signifi-
cant is the fact that B and C carry physical information
on the nature of the presence, or even the absence, of
the anisotropy that any given models may have. Re-
member that these constants also determine the value
of the discriminant A in terms of the physical parame-
ters B and w. We stress the fact that solutions for the
Bianchi models corresponding to A = 0 that possess an
isotropy group recover the FRW solutions: Type I goes
into the corresponding flat FRW one, type V into the
open FRW one, and the type IX into the closed FRW
one. Meanwhile, for the anisotropic solutions with A # 0
the models isotropize in the course of their time evolu-
tion by tending in the type-I case to its corresponding
FRW model, while for types V and IX their evolution is
toward the A = 0 solution which is the only one avail-
able to describe a nonflat FRW cosmology in the JBD
context.

The present observational evidence points to a high de-
gree of isotropy of the CMB radiation, and it is a decisive
argument in favor of the nowadays large-scale homoge-
neous and isotropic expansion of the Universe. Then, if
the initial stages of the expansion had a homogeneous
but anisotropic behavior, one could follow, within the
JBD cosmological theory, how an actual nearly isotropic
expansion can come about.
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