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The strongly coupled lattice gauge models with confined fermion and scalar matter fields, which
in a certain phase break dynamically a global chiral symmetry, are reconsidered from the point of
view of the existence of heavy fermions. In these models heavy fermions can arise as neutral bound
states of the fundamental fermion and scalar. We call this mechanism of dynamical fermion mass
generation the shielded gauge mechanism. The scalar field induces at strong gauge coupling a second
order phase transition which is necessary for a continuum limit. Therefore the mechanism might
well exist also in continuum. In this case, assuming that strongly coupled chiral gauge theories with
scalars have similar dynamical properties at strong coupling as the vectorlike models investigated on
the lattice, the discussed mechanism could be considered as an alternative to the Higgs mechanism.
In particular, if the broken global chiral symmetry is SU(2) and the heavy fermion interpreted as
a top quark, the mechanism is analogous to some gauge models for the top quark condensate. We
present some numerical data obtained in the quenched approximation of a model with vectorlike
U(1) gauge symmetry. The observed scaling behavior of the chiral condensate and of the fermion
mass and also the properties of Goldstone bosons are the first encouraging steps in a study of the
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L. INTRODUCTION

The search for alternatives to the Higgs mechanism
generating the masses of gauge bosons and fermions in
the electroweak theory is motivated by a feeling that this
mechanism is handmade, and some dynamical explana-
tion might be actually possible (for a recent review see
Ref. [1]). A fundamental Higgs field is considered to pro-
vide a comfortable description of the spontaneous sym-
metry breaking, allowing a perturbative approach, but
its use might not be really necessary. Therefore most al-
ternative attempts try to avoid the introduction of a fun-
damental scalar field. The obligatory Goldstone bosons,
as well as the Higgs boson, should it exist, are interpreted
as composite states, formed by some strong dynamics be-
yond the standard model.

However, one should distinguish between a fundamen-
tal scalar field whose self-interaction triggers the sym-
metry breaking already on the tree level, as in the con-
ventional Higgs mechanism, and such a field playing
some different important role in the dynamical symmetry
breaking occurring only beyond the perturbative expan-
sion. In this second role a fundamental scalar field is
acceptable provided its particle excitations are massive
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or confined.

Already known examples are strongly coupled Yukawa
models, which can exhibit spontaneous chiral symmetry
breaking (SxSB) even if the bare scalar potential in the
action does not have the form of the classical Mexican hat
[2]. On the lattice the SxSB can occur in such models
even if the nearest neighbor coupling of the scalar field
is antiferromagnetic, i.e., competing against the SxSB
generated dynamically by the Yukawa interaction term
(see, e.g., [3,4], for reviews see Refs. [5,6]). The scalar
boson can be made heavy within the joint upper bounds
on the Higgs boson and fermion masses [7].

In this paper we would like to point out that the expe-
rience accumulated on the lattice with strongly coupled
vectorlike gauge theories with matter fields suggests the
existence of still another alternative of dynamically gen-
erated SxSB. The mechanism we want to describe as-
sumes some new confining gauge field A of a compact
gauge group G, and makes use of a fundamental scalar
field ¢ which is coupled to this gauge field and, conse-
quently, confined. The scalar field, however, does not
generate the SxSB; in fact, it is crucial that ¢ acts against
it. The SxSB is generated dynamically by the interac-
tion between the gauge field A and some fermion fields
X, making the gauge-invariant condensate (xx) nonzero,
in an analogy to the SxSB in QCD.

The role of the scalar field ¢ is twofold. First, it shields
the G charge of the fermion x, so that composite G-
neutral physical fermion states of the form F = ¢y
can exist asymptotically in spite of the confinement of
the G charge. This is why we call our proposal the
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shielded gauge mechanism (SGM). In the phase with
SxSB (Nambu phase) the fermion mass mg is nonzero, so
we have the case of dynamical mass generation (DMG).
The Goldstone bosons are composed of x¥ and x. We use
the terms “composite” and “dynamical,” whose meaning
is somewhat obscure in strongly coupled field theories [8],
essentially in the same sense as they are used in QCD.

Second, to make the model applicable in the contin-
uum physics, we have to make the lattice constant small
and thus approach a phase transition of second order.
Usually phase transitions in lattice gauge theories with-
out scalars occur at couplings of order one (lattice QED)
or even at zero coupling (lattice QCD). But the scalar
field has the tendency to suppress the SxSB and induces
for very strong gauge coupling a new second order phase
transition, at which the chiral symmetry is smoothly re-
stored. In the scaling region of this phase transition in
the Nambu phase, the mechanism might be applicable to
the continuum physics if the corresponding field theory
is nonperturbatively renormalizable.

What kind of continuum physics? If, e.g., the bro-
ken global chiral symmetry is SU(2) with one fermion
field doublet x coupled to A, we find a massive fermion
doublet F' = ¢ty and three massless Goldstone bosons
7, all being gauge invariant with respect to G. Because
of confinement due to the new gauge interaction there
are no physical states corresponding to the field ¢, but
bosonic gauge-invariant states consisting of x, ¢, and A,
e.g., of the type ¢'¢ and xyx, should be expected, some
of them possibly looking like the Higgs boson. The sit-
uation is then quite similar to the standard model with
the standard gauge fields switched off, symmetry break-
ing present, and one degenerated weak isospin fermion
doublet heavy. The other fermions, not coupling to A,
are massless. If the standard SU(2)®U(1) gauge fields
are then switched on, the broken global SU(2) changes
into the local one, and the n’s lead to the massive vec-
tor bosons (see, e.g., [9,10]). The Higgs mechanism has
been replaced by the SGM but, of course, the fermion
spectrum is quite nonrealistic, except possible specula-
tions about a very heavy fourth family with small mass
differences in weak isospin doublets.

A more realistic application is suggested by ideas as-
cribing the top quark a special role in the symmetry
breaking. In fact, the mechanism we are describing might
be related to the top quark condensate models based on
new strong gauge interactions at some energies beyond
the electroweak scale, as suggested by various authors!
[9-15], and our suggestion is inspired by their work. Here
it is, e.g., assumed that the top-bottom doublet couples
strongly to A whereas the other fermions couple only
weakly or not at all to it, the interaction being flavor
diagonal. The problem is that these models are chiral
gauge theories which we still cannot simulate on the lat-
tice. Thus for this kind of physical application of the

!We thank M. Lindner for many elucidating discussions on
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SGM we have to assume that the dynamics of strongly
coupled chiral gauge theories with scalars is similar to
the vectorlike lattice models.

We point out that the dynamical scenario we con-
sider is different from the hypothetical strongly coupled
standard model [16] searched for in vain some years ago
within the same class of lattice models. There a confining
phase with shielded fermions but without the chiral con-
densate has been assumed, whereas we are looking for a
confining phase with both the shielded fermions and the
nonvanishing chiral condensate.

On the lattice, such a phase is long since known, and
the question is what are the properties of the continuum
limit in this phase. This is a fundamental question con-
cerning the strongly coupled, not asymptotic free gauge
theories. The long term aim is to find out whether and
how far the physical content of the SGM is different from
the usual Higgs mechanism. We do not insist on the
existence of some new nontrivial fixed point, accepting
the possibility that this mechanism could operate only
in some energy range in analogy to the “trivial” Higgs-
Yukawa sector of the standard model. Even in such a
case significant differences from the usual Higgs mech-
anism might be possible, as for example higher upper
bounds for its validity.

To discuss the SGM we consider a specific chirally
symmetric lattice model with a staggered fermion field
X, the gauge field described by the group elements U,
and the complex scalar field ¢ of fixed absolute value
(xU¢ model). As the gauge group we choose the compact
G=U(1) group with both scalar and fermion fields hav-
ing “charge” one with respect to it. This lattice model
can be considered as a generic case for the models we
have in mind, since it is a confining theory at strong cou-
pling and thus similar also to non-Abelian theories. We
note, however, that some similar extensions of the stan-
dard model based on the U(1) gauge group with strong
coupling exist also in continuum [9,11,13].

In spite of the existing experience with this and similar
lattice models, the proposed SGM is yet quite speculative
because the critical line, which should be used for an ap-
proach to the continuum limit, is at present only poorly
understood. The scaling behavior and the properties of
the continuum limit at this transition are not yet known.
However, we argue that at least in the limit of infinite
gauge coupling the SGM makes sense. Here we recover
a lattice transcription of the Nambu—-Jona-Lasinio (NJL)
model which has been used by various authors as an effec-
tive theory for some strong dynamics with SxSB beyond
the standard model [17]. This observation is based on
the Lee-Shrock transformation [18] relating the lattice
theories with fermions, gauge and scalar fields at infinite
gauge coupling to a pure four fermion theory on the lat-
tice (see Sec. IIC). Thus it is possible that the SGM can
be described by the NJL model in the low energy limit
and that the xU¢ model is a generalization of the NJL
model.

In this paper we report results of a nonperturbative
investigation of the SGM by means of numerical sim-
ulations of the four-dimensional (4D) xU¢ models on
the lattice in the quenched approximation. Several xU¢
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models in 4D have already been studied numerically some
time ago, both in the quenched approximation (e.g.,
[19-23]), and with dynamical fermions [24-28]. The aim
was either to clarify the general features of the models or
to search for the strongly coupled standard model. But
the questions we are asking now require a more system-
atic investigation of several relevant physical quantities
in the Nambu phase, in particular the chiral condensate,
the fermion mass, and the bosonic spectrum. The rea-
son is that we want to look for lines of constant mass
ratios, which can best elucidate the physical content in
the continuum limit.

Up to now we obtained quenched numerical results for
the chiral condensate, the fermion mass, and the pseu-
doscalar Goldstone boson mass, and have got an insight
about the behavior of these quantities in the vicinity of
the critical line, where the approach to the continuum
limit should be performed. We also gained first experi-
ence with the determination of scalar and vector bound
states. These numerical results confirm the existence of
the Nambu phase and the expectations about the scaling
of some fermionic observables. They support the hope
that a sensible continuum limit can be found. For the
long-term goal to investigate the renormalizability prop-
erties of the xU¢ models in 4D further simulations with
dynamical fermions [29] are necessary.

We want to remark that the SGM can be consid-
ered also in lower-dimensional models. As will be ex-
plained, the relationship between the xU¢ models and
four fermion theories at strong gauge coupling [18] is in-
dependent of the dimension. Therefore both in 3D and
2D the SGM exists as a renormalizable quantum field
theory at least in the strong coupling limit of the xU¢
model. Namely, in 3D we recover in this limit the nonper-
turbatively renormalizable [30] 3D Gross-Neveu model.
However, we do not yet know whether in 3D the SGM
for a large, but finite, coupling is in the same universality
class as this model.

In 2D, we find at infinite gauge coupling the cherished
asymptotically free chiral Gross-Neveu model [31] which
is thus related to the SGM in 2D at large coupling. This
2D model exhibits DMG without SxSB [32] due to the
Mermin-Wagner-Coleman theorem. This shows that the
DMBG is a little bit more general phenomenon than the
SxSB, and we therefore prefer to use the term DMG in
this paper.

The outline of the paper is as follows. In the following
section we review the already known relevant properties
of the lattice xU¢ model we are investigating. In Sec. III
we describe the properties of the Nambu phase and of
its critical boundary. Then we discuss the question of
renormalizability. In Sec. IV the numerical data are pre-
sented. In Sec. V we give a summary and conclude with
several speculative remarks.

II. LATTICE xU¢ MODEL
AT STRONG COUPLING

Here we summarize the previous relevant knowledge
about the lattice xU ¢ models with coupled fermion field
X, gauge field variable U, and scalar field ¢.

A. The xU¢ model with U(1) gauge symmetry

For definiteness we make the following choices on the
Euclidean hypercubic lattice in d dimensions.

x is one staggered fermion field. The model has the
continuous global U(1) chiral symmetry with respect to
the transformations

TQE, iae, —

Xz — € Xz Xz > € Xz » (2-1)

with the standard e, = (—1)®***®¢_ This is, how-
ever, only a residual symmetry, achieved on the lattice,
whereas in the continuum limit the expected global chi-
ral symmetry is U(Ns)QU(Ng), Ny being the number
of fermion species found in this limit. The charge of x,
determining its U(1) gauge transformation properties, is
one.

U is the gauge field defined on the lattice links. The
link variables are elements of the compact gauge group
U(1). They can be imagined as

Us, = €924 (@) | (2.2)
with A, (z) being the Abelian gauge field, g the gauge
coupling constant, and a the lattice constant.

¢ is a complex scalar field of charge one. It is conve-
nient to impose the constraint |¢| = 1, which corresponds
to the choice of infinite quartic scalar self-coupling. This
constraint is known not to restrict the physical content of
the scalar sector. For example block spin transformations
set this constraint off.

The action is

Syvg =Sy +Su+ S84, (2.3)
where
1 d
Sx = 2 Z’Zw Z Nue Uz, uXa+u — U;Au,uXm—u]
. x p=1
+amg Z XzXz (24)
Su =B _[1—Re{Up}], (2.5)
P
d
Sy = _"”"Z Z[¢lUw,u¢m+u +Hel]. (2.6)

z p=1

Here 8 = a~%/g%, Up is the plaquette product of link
variables U, ,,, and n,, = (—1)® T *t2«-1_ All the fields
and coupling parameters are dimensionless, and therefore
the calculated masses and expectation values are always
in the lattice units; e.g., the masses are of the form am, m
being the mass in physical units. The hopping parameter
k vanishes (is infinite) when the squared bare scalar mass
is positive (negative) infinite. The bare fermion mass
mg is introduced for technical reasons, and the model is
meant in the limit mqo = 0.
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B. Properties of various subsystems in 4D

First we shall describe those properties of various sub-
systems which are relevant for the understanding of the
whole xU¢® model in 4D at strong gauge coupling and of
its phase diagram shown schematically in Fig. 1.

Sy at g = 0. Setting U, , = 1, this action describes
a free staggered fermion field. Because of the lattice
fermion doubling the model in 4D describes Ny = 4
fermions in the scaling region. For mo = 0, the global
chiral symmetry is then U(4)@U(4).

Sy. This is the pure gauge theory on the lattice. For
a compact gauge group it is confining at small § (strong
coupling) in the sense of the Wilson loop criterion. The
chosen U(1) gauge theory with action (2.5) is a generic
example. It has a phase transition around 8 = . ~ 1.0,
separating the confinement and Coulomb phases. The
spectrum in the confinement phase consists of glueball-
like states (“gaugeballs”).

Sy + Su. The coupled fermion-gauge system at x = 0
exhibits for small 8 the SxSB with a nonvanishing chiral
condensate (xx) and massless Goldstone bosons. The
system is also confining in the sense that only gauge-
invariant states such as xx and gaugeballs are present in
the spectrum. The situation is quite similar to QCD. The
confinement-Coulomb phase transition is of first order
[33] and occurs at 8 = B. ~ 0.89 for Ny = 4 (point C in
Fig. 1).

S4 at g = 0. We restrict our description to £ > 0. The
pure scalar field theory, self-interacting in consequence
of the constraint |¢| = 1, has the global U(1) symmetry;
i.e., it is the XY model in 4D. This symmetry is gauged

oo
Higgs
2 N . (xx) =10
S . E
K = T
Nambu S
<YX> >0 Coulomb
(xx)=0
0
0 C oo

FIG. 1. The schematic phase diagram of the xU¢ model
(2.3) in 4D at mo = 0. The emphasized points are as fol-
lows: N is the critical point of the NJL model, which is the
limit of the xU¢ model at 3 = 0, E the critical end point of
the Higgs phase transition line ET'S, T the triple point, C
the phase transition from the confinement (at strong gauge
coupling) to the Coulomb phase (at weak gauge coupling) in
the model without the scalar field, and S critical point of the
spin model. The Nambu, Higgs, and Coulomb phases are de-
scribed in the text. The dashed line corresponds to a 2nd
order phase transition, full lines to 1st order transitions.

for g > 0. At g = 0 it is spontaneously broken for x > k.
with k. ~ 0.15. Below x. the symmetry is restored. The
phase transition at k. (point S in Fig. 1) is of magnetic
type, the order parameter being (¢) as in spin models
of ferromagnetism. The mass amg of the lowest mass
excitation of the ¢ field below k., the ¢ boson doublet,
diverges as kK — 0 and vanishes as kK — k..

(Su + Sg). This “U¢ sector” is a typical example of
lattice Higgs models, studied intensively nearly 10 years
ago (for a review see, e.g., Ref. [34]). Its limit cases at
B = oo and kK = 0 are the pure scalar theory Sy at g = 0,
and pure gauge theory Sy, respectively. The limit cases
B = 0 and k = oo have no phase transitions [35], as can
be seen by choosing the unitary gauge. The magnetic
pure scalar field transition point S extends for 8 < oo
into a line of Higgs phase transitions, the line ETS in
Fig. 1, whereas the confinement-Coulomb transition C is
the basis of the line CT, T being a triple point. The
ETS line is weakly first order, F being a second order
critical end point. At this point the correlation length,
corresponding to the inverse scalar boson mass in lattice
units, diverges.

The Higgs mechanism operates above the ETS line,
whereas below the ET line confinement takes place, and
the physical states are gauge-invariant composites of ¢}
and ¢, or gaugeballs. The most important are the scalar
and vector bosons. Above the ET'S line they correspond
to the Higgs and gauge bosons in the gauge invariant
formulation of the Higgs mechanism. Below the ET line
they are massive bound states of two massive scalars.

The analytic connection between both regions [35] (the
so-called complementarity occurring in the absence of
fermions) gave rise to speculations about the strongly
coupled standard model [16]. However, the transition re-
gion to the left of the point E is difficult to understand
in the continuum field theory language (for a recent at-
tempt to explain complementarity see Ref. [36]). Just
this is the region where we expect the SGM to operate
when the fermions are included.

There is no local order parameter distinguishing the
regions above and below the line ET'S, as (¢) = 0 identi-
cally for any g > 0. Nevertheless, the expectation value
of the link product in Eq. (2.6), the so-called link energy
Ej, [see Eq. (4.2)], is very small below the ET'S line and
starts to rise with increasing x above this line, in some
reminiscence to the behavior of (¢)? in the g = 0 case.
This can be used for a localization of the Higgs phase
transition line [37-39]. Another, more expensive possi-
bility is to calculate the masses (in lattice units) amg and
amy of the scalar and vector bosons. They have minima
on the ETS line when considered as functions of « at
fixed 3 [40].

We note that the U¢ sector describes the behavior of
all observables constructed from the U and ¢ fields in
the xU¢ model in the quenched approximation. This
approximation, neglecting virtual fermion loops, is fre-
quently used in numerical simulations of theories with
fermion fields on the lattice.

If the constraint |¢| = 1 is not imposed, the end point
E moves to the left as the quartic scalar self-coupling
decreases, eventually reaching # = 0.
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C. The relation of the xU¢ model to four-fermion
theories in the strong coupling limit

At B8 = 0, the xU¢ model in d dimensions can be
rewritten exactly as a lattice four-fermion model [18]. In
the path integral

Z = / I dx=dx-d¢=dUs nexp{—Sxvs}, (2.7)

z,p

J

d
_ _ _ _ am _
S4_f = - E 5 [GXwX:chH—quH—u - %nuz(XzXaH-u - XI+;LX:D) + ” 0 E XzXz »
z

z pu=1

with
Ju Ju = / dUe*RUy = I,(2x),
r =r(k) = — and

S Jy = / dUe* RV} = I4(2k).

(2.10)

The fermion field has been rescaled by /7. The parame-
ter r is an analytic function of k increasing monotonically
from 7(0) = 0 to r(c0) = 1.

The action (2.9) obviously describes a lattice version
of the four-fermion theory. The coupling term contains
the nearest neighbor variables because the Grassmann
variable x has only one component. The four-fermion
coupling parameter G is related to x via r:

. 1-—1r2

G =
4r2

(2.11)

From (2.10) one sees that G is decreasing monotonically
with increasing k; G = co at Kk =0, and G = 0 at Kk = co.

As discussed in [18], in S45 (2.9) the first and third
terms are explicitly gauge invariant. For the second term
it should be noted that the only contributions to the ex-
pansion of the exponential which survive the Grassmann
integration are of the form [] .o X=Xz, C being closed
loops, hence also the second term is gauge invariant.

The Lee-Shrock transformation (2.7) and (2.8) is a
gauge-invariant analogy to the Hubbard-Stratonovich
transformation used to bilinearize the four-fermion ac-
tions by introducing an auxiliary scalar field. The Lee-
Shrock transformation introduces for the same purpose
both an auxiliary gauge field (there is no pure gauge field
term in the action, which corresponds to g = o0) and a
dynamical scalar field. The scalar field can be avoided,
but the field U is then a vector auxiliary field without
being gauge invariant [41]. The transformation (2.7) and
(2.8) holds only for one staggered fermion field, it can
be generalized, however, to the case with several fermion
fields. The resulting pure fermionic theory then contains
multifermion couplings of higher degree. The constraint
|#| = 1 is important for the possibility to integrate out
the scalar field.

In 4D, the action (2.9) describes the lattice NJL model

with S,ue given in (2.3), at B8 = 0 the scalar and gauge
fields can be integrated out exactly. This results in

Z =rNJjM /H dxzdXzexp{—Saf}, (2.8)

where N and N, is the number of lattice sites and links,
respectively, and

(2.9)

[41-43], having SxSB and DMG for G > G, =~ 0.28 cor-
responding to k < k. ~ 0.97. The character of the phase
transition is chiral, i.e., the order parameter is (xx). In
lower dimensions the lattice Gross-Neveu models are ob-
tained.

D. Phases of the complete xU¢ system in 4D

The phase diagram of the xU¢ model with U(1) gauge
symmetry in 4D is shown schematically in Fig. 1. It
has been obtained by studying various limiting cases and
by numerical simulations with quenched (e.g., [19-23,26])
and unquenched fermions [24-28].

The chiral phase transition of the NJL model at 8 = 0
(point N) extends to nonzero values of 3. As pointed out
in Ref. [20], this can be derived by means of a convergent
expansion around 8 = 0. Therefore, this transition must
remain to be of second order at least at small nonzero 3
and cannot end in the interior of the phase diagram. Fur-
thermore, some properties of the NJL model will persist
also at small nonzero 3.

However, the striking observation is that, within the
numerical precision, the chiral phase transition joins the
Higgs phase transition line ET at point E, forming a
smooth line NET. This is so both in the quenched and
unquenched case, though the fermion feedback changes
somewhat the position of the line ET with respect to
the quenched approximation. The position of the chiral
phase transition line N E changes correspondingly. In the
vicinity of the point E new critical phenomena, different
from the NJL model, might occur.

To our knowledge the interweaving of the chiral and
Higgs phase transition is not understood theoretically.
(When the charges of the scalar and fermion fields are
different, it does not occur [19,20,22].) Assuming that
the transition lines join exactly, there are just two lines
of phase transitions, the NETS line and the CT line,
which separate the g > 0, k > 0 area into three phases.

Nambu phase. This is the area below the NET line.
Here the chiral condensate (¥xXx) is nonvanishing. Both
x and ¢ fields are confined, in analogy with the quark
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confinement in QCD. The mass am g of the fermion state
F = ¢ty is nonzero, and thus the DMG occurs. The
justification for the name of this phase is provided by
the 8 = 0 limit. In this limit the F' and x fermions are
identical. As explained above, here one recovers the four-
fermion model with the mechanism of mass generation,
which is traditionally called dynamical. In this model the
ideas of the top quark condensate have been originally
formulated [17].

Higgs phase. This is the area above the NETS line.
Here (xx) = amp = 0 and the Higgs mechanism op-
erates. All physical states are gauge invariant and the
U(1) charge is screened by the scalar condensate [44,40].
Choosing the unitary gauge, one recovers for weak g by
standard perturbative methods the massive U(1) vector
boson and the Higgs boson.

Coulomb phase. This is the area below the T'S line.
The gauge boson is massless and (xx) = amp = 0.

A very important observation in 4D is that the line
NE is of second order, whereas the ETS line is most
probably also in the unquenched case weakly first order
[24,27,29]. In this case the point E is a tricritical point,
where the order of the phase transition changes from the
second order (the NE line) to the weakly first order (the
ETS line).

III. DYNAMICAL MASS GENERATION AND
CHIRAL PHASE TRANSITION IN STRONGLY

COUPLED GAUGE THEORIES

Numerous investigations of various strongly coupled
gauge theories with fermions on the lattice revealed that
the DMG is a generic property of these theories. It
occurs not only in QCD and similar non-Abelian the-
ories, but even in the lattice QED at strong coupling, in
both its compact [33] and noncompact [45,46] formula-
tions. Can such a naturally occurring dynamical SxSB
and DMG be of use for the symmetry breaking in the
standard model or beyond it, e.g., replacing the Higgs
mechanism? What is required is a mechanism generating
fermion masses, breaking chiral symmetry, and providing
three Goldstone bosons, which is the role of the Higgs-
Yukawa sector of the standard model. The large top
quark mass makes acceptable an approximation to the
fermion spectrum, in which only the top quark is massive,
the other fermions of the standard model being massless.
In this simplified situation we need to break dynamically
a global chiral SU(2) symmetry and ensure that there
will be a massive fermion in the spectrum. This can be
the top quark, as suggested in the top quark condensate
models [17,12,13,9,15], or possibly some fermion(s) in a
new generation.

Except for being nonchiral, the lattice xU¢ model with
the compact U(1) gauge group is a prototype of the lat-
tice model with such properties. The DMG occurs natu-
rally at strong coupling and not too large < (the Nambu
phase in Fig. 1) due to the gauge interaction, i.e., with-
out any help of the charged scalar field ¢. The question
is how to approach the continuum limit and what are its
properties, in particular what spectrum is to be expected.

A. Confinement and spectrum in the Nambu phase

In order to discuss the possible ways to the contin-
uum, let us first consider the spectrum within the Nambu
phase. The fundamental fermions are confined, but the
scalar field allows us to construct gauge-invariant com-
posite fermions of the form F' = ¢!x, which should corre-
spond to the physical fermions (here we neglect the quark
confinement due to QCD).

For an illustration of what can happen in the Nambu
phase nonperturbatively, one can think of QCD with a
scalar “quark” ¢ in addition to the standard quarks gq.
We would then expect the fermionic “mesons” of the form
otq, analogous to the above fermion F, the lowest one
being stable with respect to the interaction mediated by
A. Then there would be many other quark-antiquark
states. This analogy suggests the existence of massive
scalar and vector states such as ¢¢ and xx in the xU¢
model. Thus an occurrence of a Higgs-like bound state is
probable. The ratio of its mass to the fermion mass will
most probably depend on the way the continuum limit is
approached. Possibly also “gaugeballs,” states similar to
glueballs in the QCD, etc., might exist. In any case the
massless pseudoscalar Goldstone bosons composed of x
and x must be present. On the other hand, the scalar
field ¢ itself is confined.

It is important to realize that for small « all states con-
taining ¢ get much heavier than the yx states or gauge-
balls, because the constituent ¢ gets infinitely heavy as
k — 0. As seen from Eq. (2.6), the scalar field loses its
kinetic term in this limit and simultaneously decouples,
as there is no Yukawa coupling. At g = 0, when there
is no confinement, one can define the physical mass amy
of the scalar ¢ as the inverse correlation length in the
XY model, which is known to be infinite at x = 0. The
mass amyg is small only in the vicinity of the point S and
rapidly increases with the distance from this point. For
g > 0 one can think of the “constituent” mass of ¢ be-
ing roughly equal to amy at the same distance from the
line NETS as in the g = 0 limit. That this picture is
appropriate has been indicated by the quenched calcula-
tions of the masses of the ¢f¢ states in the present and
similar models [40,47]. The masses of various physical
states containing ¢ in the xU¢ model can be understood
qualitatively by assuming that the constituent mass of
¢ is small along the line NETS and grows below this
line with increasing distance from it, getting infinite at
x = 0. Thus also the fermion mass am g in lattice units is
large at small x and infinite at x = 0, in agreement with
fermion confinement, if the shielding scalar is absent.

B. Where to approach the continuum limit

As lattice models are applicable to continuum physics
only in the vicinity of critical points, where the masses
am in lattice units scale to zero, we have to approach
the boundary NETC of the Nambu phase. The phase
transition along the segment ET is most probably of first
order and thus unsuitable. The phase transition along
the CT line is probably of first order, too [33]. One
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can think of changing the gauge part of the action (2.5)
in such a way that this transition gets continuous [48].
However, as discussed above, the scalar constituent of the
fermion F' would be heavy at a larger distance from the
ETS line, and the fermion mass mp would be therefore
much larger than that of the various xx and gaugeball
states. This is undesirable if we look for an alternative
to the Higgs mechanism.

What remains is the NE phase transition line. Its
most important property is a smooth vanishing of (xx)
and of amp, like in the NJL model at 3 = 0. How-
ever, also other observables, constructed by means of the
U and ¢ fields, can be considered, though they, being
of the ¢'¢ or gaugeball type, have no natural counter-
part in the NJL model. The prominent examples are the
masses amg and amy of the scalar and vector bosons oc-
curring already in the spectrum of the U¢ sector. They
are important for the understanding of the Higgs phase
transition at point E and to the right of it. In particu-
lar, amg vanishes at the point E. Here also the order of
the phase transition changes, which in the statistical me-
chanics is usually associated with a tricritical behavior
(values of critical exponents, etc.) different from behav-
ior at ordinary critical points. Around the point E the
character of the phase transition changes from the chiral
to the mixed chiral-Higgs phase transition. Therefore,
when considering the approach to the continuum limit
we should distinguish between the vicinity of the point
E and the rest of the NE line. For example, quenched
calculations suggest that along the N E line, except the
point E, no state of the type ¢ ¢ scales, and thus would
not be present in the continuum spectrum. Gaugeballs
are not expected to scale if the NF line is approached.

It is instructive to elucidate the importance of the
scalar field for the chiral phase transition. The DMG
at small < is understood as a consequence of the strong
gauge coupling, like in QCD at large distances. The re-
quired fluctuations of the gauge field are, however, grad-
ually suppressed by the scalar field when & increases. In
the limit K — oo, which corresponds to large negative
squared bare scalar mass, the gauge field freezes. This
is seen from (2.6) in the unitary gauge, ¢, = 1, when
at kK = oo all the gauge variables are frozen at the value
U.,. =1, and consequently the chiral condensate is zero.
So the chiral transition on the line N ET takes place when
the suppression of the gauge field fluctuations by the
scalar field is sufficiently strong. This is consistent with
the picture in the NJL model at 8 = 0: here the DMG
ends when the four fermion coupling, which according to
(2.11) decreases with increasing k, is sufficiently small.

C. The shielded gauge mechanism in continuum

We are now in a position to formulate the idea of the
SGM in the xU¢ model. Essentially it is a possibility
that this model, or some suitable generalization of it, is
renormalizable in the vicinity of the NE line and thus
can be used for the continuum physics in a large range of
energies. This is meant in the following nonperturbative
sense.

On the lattice the concept of renormalizability is con-
veniently formulated in terms of the lines of constant
physics. These are the lines in the bare parameter space
along which the dimensionless ratios of physical observ-
ables stay approximately constant as the cutoff is varied.
Such lines, if at all, are found in the vicinity of critical
manifolds in their scaling regions, where the lattice arti-
facts are negligible. Lines of constant physics can hit the
critical manifold; i.e., the masses am in lattice units get
zero, as they are inverse correlation lengths. Then these
lines can be used for continuum physics without any in-
trinsic energy restriction, because the lattice cutoff can
be completely removed, as for example in the asymp-
totically free theories. It can also happen that lines of
constant physics approach the critical manifold, yet re-
main in some small but finite distance from it. The cut-
off can then be made large, but has to be kept finite,
and the lines can be used for continuum physics only in
some energy range substantially smaller than the cutoff.
This is the situation in the trivial theories such as the
Higgs-Yukawa sector of the standard model. Both types
of theories can be considered as renormalizable, in the
second case with an energy restriction.

For the SGM to operate it is necessary that the xU¢
model with the U(1) gauge symmetry, or some similar
model, have lines of constant physics in the Nambu phase
in the vicinity of the N E line. The NJL model points at
B = 0 can be special points of these lines, but we cannot
exclude that these lines completely avoid the 8 = 0 line
in Fig. 1. We do not insist that the cutoff can be removed
completely; i.e., that a nontrivial fixed point exists. This
would be nice and is not impossible but, as the success
of the standard model shows, not necessary.

It can happen that in a given model the lines of con-
stant physics do not exist. This is apparently the case
in the lattice NJL model [43]. In such a situation one
may try to generalize the model by introducing new fields
and/or couplings, so that the parameter space is enlarged
by a few relevant parameters, and the lines of constant
physics can be found. One well-known example is the
nonlinear ¢ model in 4D with its generalization to the
full ¢* theory. Also the NJL model can be generalized
to the Yukawa model by changing the auxiliary character
of the scalar field into a dynamical one [8,49,4,6]. The
strongly coupled QED on the lattice is another example
of a model in which the existence of the lines of constant
physics is at least disputed [45,46], but its appropriate
generalization has not yet been found.

We have two qualitative arguments for the expecta-
tion that the SGM could operate in the xU¢ model as
defined in Sec. ITA. First, the generalization from the
NJL model to the xU¢ model is similar to the step from
the auxiliary to the dynamical scalar field generalizing
successfully the NJL to the Yukawa model. Second, as 3
increases, the character of the N E line gets more compli-
cated than in the NJL case. As we have discussed above,
the chiral character gets mixed with the Higgs type of
phase transition, in particular around the point E. This
means that new relevant parameter(s) may come into
game. This should be expected in particular if the point
FE is a tricritical point.
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However, it could be necessary to generalize the model
by adding one or two more couplings, possibly in a sim-
ilar way as the four-fermion theories are generalized to
Yukawa theories [8,49,4]. To explain this generalization
we first recall that the four-fermion theories are usually
bilinearized by introducing a scalar auxiliary field, which
we call 2. Its symmetry properties are those of the global
chiral symmetry group. Such a transformation of a four-
fermion theory opens space for a generalization by includ-
ing also the kinetic and self-coupling term of the € field
into the action, obtaining in this way a Yukawa model
[8,49,4]. In 4D this generalization makes from the NJL
model a renormalizable theory. For a strong Yukawa
coupling the field Q can be understood as a composite
of xXx. An analogous generalization of the xU¢ model
might thus consist in introducing a composite scalar field
Q = xx with charge zero and including into the action
(2.3) also the kinetic and self-coupling terms of this field.

One might hope that the model has similar renormal-
izability properties as strongly coupled Yukawa models.
These models have been found to have DMG and fit
well into scenarios with SGM. We note that some gauged
Yukawa models have been considered [50] for similar pur-
poses. Finally, it could be also important to relax the
constraint |¢| = 1. Unfortunately, with such amend-
ments the models with SGM would get quite complex.

The idea of the SGM is profoundly nonperturbative
and requires numerical verification in a very difficult
regime of the lattice field theories around the point E:
the gauge fields are strongly coupled, i.e., strongly fluc-
tuating, and ultimately the SGM should be investigated
with dynamical fermions. However, as in QCD, it could
be that many essential features of the xU¢ models, in
particular the DMG, can be studied in the quenched ap-
proximation, which is the aim of the next section.

IV. SOME NUMERICAL RESULTS IN THE
QUENCHED APPROXIMATION

Our nonperturbative numerical results in the strong
coupling region, obtained up to now, confirm some of the
anticipated features of the Nambu phase, which are nec-
essary for the SGM to work: In the phase with SxSB,
where (Xx) is nonzero, also the fermion mass in lattice
units ampg is nonzero, implying DMG. Both observables
seem to scale to zero when the transition line NE is ap-
proached. This is so even in the vicinity of the point
E, whereas along the ET line the transition is appar-
ently of first order also in fermionic observables. The
results for (xx) and amp are also consistent with the
prediction of the gap equation relating these two quan-
tities and obtained from the spectral function of the free
fermion with the physical mass ampg. The pseudoscalar
fermion-antifermion state m behaves in the Nambu phase
like a Goldstone boson, i.e., (am,)? is a linear function
of the bare fermion mass amo. This behavior is unique
for the Nambu phase.

We have initiated the study of further states in the
spectrum which we will use in our forthcoming work in
the search for the lines of constant mass ratios. The mass

of the scalar fermion-antifermion state ¢ has been deter-
mined only very roughly, however. This state might be a
candidate for the effective (composite) Higgs boson. At
the moment we can only say that the staggered fermions
can be used in this kind of model as at least in the pseu-
doscalar and vector channels no problems with the flavor
symmetry restoration have been detected. These results
are described in some detail in this rather technical sec-
tion.

A. Definitions of the observables

For the localization of the phase transition lines and
the determination of the particle spectrum the following
observables were used.

The normalized plaquette and link energies, defined as

Ep = eiv ;RE{UP}, (4.1)

1
Ep = v IZM Re{¢LUm,u¢w+u} ) (4.2)

where V = L3T is the lattice volume. These observables
have been used for the localization of the Higgs phase
transition in the U¢ sector (see Sec. IIB) [37-39)], i.e., in
the quenched approximation of the xU¢ model. In par-
ticular, in Ref. [39] Ep and E were used in the frame-
work of the multihistogram method for a high-precision
determination of the position of the end point F in this
approximation.

For the localization of the chiral phase transition line,
in particular the segment N E, we must use fermionic ob-
servables. In the quenched approximation this line can
only be seen in fermionic quantities because of the miss-
ing feedback of the fermions to the bosonic fields. We
measure the chiral condensate with the stochastic esti-
mator method:

(%) = <$T&{M—‘}> ~ @M, (43)

where 7] is a vector of dimension V filled with Gaussian
random numbers (see, e.g., [51]). It should be noted that
with fixed-length scalar field |¢,| = 1 this condensate
(xx) coincides with the condensate (F'F) constructed
from the neutral fermionic fields F' defined below.

The next important fermionic quantity is the mass of
the physical fermion. We expect in the spectrum of the
Nambu phase a neutral fermionic state whose mass ampg
is nonzero and scaling to zero when the chiral transition
line NF is approached. We have considered the gauge-
invariant fermionic field

Fa: ::¢1;;va Fa::(lsm)zma

and determined numerically the corresponding fermion
propagator

(4.4)
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Gr(t) = 3 D > (FziFyo)- (4.5)
-Tlf:»ms yly’;iiys

even even

The sums mean that we use a special wall source where
only one point per hypercube is set to 1, the remaining
ones to 0, as usual for staggered fermions (see, e.g., [52]).
The numerical data for Gp(t) are fitted with MINUIT to
the ansatz

Gr(t) = Ap[e ™ Prt — (—1)te Er(T-9], (4.6)
The mass amp of the gauge-invariant fermion and the
corresponding wave function renormalization constant
Zr are then

amp = sinhEp ,
Zrp = Ap(1+ e‘EFT)coshEF .

(4.7)
(4.8)

Having in mind our long-term aim to determine lines
of constant physics, i.e., lines of constant mass ratios,
we have started to look at further states in the spec-
trum. First we define the fermion-antifermion composite
states, the mesons. Table I shows a list of the operators

|
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in the more familiar continuum notation and the corre-
sponding translation to the formulation with staggered
fermions. Lattice experts will notice that we use the four
simplest local operators from the Golterman tables [53].
We note that it is irrelevant whether these operators are
constructed with the x field or with the neutral F' field
(4.4) because of the fixed length of the ¢ field.
The timeslice operators for the mesons are given by

O*(t) = Z si“’ftf(i,tXf,t )

T

(4.9)

with si* given in Table I. We measure the correlation
functions

N&H
i 1 $ i i .
Gsn)esons(t) = N(i) Z(O k(t)ok(0)>’ 1= 17"'74’
k k
(4.10)
where N,Ei) =1 for i = 1,2 and Ni = 3 for i = 3,4,
ie., for ¢ = 3,4 we average over the space directions
k = 1,...,3. For the actual measurement Gglsons has

to be expressed in terms of the inverse fermion matrix
M~

N
; 1 ik - ik -
Gg;)esons(t) =N Z <Z silfth*,tXf,th"foXi,OXy‘,o>
E zy
1
o B
=T N® <ZS% sg (M) @0, (7.0) (M 1)(17,0),<£,t>> (4.11)
k. &k \ag

up to a constant disconnected term. In the second line we used the fact that the s** factorize according to

ik _ ik _ ik
z = Szt = St Sg = Sz »

S

ik gik (4.12)

TABLE I. List of mesonic operators in familiar continuum notation and in the staggered fermion

formulation, together with the continuum quantum number assignment

JPC and the names of the

corresponding QCD particles. The sign factors s¥ are composed of the standard staggered phase
factors nue = (—1)"t T 2u-1 ¢, = (=1)"+1t 2 and e, = (—1)=rttee

) Continuum Staggered fermions sik Jre Particle
_ 03 o(fo)
1 ¥y X=Xz 1
0;+ Py
0t~ -
2 PysY N12€42 X X= Naz€az
0t 7@
1r+ a
3 PYeP Nka€abkaXaXa Nkz€ala
177 ¥
1+~ b
4 PyRYs Naz€aaNkeEslhaXaXa Nazlazkzclra
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because si* = 1 for all (ik). The relation

(M) z6),5.0) (M ™) (g.0),(2.0) = €g,06z,6(M ™

shows that actually only one fermion matrix inversion is needed per source point. With

ezt = (—1)'naz

we finally have
NG
G® -

mesons —

N(t) Z<Zs o "4zn4y(M_l)@,t)(i,o)[(M“l)(i,t)(ﬁ,O)]*>-

In our simulations we use point sources for this measurement.

We fit these G{heons to the ansatz [43]

= Z Af (e E

n

Gmesons(t) 'J:t + e_E:(TMt)) + (

Here E7 is the energy of the s-wave states whereas E~
that of the parity partners, which are p waves. The
masses of the mesons are then computed from these en-
ergies by
am = 2sinh(E/2). (4.17)

Note that already this minimal set of four mesonic op-
erators given in Table I allows us to check for flavor sym-
metry restoration, because there are two states having
overlap with two different operators: the « shows up on
01?2 and the p in OG):(A),

We are further interested in the scalar and vector
bosons, which are present also in the U¢ sector without
fermions. The corresponding operators are

o) (t) = Z Re {Z ¢w U@),ibz.7 t} ,  (4.18)
oM (t) = ZIm{¢>MU(z Bibsiie)> i=1,2,3,
(4.19)
and the correlations functions are
GO () = (09 (t)0)(0)), (4.20)
1< v v
M) = 3 Y (0 ©)0;(0) - (4.21)
i=1
We fit them to a simple cosh-ansatz:
G(t) = A(e Bt 4 e~ B(T-0), (4.22)

The masses of the scalar boson amgs and the vector boson
amy are then computed from the energies E5 v by means
of the formula (4.17).

)tZA;(e E_t

Y@M D @y,@ol” (4.13)
(4.14)

(4.15)

e BT 4 B+ 1 (-1)'B~. (4.16)

B. Numerical investigation of the NE line in the
quenched approximation

As already stated above, the existing lattice results
for the magnetic transitions in the U¢ sector [37-39] are
also relevant for the xU¢ model in the quenched approx-
imation, and thus the only new feature of the phase di-
agram with quenched fermions is the chiral transition.
The Lee-Shrock transformation (2.7) and (2.8) in combi-
nation with mean field theory predicts a critical point at
B =0 and k. = 1.15 for Ny = 4, [18] with SxSB below
k. and chiral symmetry restoration above k.. The first
question is whether this chiral phase transition continues
to finite 3 and where it runs to. Earlier quenched investi-
gations [19-21] already come to the result that the chiral
phase transition joins the line ET. Our comprehensive
results for (xx) and amp confirm this observation. In
particular on the line ET, where the bosonic observables
indicate a first order transition, we also observe jumps
in (xx) at the same places. On the other hand, along
the line N E, even quite close to point E, we do not ob-
serve any indication for a discontinuous phase transition.
This is demonstrated in Fig. 2, where we compare the
numerical results for (xx) as a function of x at 8 val-
ues slightly below and above O = 0.8485(8) [39]. The
fermion mass amp shows a similar behavior, as is shown
in Fig. 3. From these numerical results we conclude that
in the quenched approximation the chiral phase transi-
tion line joins the line ET, as shown in the schematic
phase diagram in Fig. 1, changing at the point F from
second order on the NE line to first order on the ET
line.

Figure 3 also demonstrates the DMG below the line
NE, where the fermion mass is clearly nonzero and seems
to scale to zero when this line is approached. The finite
amy values in the chirally symmetric phase are probably
an artifact of the small lattice volume and the finite bare
mass mg, but of course this conjecture has to be con-
firmed (see Ref. [29]) by some theoretically well-funded
extrapolation scheme to the thermodynamic limit and to
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mg — 0 e.g., by methods developed in Refs. [20,54,42,43].

In Fig. 4 we plot our numerical results for amp as a
function of (Xx) together with the relation between them,
which follows from the free fermion propagator with the
observed fermion mass (the gap equation):

ampg

1
XX) = 77 - . 4.23
o) |4 ; (amp)? + ,sin’p, ( )

Here the sum runs over the set of momenta corresponding
to a finite lattice with periodic (antiperiodic) boundary
conditions in the space (time) directions, as we have it
in our simulations. Nearly all the data (except at 8 = 0)
lie in a narrow band around the curve (4.23), indicating
that the fermion wave function renormalization constant
is close to one. Such a behavior was previously observed
also in strongly coupled noncompact QED on the lattice
[46] and in the NJL model [43], both with dynamical
fermions.

An indicator for SxSB is the pseudoscalar mass am,
as a function of amg: in the chirally broken phase the
“mr meson” should behave like a Goldstone boson, i.e.,
(am,)? should go to zero linearly as a function of ams.
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FIG. 2. The chiral condensate as a function of k at two 8
values: one slightly below (8 = 0.83, upper figure) and one
slightly above 8g ~ 0.85 (8 = 0.90, lower figure). The dashed
lines are included to guide the eye.
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FIG. 3. The fermion mass amp as a function of k at two
B values: one slightly below (8 = 0.83, upper figure) and one
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lines are included to guide the eye.
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FIG. 5. The square of the pseudoscalar mass (amx)? as a
function of amg (it is denoted am!? because it was measured
with the second operator in Table I; amsrl), measured with
the first operator, is consistent with am!? but is much more
noisy). For k within the Nambu phase (em,)? is linear in

amg, for the higher xk deviations are observed.

Conversely, one should see deviations from such a be-
havior in the chirally symmetric phase. In our numerical
results for am, we observe both these possibilities; Fig. 5
is an example. The resulting estimation of the position
of the chiral phase transition agrees well with those from
(xx) and amp.

We have also measured the other mesonic states listed
in Table I as well as the bosonic masses amy (4.19) and
ams (4.18). However, these states would require much
higher statistics than we could achieve in this first explo-
rative stage of the investigations we are reporting here.
The mass of the composite Higgs boson o, am,, is quite
difficult to determine, which indicates that it might be
rather large. Furthermore, we can make the statement
that within the (large) error bars we do not see from this
side any indications for problems, e.g., with flavor sym-

metry restoration; i.e., within the error bars amiV

with am{? 23) with am£,4), respectively.

agrees
and am

V. SUMMARY AND DISCUSSION

The SGM, which we are considering as a possible sub-
stitute for the Higgs mechanism, is based on the obser-
vation that strongly coupled lattice gauge theories as a
rule break dynamically a global chiral symmetry. The
model we have discussed demonstrates that, at least on
the lattice, an arrangement is possible in which the Gold-
stone bosons and the mass of some heavy fermion arise,
in a qualitative analogy to the Higgs-Yukawa sector of
the standard model with a heavy quark. The role of the
scalar field is crucial, though completely different from
that in the standard Higgs mechanism.

Whether a useful approach to the continuum limit can
be achieved is still an open question. However, at least in

the strong coupling limit the model we have considered
is promising: In 4D it reduces to the lattice NJL model
which, though not renormalizable, has many attributes
required for a viable theory of symmetry breaking in the
standard model. In 3D and even more in 2D the lattice
four-fermion theories found in this limit are established
as renormalizable field theories and their continuum limit
is no principal obstacle.

The question whether, and exactly how, the SGM op-
erates beyond the strong coupling limit is a difficult non-
perturbative problem requiring a substantial effort. The
difficulty is mainly due to the lack of analytic understand-
ing of the transition between the Higgs and confinement
regions.

We see essentially three possibilities. One of them is
extremely optimistic, namely that the xU¢ models could
have a nontrivial fixed point, at which the cutoff can be
removed completely without losing the interaction and
thus the SGM. The most obvious candidate is the point
E. This point has been up to now investigated only in the
quenched approximation. In the SU(2) model [55] some
indication that the point might be nontrivial has been
found, whereas in the U(1) model [38,39] the data are
consistent with the mean-field-like behavior. In any case
an investigation with unquenched fermions is required,
which, as the experience with the strongly coupled QED
shows, might be a very difficult task.

However, also if the xU¢ models would turn out to
be trivial, their quantitative properties might still dif-
fer significantly from the normal Higgs-Yukawa models.
For example the upper bounds could be larger than the
unitarity bounds in these models. In contrast with the
Higgs-Yukawa models there might exist a strongly inter-
acting sector.

A somewhat disappointing possibility would be that
the SGM might turn out to be equivalent to the Yukawa
theory, in a similar way as the generalized four-fermion
theory is [8,49]. Then the SGM would be only an alterna-
tive formulation of the Higgs mechanism, a particularly
difficult one. This outcome would mean that it is very
difficult to substantiate the top condensate idea by means
of strongly coupled gauge theories.

In any case it seems to us that an investigation of the
shielded gauge mechanism of dynamical mass generation
might shed new light on the little understood properties
of (chiral?) gauge theories at strong coupling.

How far the SGM might be viable phenomenologically
is difficult to judge at this stage. An important question
of the models replacing the Higgs mechanism is the oc-
currence of some scalar, which might look like the Higgs
boson. Within the SGM there are two obvious candi-
dates: the scalar bound states of the type ¢¢ and xx.
In the quenched approximation the first of these states
scales only at the point F. As the fermion mass scales
in the vicinity of the whole NE line, one might think
that the ratio of their masses might be chosen quite ar-
bitrarily by approaching the point E in different ways.
But this must be studied in a simulation with dynamical
fermions, as well as the mass of the scalar yx state. So at
the moment we can say little about a possible occurrence
and mass of the Higgs-like state in the SGM.
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Of course, from the phenomenological point of view,
the considered lattice model is not specific enough. It is
much simpler than the existing more elaborate attempts
in the continuum field theory [11-13,9,15]. We agree with
those models only in some basic ideas. It could be that
the existing models are not yet good enough, e.g., giv-
ing incorrect top quark mass. The contribution of the
lattice methods to the further search for better models
might consist in a more reliable control of the dynamical
problems, treated otherwise in a rather qualitative way.
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