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Time-symmetric initial data sets in four-dimensional dilaton gravity
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I study the time-symmetric initial-data problem in theories with a massless scalar field (dilaton),
free or coupled to a Maxwell field in the stringy way, finding different initial-data sets describing an
arbitrary number of black holes with arbitrary masses, charges, and asymptotic value of the dilaton.
The presence of the scalar field gives rise to a number of interesting effects. The mass and charges
of a single black hole are different in its two asymptotically Hat regions across the Einstein-Rosen
bridge. The same happens to the value of the dilaton at infinity. This forbids the identification
of these asymptotic regions in order to build (Misner) wormholes in the most naive way. Using
different techniques, I find regular initial data for stringy wormholes. The price paid is the existence
singularities in the dilaton field. The presence of a single-valued scalar seems to constrain strongly
the allowed topologies of the initial spacelike surface. Other kinds of scalar fields (taking values on
a circle or being defined up to an additive constant) are also briefiy considered.

PACS number(s): 04.20.Ex, 04.20.Dw, 04.70.Bw, 11.25.—w

I. INTRODUCTION

The usual procedure of getting exact solutions in gen-
eral relativity (i.e., imposing some symmetries on the so-
lutions, substituting an appropriate ansatz, and solving
the diff'erential equations) has an important drawback:
One does not know what physical system a solution is go-
ing to describe until one actually gets it;. In the simplest
cases one can expect a black hole solution, a cosmolog-
ical solution, etc. , but in more complex cases, following
that recipe, one might never find a solution describing
the evolution of the system one is interested in.

If one wants to decribe the time evolution of a system
consisting, for example, of two black holes subjected to
their mutual attraction, the initial-value formulation of
the Einstein equations is far more appropriate. Obtain-
ing exact (complete) solutions is still probably hopeless
but, at least, if one has the right initial data, one knows
which system one is working with and one knows that
there exists such a solution. Then it makes sense to use
numerical methods to evolve the initial data. Many in-
teresting results have been obtained in this way.

The problem of 6nding the right initial data remains,
but it is a Inuch more tractable one. In general rela-
tivity (as in any other theory with gauge freedom) the
initial data cannot be chosen arbitrarily but have to sat-
isfy certain constraints. Solving these constraints is what
is called the initial-data problem. Solving the initial-data
problem is interesting, not only to get something whose
evolution can be studied. An initial-data set contains
a great deal of information about the system since it
already solves part of the Einstein equations (the con-
straints).

'Electronic address: t.ortinqmw. ac.uk
See, for instance, Ref. [1j for a comprehensive presentation

whose main lines I will follow in Sec. II.

My goal in this paper is to 6nd initial-data sets which
solve a simple case of the initial-data problem: the
time-symxnetric case [2, 3]. The solutions to the time-
symmetric initial-data problem will describe an arbitrary
number of nonrotating black holes which are momen-
tarily at rest, that is, at the moment at which they
"bounce. " I will also look for (Misner) wormhole initial
data.

Solutions to this problem are already known for the
vacuum and electrovacuum cases [2, 4—6]. Here I will
work with two difFerent theories with a scalar field (dila-
ton): Einstein plus a dilaton (also called the Einstein-
Higgs system in the literature) and Einstein-Maxwell plus
a dilaton which couples to the Maxwell 6eld in the stringy
way. In this paper I present solutions analogous to those
in Refs. [2, 4, 5] for the former cases, with a number of pe-
culiar features. Perhaps the most important one is that
in most of these solutions the dilaton Geld has different
asymptotic values in different asymptotic regions. Since
the zero mode of the dilaton is physically xneaningful (in
string theory it is the coupling constant), those regions
are physically different universes.

Another consequence of the existence of different
asymptotic values of the dilaton arises when one tries
to find wormhole initial data. Naively, one would build a
worxnhole by identifying two different asyxnptotic regions
linked by an Einstein-Rosen bridge [7] and the fields de-
fined in them. In this case one would get a multivalued
dilaton 6eld which is unacceptable unless, for some rea-
son, it is assumed that the scalar 6eld takes values in
a circle or its zeromode has no physical meaning; it is
"pure gauge. " Solutions of this kind will be presented in
this paper for the Einstein-Maxwell-dilaton and Einstein-
dilaton cases. Although it is extremely hard to 6nd a
wormhole solution for the Einstein-Maxwell-dilaton sys-
tem with a single-valued. dilaton, one solution of this kind
will also be presented. This solution is not smooth. The
string-frame metric is smooth (actually, it is exactly equal
to the metric of a Reissner-Nordstrom wormhole in the
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Einstein frame) but the dilaton field still has many sin-
gularities.

One "experimentally" observes that there is no way to
build wormhole initial data without introducing at the
same time unwanted singularities in the metric, in the
dilaton field, or in both, or without assuming that the
dilaton Geld "lives" in a circle or that it is defined up to
a constant. One can consider other kind. s of scalar fields,
different &om the string theory dilaton field, with those
properties. For them, finding wormhole solutions is eas-
ier and the resulting configurations are very interesting.
In the last section, I will discuss the role a single-valued
scalar Geld seems to play in limiting the possible topolo-
gies of the initial Cauchy surface.

What can be learned &om all these solutions? First of
all, the mere existence of some of them is interesting per
se, as I am going to explain. Second, a number of issues
can be investigated using them: no-hair theorems, area
theorems, cosmic censorship (first studied in Ref. [8]),
critical behavior in the gravitational collapse [9, 10] as
analyzed in Ref. [11],etc.

The purely scalar case has special interest since no
static black-hole solutions with a nontrivial scalar field
exist. Different no-hair theorems forbid its existence 2

If solutions to the initial-data problem describing many
black holes with nontrivial scalar hair exist, two pro-
cesses must take place: First, all their scalar hair must
be radiated away to infinity, and second, the black holes
must merge. The end point of these processes should
be a single black hole of the Kerr family, according to
the Carter-Israel conjecture, and, in our case in which
there is no angular momentum, a Schwarzschild black
hole. The area of its event horizon. must be bigger than
the sum of those of the black holes one started with, and
its mass must be smaller. Then one can compare initial
and final states and give bounds on the energy radiated
away by the system [8]. This provides a strong test of
many ideas widely believed to hold in general relativity.
I will not investigate these issues in this paper, though,
and I will limit myself to the search and identification of
the sought-for initial data, leaving that investigation for
further publications.

In the usual Einstein-Maxwell plus dilaton case in
which the dilaton is not coupled to the Maxwell field
the no-hair theorems state that the only black-hole-type
solution is the Reissner-Nordstrom solution, with triv-
ial (constant, zero charge) dilaton. However, when the
dilaton couples to the Maxwell field (that is, in the
low-energy string theory case), a nontrivial dilaton field
whose charge is determined by the electric charge is re-
quired in order to get the dilaton black holes of Ref. [16].
These are the only black-hole-type solutions of this the-
ory according to the unicity theorem of Ref. [17]. In
some sense the situation is analogous to that of the purely
scalar case: There is a family of solutions for which the

dilaton charge is a free parameter (found in Ref. [12] for
the purely scalar case and in Refs. [14, 15] for this case)
but only for a determined value of the dilaton charge
is the solution not singular and describes a black hole
(zero for the purely scalar case and —e 24" q2/2M for
this case).

It is reasonable to expect that the end point of a non-
rotating low-energy string theory black hole will be a
static dilaton black hole and that the dilaton charge will
evolve (increasing or decreasing) in such a way that, in
the end, it will have the right value, no singularities will
be present, and cosmic censorship will be enforced. In
this process the area must not decrease and the mass
must not increase. Observe that, if all the scalar hair
disappears, as one expects to happen in the Einstein-
dilaton case, the end point would exhibit naked singular-
ities. Why the dilaton behaves so differently and. whether
it really does or not (violating cosmic censorship) are two
important questions that can be addressed in this &ame-
work. The initial-data sets that I will present are most
suited for investigating these issues.

The structure of this article is the following.
In Sec. II, I set up the time-symmetric initial-data

problem for the theories considered in this paper, de-
fine the charges and asymptotic values of the fields, and
explain some conventions.

In Sec. III, I present the Ansatze, substitute them into
the constraints, and reduce them to differential equations
with well-known solutions.

In Sec. IV, I solve those equations to find black-hole
solutions. A technique for generating solutions of the
Einstein-Maxwell plus dilaton initial-data problem start-
ing &om solutions of the Einstein-Maxwell initial data is
developed in order to find the initial data of the known
charged dilaton black holes [16].

In Sec. V, I analyze the spherically symmetric black-
hole solutions found in the previous section.

In Sec. VI, I solve the equations found in Sec. III to
find wormhole initial data. This turns out to be a compli-
cated problem and it will be necessary to use the solution-
generating technique developed in Sec. IV to solve it, al-
though the result will not be completely satisfactory for
the reason mentioned above.

In Sec. VII, I discuss the results and present the con-
clusions.

II. THE TIME-SY'MMETRIC
INITIAL-DATA PROBLEM

A set of initial data for a space-time (M, g„„)in gen-
eral relativity consists of (1) a spacelike hypersurface Z
determined by its normal units vector n+, n2 = +1, (2)
the induced metric on Z, h„„=g~„—n~n„, and (3) the

The closest to a black hole with scalar hair is the solution
given in Ref. [12]. For references on no-hair theoreins see, for
instance, the recent paper Ref. [13].

We follow the conventions in Ref. [18]. In particular the
signature is (+———), although I will use the signature (+++)
for the intrinsic three-metric on Z. Greek indices go from 0
to 3 and Latin indices from 1 to 3. The dual of the Maxwell
tensor is *F""= =e"" F~~ with e = +&.2v'—a
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extrinsic curvature K„„=2d„h„of Z.
If, in addition to g~„, there are more fundamental

fields, one has to consider also their initial data. Both

h„and K„v can be expressed as the intrinsic metric
~ )g;~ and tensor ( )K;~. It is also convenient to use the
covariant derivative D„associated with h„„:

D T»-.~-—:h 6 ~1 h ~-h~' . . . I~- V T pl ~ ~ -9m
P V1 ~ ~ .Vra P V1 ' ' Vn Y1 P1" P )

which is equivalent to the covariant derivative & ~V'; as-
sociated with the intrinsic metric ~ ~g;~.

The projections n" (G„„—T„„) = 0 of the Einstein
equations contain only first time derivatives of the metric.
Therefore, they are not dynamical equations, but con-
straints on the metric and its first time derivatives which
have to be satisfied, in particular, by the initial data on Z.
There are two sets of constraints: n"n (G„—T„„)= 0
and ni'h~" (G„—T„„)= 0. Both result in equations for
h and K or their intrinsic counterparts.

The reason for the existence of these constraints is the
gauge &eedom of general relativity. If there are more
fields with gauge &eedom, some projections of their equa-
tions of motion will typically be constraints for their ini-
tial data, and the equations for h and K will have to be
supplemented with them.

In the special case in which Z is a surface of time sym-
metry (i.e. , invariant under tiine reHection with respect
to E itself [2]) K vanishes and the equations take a very
simple form

A complete initial-data set for the theory described by
the action Eq. (3) consists of the initial Cauchy surface Z,
its induced metric h„„, and its extrinsic curvature K~„,
the values of P and n"V„P on Z, and the electric and
magnetic fields on Z, defined by

E„=n"I' „, B„=—in *Eve.

If Z is a surface of time symmetry, then

on Z.
Now, what it is needed to study the initial-data prob-

lem of the theory given by the action Eq. (3) is the fol-
lowing.

(i) The energy-momentum tensor, which is inost con-
veniently written as

T„.= e '[F~pF„-' —*F~p*F„']
—2[&~&&-&—

2 g~-(7&)']

and which has to be substituted in Eqs. (2).
(ii) The equations of motion of P and F„„to find the

possible constraints contained in them. These are

n" h,p"T„v = 0. (2) ~2y 1 —2/F2 0

All the theories I want to consider can be described by
difFerent truncations of the action [18] V'„(e ~F"")= 0,

1S = d xg g( R—+ 2—(8$) —e ~F ),16m
(3) 'I7„*E""= 0.

string 2P
P, V P, V (4)

or other metrics that can be obtained by rescaling the
Einstein-&arne metric with certein powers of e&.

which is itself a truncation of the low-energy string theory
effective action in four dimensions written in the Einstein
&arne. I will consider different cases: the full theory,
the Einstein-Maxwell case by setting P = 0 everywhere
and ignoring its equation of motion, the purely scalar
case by setting E„=0 and ignoring its equations of
motion, and, in the obvious way, the vacuum case. I will
not consider the Einstein-Maxwell plus uncoupled dilaton
case.

In string theory, the dilaton P is a scalar field that
takes values in B. This is the kind of scalar Geld I will
work with, unless I explicitly indicate otherwise. How-
ever, in some situations, it will be interesting to consider
different scalar fields, taking values in S or defined up
to an additive constant.

Sometimes I will also be interested in the string-&arne
metric

The equation of motion of the dilaton, Eq. (8), leads
to no contraint on Z. This was expected since there is no
gauge invariance associated with P, which is a fundamen-
tal physical Geld . We have included the Bianchi identity

It should be stressed that the zero mode of the dilaton is
physically meaningful. The symmetry P -+ P' = /+const of
the action Eq. (3) means that given a solution of its equa-
tions of motion, another solution can be obtained by shifting
the value of the dilaton zero mode. However, this is not a
gauge symmetry and both solutions have to be regarded as
physically inequivalent. Exactly the opposite happens to the
electrostatic potential which is not a physical field. Shifting
the value of its zero mode is not just a symmetry, but it is
part of a gauge symmetry. The zero mode of the electrostatic
potential is physically meaningless. This will be important
later, when trying to build wormhole solutions. On the other
hand, for the same reasons, the dilaton charge is not a con-
served charge while the electric charge is. In spite of this
fact, the dilaton charge is a useful parameter that I will use
to describe the solutions found.
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of I" Eq. (10) because, although it is not an equation of
Inotion of the vector 6eld A, it constrains F on the initial
surface E. These constraints are

n"V'"(e ~E„„)= 0,

dl = W(x)dl~,

where dl& is another three-metric which, later, I will
choose to be either the Hat Euclidean metric

d))2 —d~2

The complete set of equations that have to be solved
consists of Eqs. (2) plus Eqs. (11), taking into account
Eq. (6). It is convenient to express them in terms of the
instrinsic geometric objects of Z. One gets the following
set of equations:

or the metric of an S x S "doughnut":

dl~ ——dy, + d8 + sin Hdqrs. (16)
In terms of the curvature and covariant derivative of

the ( metric, the curvature of the three-metric I want to
6nd is given by

)R —2( )g' e ~(E;E~+B;B~) (')R= W-' (')R, —2VPnW ——,'(V, lnw)' . (17)

(3)+ ((3) ig —2$E ) ()

(s)~.((s)gUB ) ()

2(s) U(s)~ y(s)~ y ()

(12)

The value of ~3~Rg in the two cases I am interested in is
&3&RI, = 0 and ~3~a~ ——2.

I am going to restrict myself to the purely electric
case B; = 0. The purely magnetic one can be obtained
through the duality transformation

e ~E;wB;,
which define the time-symmetric initial-data problem for
the above theory. In what follows I will omit the indices
(3) in most places for simplicity.

The kind of solutions of these equations that I am look-
ing for are asymptotically Bat and are determined by
the mass (M), the electric magnetic charges, and dilaton
charges (Q, P, and Z, respectively) and the asymptotic
value of the dilaton at infinity P . They are defined in
the limit r = ~x~

—+ oo as

(3) 2M
grr ~ ~ + )

B; -+ —e-'~E;

(18)

In general it does not make sense to perform a continu-
ous duality rotation since the truncation of N = 4, d = 4
supergravity Eq. (3) (in which the axion field is absent)
would not be consistent.

It is also easier to work with the electrostatic potential
Z de6ned by

E; = —8;Z.

xiB; P —,r3'

Substituting all this into Eqs. (12) one arrives at

7'~ ln W+ 4(V'g lnW) + e ~(V'tZ)

Z+ —,
r V't(W2e ~V'gZ) = 0.

+(Vtp) —2( )Rt = 0, (20)

and so they coincide with those of the known exact static
solutions [16,18). When there is more than one asymptot-
ically Hat region, one has to indentify first the coordinate
that plays the same role as r in that region and then one
can de6ne as before the charges that observers in that
region would measure. As we will see they are different
in general.

In the following sections I am going to find different
families of solutions to Eqs. (12) describing black holes
and wormholes.

III. AN'SA TZE

To 6nd. solutions to the equations of the previous sec-
tion I am going to use a combination of "tricks" previ-
ously used in the literature. First I make the following
ansatz for the three-metric dl = ~ ~g;zdx'dx~,

It is impossible to give a more specific unique ansatz for
the different situations I am going to consider here. I will
make Ansatze case by case, including also the well-known
vacuum and electrovacuum cases for completeness.

A. Vacuum case

The equation that oiie has to solve is Eq. (20) with
Z= /=0

V'~ lnW+ 4(Vt lnW) —2( )Rg = 0. (22)

Now a further Ansatz can be made: The function W
is a power of a function y such that there are no terms
proportional to the square of the derivative of y in the
above equation. This implies
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where y satisles the equation

(V,' ——,'l'la, )~ = 0. (24)

The result is

As is well known, this equation is easy to solve for the
two $ metrics I am going to consider here, Eqs. (15),(16). (32)

B. Einstein-Maxwell case

The equations that have to be solved are Eqs. (20),(21)
with P = 0:

V,'I W+ —,'(V, l W)'+ (V,Z)' —-', l'la, =0,

Vt(W& VgZ) = 0.

(25)

(26)

Z= min@+ Piny,

where the contants n, P, p, b will be adjusted to cancel
crossed terms, etc. , in the equations. The result is

W = (4x)',

Z = C 6 1n(@/y), (2S)

where the functions @ and y satisfy

(V,' ——,'l'la, )& = 0,

(V,' ——,'l'lZ, )q = 0. (29)

This is again the same type of equation that was ob-
tained in the vacuum case. Here C is an arbitrary inte-
gration constant. Its value can be changed by a gauge
transformation and, thus, solutions with difFerent values
of C are, in fact, physically equivalent.

C. Einstein-dilaton case

The equation that has to be solved is Eq. (20) with

Vt ln W + 4 (Vg ln W) + (VgP) —
2

l le = 0.
This equation is exactly the same as Eq. (25) of the

Einstein-Maxwell initial-data problem with P playing
now the role of the electrostatic potential Z. The dif-
ference with the Einstein-Maxwell case is that now there
is no constraint analogous to Eq. (26), and so Eq. (30) is
the only constraint on the initial data of this system. It
is safe to try the same Anaatz as in the Einstein-Maxwell
case:

Again I make a further Ansatz. the functions R' and Z
can be expressed in terms of two new functions g and @
as

p (3)~2Z (33)

The analogy is not perfect because this hypothetical mat-
ter should. contribute to the density of energy on Z,
n"n"T&„, and no contribution of this kind appears in
Eq. (30).

D. Einstein-Maxwell-ckilaton case

Now one has to solve the complete Eqs. (20),(21). To
get something diferent &om the previous cases one has
to use a slightly diferent An8atz:

where the functions @ and y satisfy again Eqs. (29) and
the constant a takes values in the interval [

—1, I]. Po is a
constant which will coincide, in general, with the value of
the dilaton at infinity if the functions @ and y are prop-
erly normalized. When there is more than one asymp-
totically Bat region there is no reason why one should
expect the value of the dilaton at the corresponding in-
Gnities to be the saxne. In fact, as will be shown later
on, the asymptotic values of the dilaton are in general
difFerent in difFerent asymptotic regions and Po will be
just one of them.

The constant Po can be fixed arbitrarily as was the case
with the integration constant C in the Einstein-Maxwell
system; i e , th. e.re is a solution for each Po chosen. How-
ever, as has already been explained, these solutions are
not physically equivalent.

In the Einstein-Maxwell case, the constant a was forced
to be equal to zero by Eq. (26). This equation is noth-
ing but Gauss' law, and it enforces the condition of the
absence of electric charge on the initial surface Z, which
is assumed to be regular everywhere. The same equation
with P playing the role of Z would enforce the absence of
dilaton charge on the initial surface. Thus, for all cases
with a g 0 it is reasonable to expect the solutions to have
net dilaton charge. Then they will be very diferent &om
all known solutions in which the charges are either lo-
cated at a singularity or the effect of nontrivial topology
(Wheeler's "charge without charge").

As a matter of fact, Eq. (30) could be regarded as
the equation for the Einstein-Maxwell plus (unspecified)
charged matter initial-data problem, just by changing P
by Z. The charge density would then be given by

4 =do+ ~»0+P»X.

If we try again with Z proportional to the logarithms of g
and g, one 6nds that the solutions have either a trivial dila-
ton or trivial electrostatic potential, recovering the solutions
found in the two later sections.
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4 =4p+ sing + V»x,

z = a@-~~. (34)

throats or necks (Einstein-Rosen bridges). In the largest
sheet there will be N black holes.

The corresponding solutions for the vacuum and
Einstein-Maxwell cases were found in Refs. [2, 4, 5] and
I will not discuss them here. I will write them down,
however, for completeness and later use.

As one might have expected after all the examples stud-
ied so far the result is

~ = (0x)'(@/x)+"

A. Vacuum case

The solution is given by the metric

dl' = y4dx2, (38)

—2P —2$O (@/ )
—2b

Z = C+ e+4'0 (g/~)+b,
gl —2b'

where vP and y satisfy, yet again, Eqs. (29) and b is a con-
stant that takes values in the interval [

—I/~2, +I/~2].
It is possible to 6nd more solutions following a different

procedure that will be explained later in Sec. IVD.

IV. BLACK-HOLE INITIAL DATA

8;8;@= 8;0;y = 0. (36)

These functions will be normalized to 1 at infinity and
will correspond to pointlike sources x,.:

One can get black-hole initial data for all the cases
studied in the previous section by choosing the ( metric
to be the Bat Euclidean metric, which has ~ ~R[, ——0. The
three-metric one gets is conformally Qat. Then, with all
the Ansatze made one finds that only two functions @
and y, harmonic in Hat three-space, are needed to build
solutions for all the different cases:

with y given by Eq. (37), and describes N Schwarzschild
(i.e., no charge or angular momentum) black holes.
This solution was 6rst found by Misner and Wheeler in
Ref. [2].

For a single black hole, this metric is nothing but the
spatial part of Schwarzschild's in isotropic coordinates.
For more than one black hole the corresponding exact
solution cannot be static and is not known.

B. Einstein-Maxwell case

The solution is given by the metric and electrostatic
potential

d~' = (0x)'d*'

Z = C + ln(@/g),

with the functions Q and y given by Eqs. (37), and de-
scribes N electric Reissner-Nordstrom (i.e. , no angular
momentum or scalar hair) black holes. This solution was
first found by Brill and Lindquist in Ref. [4].

For a single black hole this solution coincides with
the spatial part of the Reissner-Nordstrom solution in
isotropic coordinates. If @ = 1 or y = 1, one has the spa-
tial part of the static solution that describes N extreme
Reissner-Nordstrom black holes in equilibrium. The re-
maining situations do not correspond to systems in static
equilibrium and no known solution describes them.

N
X4X=I+).

i=1
(37) C. Einstein-dilaton case

The metric and dilaton are given by
For the three-metrics corresponding to these @ and y

to be regular everywhere (except at the points x; which
have to be erased &om Z) the constants g; and y, have
to be strictly positive.

The ith black hole corresponds to an Einstein-Rosen-
like bridge between two asymptotically Hat regions or
sheets: the ~x~ -+ oo region and the ]x —x;~ -+ 0 region. s

Therefore Z is a set of N + 1 sheets, one of them with N
holes cut and the remaining N with a single hole cut and
pasted to one of the N holes of the large8t sheet forming

gl2 I 2+2a 2—2ag&2
7

"= '(~/x) "-", (40)

with @ and y given by Eqs. (37).
First of all, observe that by setting a = 1 or Q = y

the vacuum solutions Eq. (38) are recovered. If one sets
a = 0, one recovers the metric of the Einstein-Maxwell
solution Eqs. (39) and, upon rescaling by exp(, P},
one always recovers that metric.

The choice

In each case one has to prove first that the limit ~x —x;
~

-+ 0
indeed corresponds to another asyxnptotically Bat region. I
will do so later.

@= 1 —pp/2r,

y=1~ pp/2r,

a = M/pp, (41)
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with r = ~x~ and po
——QM2 + Z2, corresponds to the

surface of the time symmetry of the family of singular
static solutions of Ref. [12],which are not black holes and
have naked singularities, in agreement with the no-hair
theorems of Ref. [13]and the unicity theorem of Ref. [17].

Observe that, if one is looking everywhere for regular
initial data, one would choose vP = 1 + po/2r instead of
g as in Eq. (41). However, this does not lead to an exact
static solution of the full set of Einstein's equations.

The solution in Eqs. (40) is clearly asymptotically flat
in the limit ~x~ ~ oo (upper sheet). The metric is also
regular everywhere if ~a[ ( 1 and @ ) 0, y & 0 every-
where (i.e. vP; & 0, y; ) 0 for all i). Now I want to prove
that it is also asymptotically Hat in the ith loner sheet
~x —x;~ = r; +0. In-this liznit the metric looks like

@t) 2+2II ( f ) 2 2cl

dl'-
~
1+ —,'

~ ~

1+ —,'
~

(dr,"+r,"dB'),
r,')

(42)

where

of the exact static solution describing N extreme electric
dilaton black holes in equilibrium: [16, 18]

—24 —24pq

F~e=+ Bg
2

' (45)

W = p(t') "W,

The nonextreme dilaton black holes of Refs. [16, 18]
also possess surfaces of time symmetry. However, none
of them is described by the initial-data sets of Eqs. (44).
To Gnd the family of initial data which describes them
one has to follow a difFerent procedure.

let (W, Z) be a set of time-symmetric initial data of
the Einstein-Maxwell system. Then one can build out of
it a set of time-symmetric initial data of the Einstein-
Maxwell-dilaton system (W, P, Z) according to the rules

„1,1+a 1—a —1 —24 (tt)
—(1+I )

0,'=X;(0,/X;) I 1+).
,~, rV)

N

X';=@*.(0'/X') I 1+).„'
I

,.~,. r'i )

rgei X$ Xg e (43)

Z =t(Z), (46)

where p, q, r are arbitrary consta11ts and t(Z) is a function
of Z satisfying the differential equation

gIII gl (g/I ) 2

(tt) —(1+r) + 2 ( )
(t')'

Equation (42) proves that there is one asymptotic re-
gion in each limit r, -+ 0 and that this solution de-
scribes N black holes represented by their Einstein-Rosen
bridges at the moment of time symmetry. The dilaton
Geld is nontrivial and, thus, these black holes have scalar
hair. There is no exact static solution describing any of
these objects [13,12].

D. Einstein-Maxwell-dilaton case

This solution is given by

dl2 @2+2b 2 —2bd~~2
7 t(Z) = B (Ae+ ~ —Be ~ ~ ) . (48)

1=0. (7)4 (, 'J
Here t' denotes the derivative of t(Z) with respect to

its argument Z.
Finding the most general solution of this equation is a

very difticult problem. It turns out that there are several
choices of the constants p, q, r which simplify enormously
the problem and that those choices give, too, the solu-
tions I am after. In particular, for r = 1 the solution is
simply

—2P —2$p y/ )
2b—

1 —2b2z =c+.+~
b

(44)

Although it is not obvious, for q = —,D = +~2e4'p,

p = 2e ~' (A+ B) = 1, this is exactly the transfor-
mation that takes the Reissner-Nordstrom initial data of
Eq. (39) into the wanted dilaton black-hole initial data:

Taldng the limit r; = ~x —x,
~

~ 0 in the metric one
gets Eq. (42) with a replaced by b, and this implies again
that this solution has N asymptotically Bat regions at the
other side of N Einstein-Rosen bridges; so this family of
solutions must indeed describe N charged dilaton black
holes.

Among this family of solutions I could identify only
the case b = —1/2, y = 1 (W = vP) as the spatial part

'~' A(4/x)' '+ &(0/x) ' '
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To see that this is indeed true, these initial data, for a
single black hole, have to be compared with the (single,
static, spherically symmetric) dilaton black-hole solution
of Refs. [16], which can be rewritten as

A(@/x)' ' —B(@/x) ' '

~=(VX)' A(@lx)"+ B(V IX)

It is easy to show again that in each of the limits r;—:
[x —x;~ ~ 0 there is another asymptotically flat region.
In this limit the metric looks like

«' - [(1+@,'I&,') l(1+ x,'I&,')]
x (A' [(1+@,'/&,')/(I+ X,'/r, ')1

+B' [(1+@!Ir!)I(1+X!Ir!)1 )
(54)

where

r!= A8'/x')'+ B(@'/x') /&,
'

A' = A(0"/x') / A(@'/x') + B(0'/x')

E~g ——+ 8; A(g/X) ~ + B(@lx)~2(A-B) '.
where

M —Z —g-4MZ
2r

M —Z+ v' —4MZ-X=1+
2r

and

A+B=1,

(52)

Obviously, the initial data of Eq. (49) for more than
one black hole cannot be compared with any known ex-
tact static solution.

By allowing more general values of q in Eq. (48) one
gets the more general family of initial data:

«' = (@/x)' A(0/x) + B(@lx)

"A(~/x). +-BW IX)

1 —2c2
Z = C + e~' A(@/X)' —B(@lx)

(53)

where the constant c takes values in the interval
[
—1/~2, +1/~2]. This family of initial data includes that

of Eqs. (44) (c = +6 and A = 1 or B = 1) and Eqs. (49)
[c = 1/2 and (A+B) = 1]. More general solutions based
on the transformation Eq. (48) are possible if one allows
the constant c to be imaginary. I will not treat them
here, but some of them will be important when we study
the wormhole initial-data problem in Sec. VI. Neverthe-
less, I would like to make the following observation here:
If one performs the duality transformation Eq. (18), then
the rescaled string-kame metric e &dl2 is the same as the
Einstein-Maxwell one, Eq. (39).

B' = B(&'IX') I A(@'Ix.') + B(@'IX')

( N

0!=x' A(0'/x') +B(@'/x') ' 1+).

x'; = @, A(0'/x') + B(0'IX') ' 1+).„'

r;, =[x, —x, f. (55)
For the metric in Eq. (53) to be regular the positivity

of the constants @; and X, is not sufficient. One has to
impose certain restrictions on the values of the constants
A and B as well. When both have the same sign, the
metric is always regular, but when they have opposite
signs one needs to study in detail the problem. I will do
it for the case of a single black-hole in Sec. VB.

The conclusion is that for any N, if the constants A
and B are carefully chosen, the initial data of Eq. (53)
[and hence those of Eq. (49)] describe several charged
dilaton black holes of the same type at the moment of
time symmetry.

It seems that the initial data of Eqs. (49) are those
seeked for. However, the initial data in Eqs. (53) also
describe charged dilaton black holes. And the possibil-
ities of generating new solutions are not exhausted. It
seems that now there are too many solutions. For given
physical parameters Q, P, M, and E, how many different
solutions are there now? Why are they different'? I will
address this problem, already present in the Einstein-
dilaton system, in the next section by studying the sim-
plest solutions in these families: the spherically symmet-
ric, which describe a single black hole.

V. SPHERICALLY SYMMETRIC CASE

Throughout this section I will take the harmonic func-
tions @,X to be

(56)
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In most cases, the regularity of the solutions implies
that E and F are strictly positive constants and, then,
all the initial-data sets found in the previous section de-
scribe a single spherically symmetric black hole. In this
section I want to identify the physical meaning of the
constants E and F in the different asymptotic regions,
expressing E and F in terms of the mass and charges. My
goal is to find out if there is more than one initial-data
set describing spherically symmetric black-hole solutions
with fixed mass and charges, and whether there are any
extra degrees of &eedom.

A. Einstein-dilaton case

In the upper sheet (r ~ oo), the mass, the dilaton
charge, and the asymptotic value of the dilaton are

M = (1+a)E + (1 —a)F,

Z = kgl —a2(E —F),

=4p

Observe that the strict positivity of E and F and the
fact that ~a~ ( 1 ensure the strict positivity of the mass.

It is convenient to have the expressions of E and F
in terms of the physical constants M and Z, and the
parameter a:

E=-,'/ M+ Z /,1+a

A(r;„) = 16~(M' —-', Z') + O(Z'),

which does not depend on the parameter a to this order
and coincides with the area of the event horizon of a
Reissner-Nordstroin black hole with electric charge Q =
Z.

From these expressions it is easy to see that this is a
one-parameter family of initial data describing a black
hole of fixed mass and dilaton charge. Which additional
degree of &eedom is a describing'? To answer this ques-
tion one has to calculate first the values of the mass and
dilaton charge as seen &om the second asymptotic region.

To study the "lower sheet" one has to perform first the
coordinate transformation r + r' = Ei+ Fi /r The.
metric and the dilaton field are, in these new coordinates,

f EaF1—a ) + + ( E1+aF a)—
dl'=

/
1+,

/ (
1+

x(dr' ~ r' dO ),
P= Pp + gl —a log(E/F)

E~Fi
+in

/
1+

)
E'+.F-.l

I
1+ ).

One immediately gets, in the limit r ~ oo,

is always an apparent horizon. From the expression of
r;„in terms of the physical constants and the fact that
it is real and positive one sees that the charges obey a
nuinber of bounds which reduce to those in Eq. (59).

The area of the minimal surfaces can be readily found,
but it is a complicated and not very enlightening expres-
sion. For small dilaton charge one finds

1 —a (58)

(59)

which means that, for a fixed value of the dilaton charge,
there is always a value of the parameter a such that the
mass is as small as we please and it is only bounded by
zero in this family of initial data.

The radius of the minimal surface (there is only one)
is given in terms of the integration constants E,F, a by

rmin= g a E F + a E —F +4EF 60

and, in terms of the physical constants and the parameter
a, by

ar;„=— + Z+
1 —a

It is easy to see in Eq. (60) that the positivity of E and
F implies that r;„is always real and positive; i.e., there

These constants are positive and, therefore, the mass
obeys the bounds

M' = (1 + a)E F + (1 —a)Ei+ F
g' —yg 1 a2(E F ~ Ei+~F—

&) — (E/F)
= Pp 6 Ql + a2 ln(E/F) . (64)

(65)

Integrating p on Z and applying Gauss' theorem,

When a g 0 all the physical constants are difFerent
in the upper and lower sheets. These results may seem
surprising at first (they are certainly unusual) but, for
M and Z, they are simple consequences of the absence
of Gauss' law for the dilaton charge, as I am going to
explain.

In the Reissner-Nordstrom initial-data problem Gauss
law says that there is no charge on the initial surface Z.
The nontrivial topology of Z allows the electric force lines
to get trapped and go &om the upper sheet to the lower
sheet across the Einstein-Rosen bridge. The electric Aux
through an asymptotic sphere in each separate sheet does
not vanish, but the total Qux does, in agreement with
Gauss' law. The effect is that observers in both sheets
measure the same amount of charge but with opposite
signs. I will call this type of charge the topological charge.

In the present case there is no Gauss' law for P. The
presence of a certain amount of physical scalar charge Z~
on the initial surface is allowed. It corresponds to the
charge density

p = ~ lV' p = cI;(W'8;$).



52 TIME-SYMMETRIC INITIAL DATA SETS IN FOUR-. . . 3401

Z = — dS'~ lV';P = Z„+ Zg,
4m

Up

Z'= — dS*~'&V;y = Z„—Z, .
4m

low

(67)

This explains the physical meaning of the parameter
a as well: It measures the relative value of Z„versus Zq
which was the physical degree of &eedom that we failed
to identify before:

dS ~'~V-, y+ — dS'~'l V,-y
4~ z 4~ s 4~ sUP low

(66)

where S„and S& are two two-spheres in the limits
r + oo and r ~ 0, respectively.

If there were only this charge, one would measure ex-
actly the same charge Z„ in both sheets (with the same
signs). As one can see in Eq. (64), this is not the case, in
general. The force lines of the field P can also get trapped
in the throat. " This effect contributes with difFerent signs
to the flux of P in both sheets: +Zq. The result is that
the Hux of P in the upper sheet is Z = Z„+ Zq and in
the lower sheet is Z' = Z„—Eq..

generality. If B & 0 too, then the metric is obviously reg-
ular. If B & 0, the metric vanishes when the coordinate
r takes the value

E —(—B/A) '~'

( B/—A)'~2. —1 ' (69)

and therefore it will be regular if r„„g & 0. A careful
analysis leads to the identi6cation of the following 6ve
cases in which the metric is regular: (1) B & 0, A+ B =
+1; (2) B & 0, A+ B = +1, (E/F) ' ) 1; (3) B & 0,
A + B = +1, (E/F)2 & 1, A & 1/[1 —(E/F)' ]; (4)
B & 0, A+B = —1, (E/F)2' & 1, A & —1/[1 —(E/F) ];
(5) B & 0, A + B = —1, (E/F) 2' & 1.

In principle in these 6ve instances the positivity of the
mass in the upper and lower sheets should be automat-
ically guaranteed, but a detailed study of each case is
required to prove it.

In the upper sheet the mass, the dilaton charge, the
electric charge, and the asymptotic value of the dilaton
are

(A —B) (A —B)
(A + B) (A + B)

(A —B)Z=c (E —F),

Z /Z = -'(Z+ Z')/Z = -' [1 —(E/F) ] & —. (68) Q = +(A ~ B)e~' gl —2c (E —F)

Z„ is always different &om Z except when Z = 0; i.e.,
there is always some topological and some physical dila-
ton charge except in two cases: when there is no dilaton
charge at all and when a = 0, the Reissner-Nordstrom-
like case in which all the charge is "topological. "

This justifies the difference between Z and Z'. The
difference between M and M' must correspond to the
difference in the matter contents (scalar charge) observed
in both regions.

Finally, observe that most of these effects disappear
if one rescales the metric by exp( 2,P): The mass

and dilaton charge in the upper and lower sheets are the
same, but the asymptotic value of the dilaton, P, is still
difFerent.

B. Einstein-Maxwell-dilaton case

As was pointed out in Sec. IVD, the regularity of the
metric in Eqs. (53), (56) is not guaranteed by the simple
positivity of the constants E and E, and additional con-
ditions have to be imposed on the constants A and B.
The first thing to do in order to study these initial data
is to find these conditions.

In what follows I will assume that A & 0 with no loss of

=go (70)

M = (E+ F) + c (E —F) .(A —B)
A+B (71)

Now the product c(E —F) ) 0 in this case and all the
terms in the above expression are manifestly positive.

The third case is more complicated. One has to study
two distinct possibilities: (i) E ) F, c & 0 and (ii) E &
F, c ) 0. One has to prove that A & 1/[1 —(E/F) ']
implies A ( 2 1 —— &+& . In case i, if c & —1 2,
it follows from the inequality

(72)

and, if c ) —1/2, it follows &om

In the first case above it is easy to prove that M & 0.
One simply has to observe that A & 0, B & 0, A+ B =
1 implies ~(A —B)/(A + B)~ & 1. This together with

~c~ & 1/~2 implies ~c(A —B)/(A + B) (
& 1/~2 & 1 and

the factors that multiply E and E in the mass formula
are strictly positive. In the second case it is also easy to
prove that M & 0 by rewriting the mass formula as

It should be stressed that this is simply a good way of
describing the system. There is no conserved charge of any
kind associated with the dilaton. I will keep on using the
terms "charge" and "topological" charge although it should be
clear that in this system there is no conserved dilaton charge
of any kind.

1 —1 1

1 —(F/E) 2~ 2c 1 —(F/E)
(73)

Case (ii) follows &om (i) with the interchange E ++ F,
c —+ —c. The remaining two cases go through in a similar
fashion and I will omit the details.

These mass and charge formulas can be inverted to
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express the integration constants in terms of the physical
constants

(&D —4)& = o. (77)

e-@-
E=2/M —Zk Q /,V'1 —2c'

Misner observed that, although this equation looks
complicated, there is one simple solution. In fact, the
metric of flat three-space in bispherical coordinates is

, (F=-,'/ M —Zp Q /,
1 —2c2 )

c(A —B) = +pl —2c2e
E

Again the number of independent integration con-
stants is the same as the number of physical constants
plus one. It is clear that there is again another degree of
&eedom described by the extra integration constant. If
one calculates now the value of M, Z, Q, P in the lower
sheet, one would 6nd different values for the four of them.
This seems to suggest that there is one less integration
constant than necessary. This confusion arises because
the "electric" charge to look for is Q = e O' Q for which
there is a Gauss' law f lV';(e ~E') = 0, enforcing its ab-
sence on the initial surface. This equation implies that
all the Q charge is "topological" and that it takes equal
values with different signs in the upper and lower sheets
in agreement with the arguments of the previous section.
This can be readily checked.

The integration constant c measures the ratio between
topological and physical dilaton charge for which there is
no Gauss' law whatsoever.

The radii r;„ofthe minimal surfaces are given by the
zeros of the funcion

f(r) = A(r+E)"(r —r+)(r —r )
+B(r + E)2 (r + r+)(r + r ), (75)

where

1
r+ = — c(E —E) 6 —gc (E —E) + 4EE . (76)

2

Finding an analytical expression for r;„ is out of the
question. Nevertheless, observing that the Grst term of
f(r) only vanishes at r = r+ and the second term only
vanishes at r = r it is possible to say the following about
it: (1) If sgn(A) =sgn(B), c(F —E) ) 0, then r; C

[r+, r]; (1) if sgn—(A) =sgn(B), c(F —E) ( 0, then
r;„6 [ r, r+]; (3) if sgn(A) =——sgn(B), c(F—E) ) 0,
then r;„C (0, r+] U [ r, oo); (4) if sg—n(A) = —sgn(B),
c(F —E) ) 0, then r;„6 (0, r] U [r+, oo). —

(g'=,dl'
(cosh p —cos 8)2

) c„f„(8,p)
n+Z

(8o)

is a solution of the linear equation (77) with difFerent pe-
riodicity properties depending on the choice of the con-
stants c„. If one chooses all the c = 1, the series is
periodic with period ye (assuming it converges). For
c„= +(—1) the series is antiperiodic. Many more
choices are possible, leading to different periodicity prop-
erties, and some of them will be used later. Now I will
study each case separately.

A. Vacuum (Misner) wormholes

The single valuedness of W = y implies c e ~

Reality and regularity of W imply c = 1 for all integers
n, and so

and must be a solution of the initial-data constraint equa-
tions in vacuum. Therefore the functions

fd(8, y, ) = k ~ [cosh(p+ d) —cos8] ~, (79)

where d is any constant, must solve Eq. (77). Now, of
course, this fact can be used not just for the vacuum
case, but for all the cases in which the ( metric is the
doughnut metric of Eq. (16) and one has been able to
reduce the initial-data problem to equations like Eq. (77).
One just has to build y and Q as linear combinations of
functions fg, obeying the boundary conditions required
in each case.

Essentially the boundary conditions can be described
as follows: In wormhole space the coordinate p crosses
the wormhole and parametrizes S . Therefore p is peri-
odic with period po. The metric, the electric Geld, and
the dilaton (which are physical fields) must be single val-
ued around the wormhole. That is, all those Gelds must
be periodic in the variable p with period p,o. The elec-
trostatic potential is not physical and can be multivalued
around the wormhole.

To construct these periodic Gelds it is convenient to
define first the functions f„(8,p) = fo(8, p+ neo) where
n is an integer number. The series

VI. WORMHOLE INITIAL DATA
y = k ~ ) [cosh(p+ nate) —cos8]

n+Z
(81)

To find wormhole initial data I will follow Misner [6]. I
will take the ( metric to be the metric of the "doughnut"
S x S, Eq. (16). The effect of the conformal factor W
on this metric is to blow up one side of the doughnut
and transform it in an asymptotically Bat region. This
metric has constant curvature & ~R~ ——2. Then, the kind
of equation one has to solve for all the Ansa, tze of Sec. III
1s

which is the solution found by Misner in Ref. [6]. For
a external observer the wormhole's two mouths are just

Observe that our convention differs slightly from that of
Ref. [6] and the subsequent litarature in which y, has period
2p, p.
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two Schwarzschild black holes. The fact that there are
no more asymptotically flat regions ("universes") as in
the initial data found in the previous section seems
untestable for that observer since the wormhole's throat
(or the Einstein-Rosen bridge between universes) col-
lapses before any signal crosses it. These initial data
were used by Smarr in Ref. [19] to study the gravita-
tional radiation produced in a head-on collision of two
Schwarzschild black holes. The evolution of these initial
data has also been studied in a diferent limit by Tomi-
matsu in Ref. [20].

B. Einstein-Maxwell wormholes

The single valuedness of W in Eq. (28) requires that, if
the functions X and vP get a factor K when moving from
I to p, +p„then

0(~, p + s o) = ~0 (0, v),

x(~, s + vo) = It 'x(~, p) . (82)

Regularity and reality of TV require K to be a positive
real number which is customarily written as K = e
When A = 0 one is back into the vacuum case.

Functions with the required monodromy properties can
be built as the series Eq. (80) with coefflcients c = e ~

and c = e, respectively; that is,

@=& ~ ) e" [coshp —cos8]
n+Z

X = k ~ ) e ""[coshp —cos0]
n+Z

(s3)

Observe that with this choice of monodromy of y and
@ around p, the electrostatic potential Z is not single
valued,

Z(8, p+ po) = Z(8, v) ~ 2A, (84)

but the physically meaningful quantity, the electric field,
is single valued. These are the electrically charged worm-
hole initial data found by Lindquist by the method of
images in Ref. [5].

@= k'~' ) e +-"[cosh(V+ npo) —cos 8]-' ',
n+Z

) e ~-o "[cosh(V + npo) —cos 0] . (86)

Now, analyzing the monodromy properties of the dila-
ton field, one finds that

2A
4 (~, v + vo) = 4(~, v) + (s7)

D. Einstein-Maxwell-dilaton wormholes

that is, the dilaton is not single valued around the worm-
hole, but its value changes by a constant each time one
goes around the the wormhole, just as happened with
the electrostatic potential. Since the zero mode of the
dilaton is physically meaningful, one concludes that this
is not a good solution of the initial-data problem for a
dilaton field such as the string theory one.

One could have anticipated this result because, roughly
speaking, to build a wormhole one has to identify the two
asymptotic regions of an Einstein-Rosen bridge and in
Sec. V we found that the asymptotic value of the dilaton
in both regions is, in general, diBerent and cannot be
identified.

Were one considering a difFerent kind of field, for in-
stance, an scalar taking values on a circle whose length is
a submultiple of ",, the solution would be perfectly+1+a
valid. If the length of this circle is &,, n g Z+, thenn/1+a2
one is identifying P with P+m 2~, , for all integers m.n+1+a~ '
This scalar Geld is a map &om one circle parametrized by
p to another circle (the target), such that going around
the first circle once means going around the target circle
+n times, and one can consider this number as the wind-
ing number of the map. This is a topological invariant of
P that cannot change if the initial surface Z is deformed
in a continuous fashion. Therefore, as long as Z does not
become singular, the winding number of the field con-
figuration P will not change in the time evolution of the
initial data.

Another case would be that of an axion Geld a. One
might consider that what has physical meaning is not a
but Ba. The zero mode being meaningless, the solution
would be valid as well.

C. Einstein-dilaton wormholes The single valuedness of the metric in our Ansatz
Eq. (35) requires

The single valuedness of the metric in Eq. (35) requires
now

@(0 p + po) = ~*&'+'& 0(~, p),

x(~, p+ po) =It'&'-"x(e, c). (ss)
0(~, p+ po) = It'~'+ & 0 (0, p),

x(~, v + vo) = lt'~'- & x(~, p) .

I will write K = e 2" to recover the previous case when
a = 0. The functions @ and X are the series Eq. (80) with

nA —ra A

coefBcients c = e&+ and c = e &-, respectively:

Writing again K = e we get

) e &+& "[cosh(p, + npo) —cos 8]
n+Z

X = A.
"~ ) e~-& "[cosh(p+ npo) —cos8] '~ . (89)

n+Z
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Now let us examine the monodromy properties of the
dilaton and the electrostatic potential. Going around the
wormhole once,

2A
4(~, v+sp) =&(~ s) +

Z(e, S + Vp) = e -"Z(e, v) . (90)
The electrostatic potential changes by a factor, and so
does the electric Geld. This means that this is not a
valid solution even accepting the Inultivaluedness of the
dilaton Geld.

Fortunately there is another procedure to get a worm-
hole solution for the Einstein-Maxwell-dilaton system.
As I showed in Sec. IVD there is a way of mapping ini-
tial data of the Einstein-Maxwell system into initial data
of the Einstein-Maxwell-dilaton system. One could start
&om the Reissner-Nordstrom wormhole, Eqs. (39),(83),
and transform it by means of a function t(Z). According
to Eq. (84), the electrostatic potential Z of the Reissner-
Nordstrom wormhole is not a single-valued function in
the initial surface. Its value changes by an amount of
T = +2A. Since t(Z) is the new electrostatic potential,
it is clear that one sixnply needs a function t(Z) peri-
odic in Z with a period which is a submultiple of T and
satisfies the difFerential equation (47). This would also
guarantee the single valuedness of the dilaton 6eld which
is a power of dt/dZ

The surprising thing is that the function needed for
this problem was already found in Sec. IVD. It is given
by Eq. (48) with the constant q given by

32~ A/=1+ ) (91)

and appropriate choices of the constants A, B,D; so t(Z)
is simply

t(Z) = M sin((u Z + pp),
4' A

A 1) 2 7
~ ~ ~

(92)

1+2(d'
e '~= cos '[(zing&/y)+ pp],

Z = M sin[(u in(@/g) + pp] (@y)

@= k i ) e""[coshp, —cos8]
n&Z

y=k ~ ) e "[cosh', —cose]
n+Z

Although this initial-data set has the required mon-

I rewrite below for convenience the whole wormhole
initial-data family for the Einstein-Maxwell-dilaton sys-
tem:

dl2 = W(dp + dg + sin 8dg ),

W = pM'(u' cos'[(u in(vj/g) + pp](@y)',

odromy properties, it is far &om being a regular initial-
data set. The metric function R' vanishes in many places,
and in those places the dilaton field blows up.

Observe that, again, after performing an electric-
magnetic duality transformation and shifting the dila-
ton by an appropriate constant, the string-kame met-
ric is just that of the Reissner-Nordstrom wormhole,
Eqs. (39),(83), perfectly regular. The dilaton field P still
blows up in many places. This, or so it seems, is the
price one has to pay for being able to find a single-valued
dilaton 6eld in a space with wormhole topology.

VII. CONCLUSIONS

In this paper I have found several families of time-
symmetric initial-data sets for theories with a massless
scalar (dilaton) which takes values in B or in a circle Sx.
These families depend on a certain number of parame-
ters. For certain values of the parameters, these solutions
describe several black holes (Einstein-Rosen-like bridges
connecting difFerent asymptotically Hat regions) in the
instant in which they "bounce. " Some solutions describe
two black holes connected by a "wormhole. "

In the case of a single black hole it is possible to prove
analytically that the same choice of values of the param-
eters ensures the regularity of the solution, the positivity
of the mass in the two asymptotically flat regions, and
the existence of an apparent horizon.

The presence of a scalar field has many interesting ef-
fects. Perhaps the most unusual one is that it is more dif-
ficult to "build" initial surfaces with nontrivial topologies
on which the initial data are regular. If one had a gauge
field on that surface, it would be easier to find solutions
in different topologically trivial patches and then glue
them together because the gauge 6elds of two overlap-
ping patches do not have to match exactly in the overlap:
They only have to match up to a gauge transformation.
In the dilaton case there is no gauge invariance available
and the solutions have to match exactly.

Most Gelds usually considered are not scalars and have
gauge invariances. This is true for the metric, vector
fields, and axion two-form (and higher-order difFerential
forxns). It seems that in theories containing this kind
of Gelds there are more possible classical con6gurations
than in theories containing scalars.

In some sense a scalar seems to play the role of a topo-
logical censor. Of course, more work is necessary to deter-
mine to which extent this is so and which kind of topolo-
gies are not allowed if the absence of singularities and
single valuedness are required.

These results can be generalized and extended to more
complex cases: theories with many scalars (nonlinear cr

models), with scalar potential, scalar masses, etc. Also,
time-symmetric initial-data sets for other interesting sys-
tems besides black holes can be studied. Particularly
interesting in this context are black strings and black
membranes.

Finally, these initial-data sets can be used as the start-
ing point for investigations on cosmic censorship along
the lines of Ref. [8] and, perhaps, critical behavior in the
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gravitational collapse of a scalar field. s Work on these
issues is in progress.
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