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A new asymptotic expansion method is developed to separate the Wheeler-DeWitt equation
into the time-dependent Schrodinger equation for a matter field and the Einstein-Hamilton-Jacobi
equation for the gravitational field including the quantum back reaction of the matter field. In
particular, the nonadiabatic basis of the generalized invariant for the matter field Hamiltonian
separates the Wheeler-DeWitt equation completely in the asymptotic limit of m& approaching
in6nity. The higher order quantum corrections of the gravity to the matter field are found. The
new asymptotic expansion method is valid throughout all regions of superspace compared with other
expansion methods with a certain limited region of validity. We apply the new asymptotic expansion
method to the minimal FRW universe.

PACS number(s): 98.80.Hw, 04.60.Kz, 04.62.+v

I. INTRODUCTION

Recently quantum Beld theory in a curved spacetime
for matter fields has been studied in the context of quan-
tum cosmology. In quantum cosmology one derives, from
the Wheeler-DeWitt (WDW) equation, a tentative quan-
tum gravity theory, the quantum field theory for the mat-
ter Belds in the curved space which is the time-dependent
Schrodinger equation, a Tomonaga-Schwinger functional
equation. The time-dependent Schrodinger equation for
matter fields has an advantage over the canonical quan-
tization on the solution space of wave equation for the
matter Belds in that one can take into account the higher
order quantum corrections of the gravity to the mat-
ter fields and the quantum back reaction of the matter
fields to the gravity. Banks [1] showed that the semi-
classical limit (WKB approxiination) of the WDW equa-
tion for pure gravity was the Einstein-Hamilton-Jacobi
(EHJ) equation for gravity, which turned out equiva-
lent to the classical Einstein equation [2]. In Ref. [3]
the induced gauge potential due to some cosmological
mode was considered in semiclassical gravity. Semiclas-
sical gravity was extended to quantum cosmological mod-
els for gravity coupled to matter fields by including the
expectation value, a back reaction, of the matter fields
to the EHJ equation [4—8]. In a quantum cosmological
model for gravity coupled to matter fields whose mass
scale is much smaller than the Planck mass, there is not
only the back reaction of the matter Belds to the EHJ
equation but also the geometric phases to the quantum
states of the matter fields [9—13].

In this paper we develop a new asymptotic expansion
method which separates the WDW equation for grav-
ity coupled to a matter field into the time-dependent
Schrodinger equation for the matter Geld and the EHJ
equation for gravity including the quantum back reac-
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tion of the matter Beld. When one expands with re-
spect to some basis of quantum states for the matter Geld
and introduces a cosmological time the WDW equation is
equivalent to a matrix equation which involves cosmolog-
ical time-dependent elements. In particular it is shown
in the nonadiabatic basis of the eigenstates of the gen-
eralized invariant for the matter Beld Hamiltonian that
the WDW equation is equivalent to the matrix equation
which consists of dominant diagonal elements and nondi-
agonal perturbation elements proportional to the asymp-
totic parameter 1/m2J, . In other words we are able to sep-
arate the WDW equation into the time-dependent ma-
trix equation for the matter Beld and the EHJ equation
with the back reaction of the matter Beld. We obtain
the higher order quantum corrections of gravity to the
matter field as a power series of 1/m&~. We also compare
the new asymptotic expansion method with other related
works. Finally, we apply the new asymptotic expansion
method to the minimal FRW universe.

The organization of this paper is as follows. In Sec.
II we introduce the new asymptotic expansion method
for the WDW equation. In Sec. III the higher order
quantum corrections of gravity to the matter field are
obtained. In Sec. IV we compare the new asymptotic
expansion method with other methods used to derive
the time-dependent Schrodinger equation for the mat-
ter Geld. Finally in Sec. V we apply the new asymptotic
expansion method to the Friedmann-Robertson-Walker
universe minimally coupled to a &ee massive scalar Geld.
The quantum back reaction of the matter Geld and the
EHJ equation are found explicitly using the generalized
invariant for a well-known time-dependent harmonic os-
cillator.

II. NE% ASYMPTOTIC EXPANSION METHOD

With the fundamental constants such as c the speed
of light, h the Planck constant, and G the gravitational
constant, inserted explicitly, the WDW equation takes
the form
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h2 $2
2 G b 2—ms, c ~h ( )R(h )

+H (~~, g, h ) @(h,g) =0, (2.1)

where m& ——c /32vrG is the Planck mass squared and
G b is the symmetrized supermetric on the superspace
of the three-geometry. There are two asymptotic param-
eters 1/h ~ oo and m ~ oo for the WDW equation,
which can be compared with just one asymptotic param-
eter 1/h ~ oo for the Schrodinger equation in quantum
mechanics. The asymptotic limit m& —+ oo can be con-
sidered as the limiting case either of G —+ 0 or c2 —+ oo
or both of them. We shall consider here only the weak
gravitational coupling limit G m 0 without any loss of
generality.

The method in this paper is neither to evolve the wave
functions of the WDW equation &om some Cauchy ini-
tial data [14] nor to separate the matrix efFective gravita-
tional field Hamiltonian equation by expanding the wave
functions with respect to some basis for the matter field
Hamiltonian [12]. The key point of our method is to
separate asymptotically the Schrodinger equation for the
matter field by introducing a cosmological time via the
gravitational action which in turn includes the quantum
back reaction of the matter field. This can be achieved
by setting the wave function in the form

i'(h, g) = exp —S(h ) 4((b, h ). (2.2)

Once we use the asymptotic parameter 1/h ~ oo in the
WDW equation just as for the WKB expansion in quan-
tum mechanics, then we obtain the intermediate equation

( .„
2m~2 ( bh( bhb)

bS bS 2
b2 . b2S

bh bhb bh bhb bh bhb)

+ 2ms, c v h ( )R(h ) —H (aery, g, h ) 4(g, h ) = 0, (2.3)

where S is the gravitational action to be determined consistently later on and (a, 6) denotes symmetrization with
respect to the indices a and b. Assuming that the prefactor of the wave function in Eq. (2.2) oscillates and is
peaked around a classical trajectory, we may Grst introduce the cosmological time along the classical trajectory in
this oscillatory region of the superspace by

and then rewrite Eq. (2.3) as

b 1 bS b

&- m~ bh( blab)
' (2.4)

ih —H—(~p, g, h ) +2ms, c ~h ( )B(h )— 1 bS bS
ab

gg

h 82S h2 h'—i 2Gb + 2Gb 4(ph)=0.
2m' bh~bhb 2m~ bh~bhb

(2.5)

ih —4(g, h ) = H (vrp, g, h )4((t, h ) (2.6)

provided that the gravitational action satisGes the con-
ventional EHJ equation

ss(') ss(')
G b

—2m~c Vh ( )B(h ) = 0. (2.7)

It should be remarked that Eq. (2.5) can be interpreted
as the exact time-dependent Schrodinger equation for the
matter Beld including the gravitational quantum back
reaction, since if we neglect the last two terms in Eq.
(2.5), which is valid in the limit 1/m& ~ 0, it is nothing
but the conventional time-dependent Schrodinger equa-
tion [1,4,15]

shall not consider this term in this paper.
Our method to be developed below divers Rom others

in that instead of taking the conventional EHJ equation
in Eq. (2.7) to obtain the conventional time-dependent
Schrodinger equation in Eq. (2.6) we treat the exact
time-dependent Schrodinger equation in Eq. (2.5), ex-
pand the exact quantum states of the matter Beld by
some basis, and Bnally solve the matrix equation equiv-
alent to Eq. (2.5). For the sake of simplicity, we shall
use the ket-bra vector notation for the quantum states
of the matter Beld, and act the bra vector on the ket
vector to denote the inner product. The exact quantum
state in Eq. (2.5) for the matter field can be expanded
by some basis ~Cb(P, h )) which constitutes a complete
set of orthonormal vectors as

The second to the last term i (h/2mI, ) G b(b S/b—h bhb)
not only is asymptotically small as a power of 1/m& but
also violates the unitarity of matter field equation, so we

O(p, h ) = ) cb(h ) ~Cb(p, h )), (2.8)

where ck(h ) are coefficient functions of the gravitational
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field only. Both cg(h ) and ~eA,, (P, h )) are still unknowns
which will be determined systematically later on. Then
Eq. (2.5) is equivalent to the matrix equation

ih —
cA,. (h ) y n( )(h )cx, (h )

and

n( &(h ) —n('„)(h ) = 0, (2.i7)

Recollecting that the gravitational action S is still unde-
termined, we may take a simple ansatz of the form

+).
n

xc„(h ) =0,
where

(2.9)

ih —ci, (h ) + nqq (h )ci, (h ) = 0.
67.

(2.ia)

Equation (2.17) is nothing but the familiar EHJ equa-
tion with the quantum back reaction of the matter field
included

1 bS bS 2 2 (3)
2 G s +2mx, c ~h R(h ),

n". (h-) = (e.(&.h-)I K-( ~, 4, h-)le. (~, h.)),
n„"„'p.) =*r(e.(yn ) —, e..(y, h.)),

n('&(h. ) =—

(2.io)

where

(A )g„= i(Cg(t), h ) C'„(p, h )). (2.11)

ih —cg(h ) + n( )cg(h ) + ) —nq(„)(h ) + n(q„)(h )

The task of solving the WDW equation (2.1) is now re-
duced to that of solving the matrix equation (2.9). How-
ever, in the asymptotic limit of 1/m„-+ 0, we may ne-
glect the last term of summation in Eq. (2.9) and get the
approximate equation

2m~ bh bhg

+ (e) (&, h. )l K (~&, &, h.) le, (4, h. )) = o. (2.i9)

It should be noted that the EHJ equation (2.19) is an
implicitly coupled nonlinear equation in which the kth
eigenstate is defined by the generalized invariant (2.13),
which in turn is defined using the cosmological time (2.4)
through the gravitational action S. This means that the
gravitational action does depend on the mode number k,
i.e. , S(I,), and so does the cosmological time w(~). The
physical implication is that there are an infinite num-
ber of gravitational actions S(A.), where I( runs over all
quantum numbers of the generalized invariant which sat-
isfies Eq. (2.19). The cosxnological time r(A, ) is defined
along each gravitational action S(A.). It was shown in Ref.
[14] that there is a spectruxn of infinite number of wave
functions that depend on the modes. The gravitational
action S(A.) corresponds to the wave function 4(A. ) and
the cosmological time is defined along the classical tra-
jectory around the peak of wave function. Now, the wave
function (2.2) becoxnes

xc„(h ) = 0. (2.12)

On the other hand, if one introduces a generalized invari-
ant obeying the invariant equation

—I(h ) = I(h ) —— I(h ), K (h ) = 0 (2.13)

e(i,)(h, y) = exp —S(A, )(h ) e(g)((t), h )

and so does the quantum state of the matter field

e(ie)(P, h~) = ) c~(h~) e(A, )~(4&, h~)) .

(2.20)

(2.21)

for the matter field Hamiltonian, then there is a well-
known decoupling theorem [16] for the generalized in-
variant such that

We find the solution to Eq. (2.18),

cq (h ) = dg exp — nqq (h )d~(g)
(o) (2) (2.22)

n„'„'(h.) = n„"„'(h.) (2.i4)

I(h )]e (p, h )) = A ie (p, h )). (2.15)

Since all of the ofF-diagonal equations in Eq. (2.12) van-
ish, we have only the diagonal equations left

ih —ci, (h ) + n(')(h ) —n('„)(h ) + n('„)(h ) cg(h )

= 0. (2.16)

for difFerent eigenstates, k g n, of the generalized invari-
ant

where dA, is a constant. It was implicitly assumed that all
the Eqs. (2.9) through (2.19) should depend on the mode
number (A:); we shall, however, work with the (k) mode
only and drop the mode number hereafter throughout
this paper.

III. HIGHER ORDER QUANTUM
CORRECTIONS

We now turn to the time-dependent Schrodinger equa-
tion (2.5) for the matter field with the gravitational ac-
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tion, S and thereby the cosmological time w determined
by Eq. (2 19) and Eq. (2.4), respectively. The time-
dependent Schrodinger equation, the gravitational ac-
tion, and the cosmological time are all defined along the
(k)th mode, whose mode number will be omitted. Its
matrix equivalent in Eq. (2.9) now satisfies

ih —c„(h )+A~„~(h )c (h )+ ) A~„l(h )c„(h )
n

= 0. (3.1)

By substituting

totic approximate diagonal equation (2.16) and, there-
fore, should be regarded as the zeroth order solution

c~~ l(h ) = di„ (3.5)

) ( 5
iI ( )

(2m')
(3.6)

where they satisfy the recursion equation

to Eq. (3.1) with the EHJ equation (2.19) still satisfied.
We may find the solution for Eq. (3.3) perturbatively in
a power series of 5/2m&2.

ci, (h ) = exp — A~~~l(h )d~ cg(h ) (3 2) i—c~~l(h ) + ) A„„(h )c~' 'l(h ) = 0. (3.7)

into Eq. (3.1) we obtain the equation

ih —ci, (h ) + 2 ) Aq„(h )c„(h ) = 0,
7 2m p n

where

The solution to the recursion equation is the ordered lth
multiple integral

i'„" = i' ) /0,"„' (h.) f B~',~„,(h. )
As iS 1i ~ ~ ~ il

Aq„(h ) = exp —— Aqq (h )d~ Aq~„l(h )

x exp — A~ (h )dv
W

(3.4)

The simple ansatz (2.18) was a solution to the asymp-
I

(3.8)

For an instance, when an initial data c = dA, bg, dg
= const, is imposed, the quantum state of the matter
field including the gravitational correction up to the first
order is

4(P, h ) dg exp —
A&& (h )dv ~4i, (P, h )) + i 2 ) A&„(h )dr ~e'~(P, h ))

P
(3.9)

Thus the first order transition to the other states &om
the initially prepared state is suppressed by a factor of
1/m2& because there comes a factor of h &om the integra-
tion and similarly the nth order transition is suppressed
by a factor of (1/m2&)". It is to be noted that the proce-
dure employed in this paper is quite similar to the per-
turbation method for a quantum system with a small
perturbation term; here the parameter for the smallness
of the perturbation term is h/2m&2 and Eq. (3.8) is the
perturbative series for the given choice of the basis of
eigenstates of the generalized invariant, which is also the
solution for the unperturbed equation (2.6).

Hs(h ) =
2 G sz. z —2m~c v h ~ lR(h ). (4.1)

2fQp

When coupled to the matter field, the gravitational
super-Hamiltonian (4.1) leads to the WDW equation
(2.1). Quantizing the gravitational Hamiltonian Eq.
(4.1) by substituting w = (5/i)(b/bh ), taking the wave
function of the form @(h ) exp[iS(h )/5], and keep-
ing dominant terms only, we just obtain the conventional
EHJ equation

(4.2)

IV. COMPARISON WITH OTHER RELATED
WORKS

In this section, we shall compare the result of this pa-
per with other related works.

First, we shall answer in part the question whether the
conventional EHJ equation (2.7) or the EHJ equation
(2.19) is right through the investigation of a quantum
cosmological model. Suppose a quantum cosmological
model with the gravitational super-Hamiltonian

ih —O(g, h ) = H (cry, P, h )O(g, h ). (4.3)

We found the exact quantum states in terms of the eigen-
state of the generalized invariant [12]:

which is the same as Eq. (2.7). Finally, putting the
conventional EHJ equation (4.2) and neglecting the last
two terms in Eq. (2.5), we obtain the tiine-dependent
Schrodinger equation
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C(g, h ) = ) di, exp — 0&& (h )dw ~C'g(P, h )).
A:

1 1 fats)t
+2m&c a=0.

2m' a (Ba) (4.9)

2(1—n) +(n)m+ (4.5)

whose lowest order action obeys

gs(ol bs(o)
O(m~): —G " " —2c v h ( lR(h ) = 0, (4.6)

and the first two higher order actions obey

(0) (i)
O(m~): G., —n» + n» —0,0 6SA 6Sg (i) (2)

bh( bhg)

&SS"SS" 1SS"SS"l = 0. (4.7)

It is worthy to note that the lowest order contribution
(4.6) gives nothing but the conventional EHJ equation
(4.2). So the above question whether Eq. (2.19) or Eq.
(4.2) should be used is closely related to the question
whether the asymptotic expansion of the gravitational
action (4.5) gives the correct gravitational action.

However, contrary to the belief widely accepted that
the conventional EHJ equation (4.2) gives the correct
gravitational action, we give a counterexample showing
that the asymptotic expansion (4.5) leads to a wrong
gravitational action. In the case of the Friedmann-
Robertson-Walker universe minimally coupled to a scalar
field with a power-law potential, the WDW equation
takes the form

18 2 2 21 0
2m2 a Ba2 as 0/2

—2mJ, c a —h — + 2a U(P) 4'(a, Q)

(4.8)

(4.4)

It is to be noted that the conventional EHJ equation (4.2)
is equal to the approximation A(ol (h ) = 0, and the grav-
itational field-dependent coefficients in Eq. (4.4) can also
be determined by directly integrating Eq. (2.16) with
both A( l(h ) = 0 and 0( l(h ) = 0 substituted. How-
ever, the lowest order solution (2.18) of the coefficient
function does not depend on the gravitational field, i.e. ,
is a constant and the higher order solution (3.8) depends
on the gravitational field. The significant difference on
the coeKcient functions comes from the fact that in this
paper we have used the EHJ equation (2.19) with the
quantum back reaction of the matter Geld rather than
the conventional EHJ equation (4.2). Below we put forth
a criterion on whether Eq. (2.19) or Eq. (4.2) should be
used for the correct gravitational action.

In order to show the relation between the EHJ equa-
tion (2.19) and the conventional EHJ equation (4.2), we
expand the action (2.19) perturbatively in the inverse
power of the Planck mass:

Direct integration by quadrature yields the gravitational
action S(a) = him&ca and the wave function

t'
4'(a, (t) = exp

~

+—mica
~
C($) a). (4.10)

A (h. ) ~e„(y, h.))., = a, (h. ) ~C, (y, h.)).„(4.»)

and expanding the quantum state

Likewise, the lowest order gravitational action (4.6) also
has the same value S( ) = Rica . Therefore, the cos-
mological time Eq. (2.4) leads to an imaginary one w =
kiln(a/2c). Both the conventional EHJ equation (4.2)
and the dominant term of the asymptotic expansion of
the gravitational action (4.5) always lead to the wave
functions with an exponential behavior due to the cur-
vature term, the second term in Eq. (4.8). However,
both in the adiabatic basis method [17] which expands
the wave functions by the gravitational field-dependent
eigenfunctions of the matter Geld Hamiltonian and in the
superadiabatic expansion method [14] in which transi-
tions among different eigenstates are taken into account
during the evolution of the Universe, the resulted wave
functions show not only the exponential behavior for a
large three-geometry but also the oscillatory behavior for
an intermediate three-geometry depending on the quan-
tum number of the matter field Hamiltonian. The oscil-
latory behavior of wave functions is inevitable to the clas-
sical Lorentzian universe such as the present Friedmann-
Robertson-Walker universe. Therefore, in the case of
the minimally coupled Friedmann-Robertson-Walker uni-
verse it can be inferred that the conventional EHJ equa-
tion (4.2) has a certain limited region of the large three-
geometry for the validity, whereas the EHJ equation
(2.19) holds not only for the large three-geometry pre-
vailing with the curvature term but also for the interme-
diate three-geometry prevailing with the quantum back
reaction of the matter field. The EHJ equation (2.19)
should be used in order to give the correct gravitational
action valid for all the regions of superspace.

Second, we shall compare the new asymptotic expan-
sion method with the adiabatic expansion method. Quite
similarly as in the new asymptotic expansion method in
which one expands the quantum state of matter Beld by
the nonadiabatic basis of the eigenstates of the general-
ized invariant, in the adiabatic expansion method one ex-
pands the quantum state of the matter field by the adia-
batic basis of the instantaneous eigenstates of the matter
field Hamiltonian itself and includes the quantum back
reaction of the matter field with respect to the adiabatic
basis. By defining the instantaneous eigenstates

from which it follows that G = —1/a and II (P, a) =
—h 8 /a &P + 2a U(P). The EHJ equation (4.2) be-
comes

C(g, h ) = ) c gg, (h ) ~Cg(g, h )) „,
one obtains the matrix equation

(4.12)
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ih —c gl (h )+A~ l(h )c gl (h )

+)

2 O(ql„„(h ) c g„(h ) = 0, (4.13)
2m+

where

O~qlq„(h ) = g(41, (g, h )~II (vrp, g, h ) ~C„)( (),))h )) q,

0 c„„(h ) = Ace(Cc(g, h ) —C„(g,h ))
2

B,cc„(h ) =G c c(@c(P,h ) 4 (P, h ) where

A (h ) =iU*(g, h ) U (P, h ),
a

(4.19)

Here we have the same subtlety as in Sec. II that the
EH 3 equation with the adiabatic quantum back reaction
depends on the mode number k. So we have the gravi-
tational action S(~~ and the cosmological time 7(A.~. The
difFerence between the EHJ equation (4.18) and the EHJ
equation (2.19) is that in the former the quantum back
reaction of the matter field is explicitly given, whereas in
the latter it is implicitly determined via the cosmological
time which is defined by the gravitational action.

Third. , there has been a recent study of geometric
phases as a mechanism for the asymmetry of the cosmo-
logical time [12]. In particular, in the basis of eigenstates
of the generalized invariant one may define a gauge po-
tential (Berry connection)

where

$2 b+G s hI,„—2i(A( g )g„, (4.14)
a b b)

(A c, jc =i c 4c(g, h ) 4 ($, h )) . (4.15)
b

bha aa

( IC'o(& h-)) )
IC'i(4 h-))

U(g, h ) =
IC'-(@ h-))

(4.2o)

Again, in the asymptotic limit of 1/m& -+ 0, we may ne-
glect the last term in Eq. (4.13) and get the approximate
equation

is a column vector, and the asterisk * and the super-
script denote dual and transpose operations, respec-
tively. One can show that

ih —c gA,, (h ) + A~ l(h )c gl, (h ) —U(p, h ) = i 2 G b A—
q) U(p, h ), (4.21)

+) —0 „„„(h) + Ai ~l „„(h ) c„(h ) = 0. (4.16) and

It should, however, be remarked that in the adiabatic
expansion method the ofF-diagonal elements of the cou-
pling inatrix do not vanish, O&„g 0&„ for k g n, in
strong contrast with those in the nonadiabatic expansion
method. Therefore, one should solve the whole adiabatic
approximate matrix equation (4.16) with the elements
of the coupling matrix accounting for transition between
diferent eigenstates instead of the f'requently used adia-
batic diagonal equation in Eq. (4.16):

ih (h ) + c(cO~ ~(h—) —B„c(h ) + Ac~„~(h )) c„(h )

= 0. (4.17)

Because 0 & & for k g n, have an order of magnitude(~)

comparable to 0 & &&, it is not justified to use the adia-
batic diagonal equation (4.17), which is frequently used in
the literature under the assumption that the ofF-diagonal
elements be neglected. From Eq. (4.17) one also ob-
tains the &equently used EHJ equation with the adia-
batic quantum back reaction of the matter field:

+., (o, (y, h. )~ a (~~, y, h. )~e„(y,h. )) , = o.

(4.18)

Then the matrix equivalent (2.9) to the WDW equation is
entirely determined by the gravitational action and the
gauge potential. It should be remarked again that the
matter field Hamiltonian gives not only a back reaction
to the EHJ equation (2.19) but also the geometric phase
term

b bS
(OA,, (g, h )~ih ~OI, (g, h )) =

2 G s (As))qq& m~~ bh(a

(4.23)

to the quantum state of the matter field. It should also
be noted that the gauge potential defined in terms of the
eigenstates of the generalized invariant does always give
nontrivial diagonal elements in strong contrast with the
gauge potential defined in terms of instantaneous eigen-
states of the Hamiltonian whose diagonal elements vanish
for real eigenstates. On the other hand, when the gravi-
tational field Hamiltonian (4.1) acts on the wave function
expanded by the eigenstates of the generalized invariant
as

4(h, P) = U~(f, h ) 4(h. ), (4.24)

bAT
G (, U(g, h ) = G (,

s + (A As) U(g, h ).
bh bhb

' bh

(4.22)
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it becomes the matrix nonadiabatic gravitational Hamiltonian equation and acquires the induced gauge potential
(4.19) [12]:

Hg4(h ) =
W

, G s(z. —A )(O' —») —2m~c'v h (')B(h ) 4(h ).
2m+

(4.25)

It was shown that there was a remarkable decoupling theorem as mentioned earlier canceling the off-diagonal gauge
potential and the expectation value of the matter field Hamiltonian at the classical level. After the matter field
Hamiltonian is included, the total Hamiltonian Hg + H acting on the A:th wave function

@ (h- 4) = p l

—S (h-)
~

I@ (& h-))(h (4.26)

leads to

1 be be
2m2~ b h She

1 be 1(»))»+, (" s(&.)»(»)a~
mp2 bh( 2m~

—2mI, C V h ( )R(h ) + (OA, (P, h ) j H (~y, P, h ) ~4 g (()I), h )) = 0. (4.27)

This equation can be rewritten as

1 (bSg ) (bSg —»
I

—2m' c'~h+ (4'I (4, h-) IH-(~y, 0, h-) IO~(4, h-)) = 0
2m~2 (bh~ ) ( She ) (4.28)

Equation (4.27) is the diagonal equation of Eq. (2.9) with
the wave function (4.26) and the zeroth order solution
cA, ——const. In our new asymptotic expansion of the
WDW equation what corresponds to the gauge potential
is resigned to the matrix equation (2.9) for the matter
field.

H = —
vr4, +m a P (5.2)

In order to find the generalized invariant, the first thing
to do is to find the classical equation of motion for Eq.
(5.2):

V. MINIMAL FR& UNIVERSE jb(~) + 3 P(~) + 4m'P(~) = 0,
a(~)

(5.3)

We consider in detail the Friedmann-Robertson-
Walker universe minimally coupled to a Bee massive
scalar Geld, whose WDW equation is

2 2 2 1 ~ 2 3 2—2m~c a —5 — + m a P @(a,P)2m~ G 19G as'

where the cosmological time will be determined later on
through Eq. (2.4). The cosmological scale factor a and
the scalar field P depend implicitly on the cosmological
time. Under the assumption that the classical solutions
Pq(w) and P2(v) to Eq. (5.3) are given explicitly, it is
known that the generalized invariant is given by [18]

= 0. (5.1)

Here m is the mass of the scalar field and the matter field
Hamiltonian is given by

I()=g—() 2 +g()
2 +g+() 2

(54)
~yp+ pvry

where

g (T) = c]Qg('r) + c2fy(r)$2(T) + cs$2('T),

a (~)3
C2 ~

gC(T) = 2241( ) )( )T+222T42(T)42(T) + $2(T))2(T') + 22242(T)2('2(T))

3 -26 'T
2 4 ~

g+(r) = cyljkg(r) + c2py(r)$2(r) + cs((t)2(r) (5.5)

We may introduce the cosmological time-dependent creation and annihilation operators of the generalized invariant
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bt(r) = 1

2g (r) 2u)pg (r)
—i gp(r)

g (r)
2(dp

time-dependent annihilation operator

b(r) ~O, r) = O. (5.10)

In the number state representation the gauge potential
(4.19) reads that

b(r) = Edp 1

2g (r ) 2u)pg (r)
+i gp(r)

(r) -—
24Jp where

A{r) = ia(r) bt{r)b(r) +—
2

+- P( )b'( ) —P'( )b"
2

(5.ii)

where

+(r)g (r) —-go(r) (5.7)

is a constant of motion. The generalized invariant can be
written as

1 g (r) c) gp(r)
2i (do Br g—(r )

(r) = -- + a(r).1 1 Bg (r)
2 g r t9r

(5.12)

The gauge potential (5.11) has the matrix notation

I(7) = (up bt(r)b(r) +—
2

The eigenstates are the number states

~n, r) = bt" (r) ~0, r),
n!

(5.s)

(5 9)

11
Al,„(r) = ia(r)

~

n, y —
~

hg „2)

+ P(r) Qn—(n —1)hi, „
p' (r) V—'(—n + 1)(n + 2)hI „+2, (5.13)

where the ground state is annihilated by the cosmological and the gauge potential squared

A„„(r)=
~

-a + PP'
~

(n +-n)+ PP' —-a-&, 1 1, 1

2 2 4
1 1——aP(2n —1)Qn(n —1)h& „2+ —nP*(2n + 3) Q(n + 1)(n + 2) hg „+2

p Qn(n —1)(n —2) (n —3)hg 4 + —p* Q(n + 1)(n + 2) (n + 3)(n + 4)hg, „+4.1 2 1 *2 (5.14)

One can show that

(i) 2 ~o + go(r) + 2m a g (r) f' 1')

2~pasg(r)

(2) hg (r) c) gp(r) ( 11
2 (dp Br g (r) ( 2p

a t' aA,„., i . a &al ia' . a
2 ~

i —Aq„~ —i ss Ay„——
bA,.„—2iAg, „a Ba Oa

(5.15)

(5.16)

(5.17)

1 1 f'BSI 22 (,)—2m„c a+ 0» (r) = 0,
2mp a (c)a j (5.is)

together with the definition of the cosmological time

8 1t9S 0
a Oa Oa

determines the action S as a function of a(r).

(5.19)

Os are functions of the cosmological time (2.4) through
the dependence of the classical solutions (5.3) and
thereby the generalized invariant (5.5) on a(r). There-
fore Eq. (2.19) which now reads

VI. SUMMARY AND DISCUSSION

In summary, we have developed a new asymptotic
expansion method according to which the Wheeler-
DeWitt equation w'as separated. into the Einstein-
Hamilton-3acobi equation with the quantum back reac-
tion of the matter field included. and the time-dependent
Schrodinger equation for the matter field. In the new
asymptotic expansion the Wheeler-De Witt equation was
equivalent to two coupled nonlinear functional equations
consisting of the cosmological time (2.4) and of the time-
dependent Schrodinger equation (2.5) for the matter field
or the matrix representation (2.9) of it. The time-
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dependent Schrodinger equation or the matrix equation
for the matter Geld included quantum gravitational cor-
rections. In particular we have found the exact quantum
state (2.8) in the nonadiabatic basis of eigenstates of the
generalized invariant for the matter Geld Hamiltonian by
solving the matrix equation whose solution consists of
Eq. (2.17) and Eqs. (3.6) and (3.8). The zeroth order
quantum state in Eq. (2.8) was the nonadiabatic basis it-
self, which motivated the use of the generalized invariant
to solve the time-dependent Schrodinger equation in Ref.
[12]. It was found that the quantum corrections of grav-
ity gave rise to transition of quantum states of the mat-
ter field whose erst order transition rate (3.9) was sup-
pressed by the factor of 1/m&2, and the nth order transi-
tion rate by the factor of (1/m&) . Moreover, Eq. (2.17)
was nothing but the Einstein-Hamilton- Jacobi equation
(2.19) with the quantum back reaction of the matter
Geld included. The Einstein-Hamilton- Jacobi equation
is an implicitly coupled nonlinear equation for the gravi-
tational action by which the cosmological time (2.4) used
to define the generalized invariant is defined. Since the
quantum back reaction of the matter field depends on the
mode number, the cosmological time as well as the grav-
itational action do depend on the mode number. The
physical meaning of the mode-dependent gravitational
actions is that the time-dependent Schrodinger equation
(2.5) or its matrix equation (2.9) should be defined along
the corresponding gravitational action. In fact there are
infinite number of wave functions which are peaked along
the gravitational action [14]. The higher order quantum
corrections of the gravity to the matter Geld in Secs. III
and V are calculated along a specific mode-number grav-
itational action.

It has been shown through an investigation of the min-
imally coupled Friedmann-Robertson-Walker universe
that the Einstein-Hamilton-Jacobi equation (2.19) gives
indeed the correct gravitational action rather than the
conventional Einstein-Hamilton- Jacobi equation (4.2)
providing an oscillatory regime necessary for the emer-
gence of the Lorentzian universe. The new asymptotic
expansion method based on the generalized invariant has
the advantage that one has already cancelled the ofF-'

diagonal terms between two difFerent eigenstates due to
the remarkable decoupling theorem of the generalized in-
variant, whereas one has to take care of the ofF-diagonal
terms between two difFerent instantaneous eigenstates of
the matter field Hamiltonian in the conventional adia-
batic expansion method. Furthermore, by introducing
the gauge potential (Berry connection) (4.19) we were
able to express explicitly the gravitational correction
(4.22) as well as the back reaction of the matter field.

Finally, we have applied the new asymptotic expan-
sion method to the Friedmann-Robertson-Walker uni-
verse with a minimal scalar field. The generalized in-
variant was found in terms of the classical solutions of
the matter Hamiltonian, &om which the back reaction

(5.15), the geometric phase (5.16), and the coupling ma-
trix (5.17) of the gravitational corrections are derived
explicitly.

Considering an analogy, if any, between a quantum cos-
mological model of gravitational Geld and matter fields
and a quantum system of heavy particles and light parti-
cles, the gravitational field and heavy particles behave as
slow variables, and the matter fields and light particles
behave as fast variables [12]. In the quantuin jargon of
the fast and slow variables the new asymptotic expan-
sion method provides us with a very systematic method
to separate one equation for the fast variables and the
other equation for the slow variables. The fast variables
obey a parameter-dependent quantum mechanical equa-
tion whose parameter is determined by the slow vari-
ables and the slow variables satisfy a classical Einstein-
Hamilton-Jacobi equation with the quantum back reac-
tion of the fast variables. In quantum cosmological mod-
els the gravitational field with the Planck mass scale
behaves as a heavy particle obeying classical Einstein-
Hamilton-Jacobi equation with the quantum back re-
action of the matter Gelds which consists of the gauge
potential as well as the expectation value of the mat-
ter field Hamiltonian. The time-dependent Schrodinger
equation for the matter field can also be solved using the
generalized invariant. The &ee massive scalar Gelds in
quantum cosmological models have been solved in Ref.
[12] and have provided a mechanism for the cosmolog-
ical entropy production during an expansion and recol-
lapse of the Universe. It is a new feature of the new
asymptotic expansion of the Wheeler-DeWitt equation
that the geometric phases are an inevitable consequence
to the quantum states of the matter Geld as well as the
expectation value of the matter field Hamiltonian to the
Einstein-Hamilton-Jacobi equation which is the counter-
part of the classical Einstein-Hamilton-Jacobi equation.
The gauge potential in the nonadiabatic basis cannot be
gauged away even for the real eigenstates. However, the
gauge potential can always be gauged away for the adia-
batic basis of real eigenstates of the matter Geld Hamil-
tonian in the conventional expansion method. Thus the
argument [12] that the cosmological time asymmetry may
have origin in the geometric phase still survives.
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