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We find exact inBationary solutions with exit, including exact forms of the potential, by specifying
the rate of expansion and using the number of e-foldings as the effective dynamical variable. These
include solutions which are nearly exponential or power-law inBation for t, & t ( t, and then
develop smoothly towards radiationlike evolution for t ) t, .
PACS number(s): 98.80.Cq

I. INTRODUCTION

Inflationary cosmologies not only solve some of the
problems inherent in the standard cosmologies, but also
provide a mechanism for generating the perturbations
that could be the seeds of structure formation [1, 2]. A
combination of an inflationary era with the standard ra-
diation and dust eras can produce very successful cosmo-
logical models. One of the issues arising in such models is
the transition &om the inflationary to the radiation eras,
i.e., the problem of "exit" from inflation. In this paper
we consider an aspect of this problem: the determination
of exact solutions with exit, including exact forms of the
potential.

We present in Sec. II a new method for generating ex-
act inflationary solutions, in which the Hubble rate is
chosen as a function of the scale factor, and the number
of e-foldings is the efFective dynamical variable. Two new
solutions are investigated in Sec. III. These are smooth
isentropic solutions in which the potential initially drives
nearly exponential or power-law inflation, and then sub-
sequently "converts" the scalar field to radiationlike dy-
namical behavior. Although these solutions are clearly
very simplified models, and in particular cannot account
for reheating and entropy production, they are consis-
tent with the typical approximate parameters governing
the inflationary era. Such exact solutions may help to
broaden an understanding of the theoretical possibilities
encompassed. by inflationary cosmologies. In this sense,
our solutions extend the body of exact inflationary solu-
tions built up by previous papers [3—16].

In order to estimate the entropy production in models
based on these solutions, in Sec. IV we construct solutions
where the smooth transition from inflation to radiation
is replaced by an instantaneous "jump. " (Similar "jump"
solutions have been previously discussed, for example in

[17, 18].) Exact exponential and power-law inflation are
joined to exact radiation expansion at exit time, subject
to the required junction conditions. These solutions are
idealized models since the actual process whereby the
scalar field decays, with associated fluctuations, parti-
cle production, and reheating, is reduced to an instan-
taneous conversion of the field to radiation. However,
they are able to account for the right order of magnitude
of entropy production, given possible parameters of the
inflationary era.

II. METHOD
FOR GENERATING EXACT SOLUTIONS

Consider a spatially flat Friedmann-Robertson-Walker
universe

ds = dt +a(t) —[dx +dy +dz ],
containing a minimally coupled scalar field P(t) with self-
interaction potential V(P), energy density p(t), and pres-
sure p(t). The conservation equations T,b = 0 are

p+ 3H(p+ p) = 0,
where H = a/a is the Hubble rate. Equation (1) is equiv-
alent to the Klein-Gordon equation

P+ 3HQ+ V'(P) = 0,
since

p = —,'4'+ V(4)
p= ,' j' —V(y) . -

Radiation (i.e. , thermalized massless and ultrarelativis-
tic particles) may be described in a scalar-field formalism

0556-2821/95/52(6)/3358(7)/$06. 00 52 3358 1995 The American Physical Society



52 EXACT INFLATIONARY COSMOLOGIES WITH EXIT 3359

2H+ 3H' = —p,
3H =p.

(6)
(7)

Using (3), (4) these lead to the equivalent pair of equa-
tions for V and P:

V=H+3H
2H . —

(8)

(9)

Equation (9) implies a reality condition, limiting the ac-
celeration:

ii&aH (10)

During the inHationary era the acceleration must be pos-
itive:

inflation: a & 0 M p ( —3p,
where the equivalence follows &om (6), (7). In an exact
radiation era, (5) together with (6)—(9) shows that

radiation: a(t) oc (t —to) ~2, V(P) oc e (12)

where to is constant, and V, P have only a formal math-
ematical meaning.

The following procedure for constructing exact infla-
tionary models has been proposed in [6]: Specify a mono-
tonic scale factor a(t) [which directly implies H(t)], and
derive V(t) and P(t) &om (8), (9). In principle one can
invert to obtain t(P) and thus V(P). We use this ap-
proach in Sec. IIIA to construct a solution that evolves
from nearly power-law inflation to radiationlike expan-
sion.

The standard approach to inflation starts &om particle
physics and proceeds to cosmology: One specifies V(P)
and tries to find the corresponding evolution a(t) [which
usually leads to approximations for solving the Klein-
Gordon equation (2)]. As long as there is no decisive
information &om particle physics as to what the inflaton
is or what the form of V(P) should be, a complementary
approach can be useful for deepening our understanding
of inflation: One specifies the evolution a(t) and then
derives the potential V(P) that drives such an evolution.
This is the approach of [6], used and extended here. It
amounts to a cosmological prediction of V(P), if one can
justify a particular form of the evolution of the universe
&om other observational and physical evidence or prin-
ciples [6, 19].

Other complementary approaches have also been de-
veloped. The various approaches are partly distinguished

with p =
3 p, although the Geld and potential no longer

have the physical meaning attached to them in the infla-
tionary era. By (1),

const 4radiation: p = 3p = = AT
a4

where T is the temperature and A is the radiation con-
stant times the number of electively massless species,
which we take as about 100 [1].

The field equations are (in units such that 8mG = 1 =
c)

by what is specified in order to find exact solutions. In [6]
a(t) is specified, whereas, for example, [4] specifies p(p),
[7] specifies H(cd), [10, 11] specify P(t), and [15] specifies
V(H). The difFerent approaches have different advan-
tages and disadvantages. The advantage of [6] is that
one can directly specify a desired time evolution of the
universe, although one may be faced with the impossibil-
ity of inverting to find V(P) in closed form.

Our extension of [6] shares its advantage and its possi-
ble drawback. We specify H(a), rather than a(t), and use
ln a, rather than t, as the dynamical variable. As in [6], a
desired evolution (strictly, rate of evolution) is specified,
and the potential that produces it is derived. In order
to render the equations autonomous, we introduce the
variable

V(n) = -', H'(n) + 3H'(n),

4(n) = 4' +
0
ln(a/a; )

t(a) =t;+
( ),

—2 [lnH(n)] dn,

(14)

(16)

where a prime denotes d/dn. In principle one can invert
P(n) to obtain V(P). By (6), (7) and (13), the energy
density and pressure are, like the potential in (14), linear
in H2:

p(n) = 3H (n), p(n) = —H (n) —3H (n) .

The linear form (14) of the potential in terms of H,
which follows because of the choice of o. as a dynamical
variable, reflects a possible advantage over the method
of [6], in that our method may have a better chance of
producing explicit forms V(P). The price paid for this is
that one often is unable to invert (16) and obtain a as
a function of t. This relative merit and weakness is well
illustrated by the solutions in Secs. III A (derived by the
method of [6]) and IIIB (derived by our method).

The reality condition (10) is just H' & 0. From (11),
the condition for inflation also takes a simple form in the
new variables:

inflation: H' ) —H;
exit: H' = —H . (17)

Some simple choices of H lead to interesting solutions.
Consider Grst a "power-law" rate of evolution,

H =H; —' =He (18)

where n is a positive constant. By (17), this is inflation-
ary (without exit) provided n ) 1. From (14)—(16) we
see that (18) is indeed standard power-law inflation:

f' a
n = ln

/

—
/&a')

where t; is the time that inflation begins. It follows that
n(t) is the number of e-foldings at time t ) t;. Now
suppose a rate of evolution H(n) is specified. Then the
potential and field follow &om (8),(9) and the scale factor
follows implicitly from the Hubble rate:
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a=a; H''(t —t;)+ 1
n

( 11 2
V(@) =

~

3
I
H, ex'p

nj (4 —4')

This is consistent with typical values for the inflationary
parameters [1] [see Eqs. (25) and (39) below]. Thus
(19)—(22) is a possible inflationary model with exit.

Third, consider the rate of evolution,

( a a;
+e +e)

V(C) =H;
~

3 ——'O
~

exp 2—'(1 —4 )
+e j +e

(20)

(21)

k4—:1+ '(P —P) =6
Sa, a; '

1 . (a) . (a)t=t;+ Ei/ —
/

—Ei/ —' /, (22)
H;e '~ . (a, j (a, j

where Ei is the exponential integral function [20].
The potential (21) has a maximuin of approximately

the de Sitter value 3Hz at 4 = 0 (before t;), and de-
creases monotonically to a minimum, passing through
zero:

V=O at a=3a
It then tends to zero from below as ~4~ ~ oo. However,
since

a)3a, W p) p,
the solution is only valid for a & 3a . The potential at the
start of inflation is slightly displaced &om its maximum,

V;=
i

3 ——'
iH;

( a;5

and exit occurs well before the potential goes negative:

(
V, =2exp —2~ 1 ——

~
H;o.j

By (19), the Hubble rate at exit is

H,.
H~

e

since a; (( a, . Using the expansion [20]

A:

Ei(x) = C+ lnx+ )
where C is Euler's number, (22) shows that

1 a, 1 1 ( a,
ln —+), =

i
ln —+1.32

i
.

H; a; -k!k H; q a,.

Second, we try an exponentially decreasing rate of evo-
lution, H oc e ~" (k a positive constant). By (17), this
is inflationary while a ( k, so that k = a„where t, is
the time of exit:

a;( ol a;
H = H; exp —'

~

1 ——
~

= H; exp —'
(1 —e )

ae ai ae

(19)

Then (14)—(16) imply

const
1+ (a/k)z ' (23)

where k is constant. The expansion is initially nearly de
Sitter, inflating while a ( k = a, [by (17)], and then
evolves towards radiationlike expansion. The potential
V(P) may be found explicitly. We investigate this solu-
tion in Sec. IIIB.

III. ISENTROPIC SOLUTIONS THAT EXIT
TO RADIATION

A. Power-law inflation to radiation era

Using the method of [6], we begin by modifying an
ansatz that models the transition &om radiation to dust
[21] (see also [22]). This ansatz is of the form a
t (t + to)", where to, k, n are constants. Adjusting these
constants to the required asymptotic behavior and initial
conditions, we find that

u (t) = [1+m]!'"-'~j't" [t + mt ]!'-'"l~'
e (24)

where

n + gn(2n —1)
2n(n —1)

Here we investigate two solutions arising &om Sec. II
that are inflationary for t; & t ( t„pass through a
transition, and then become radiationlike for t && t, . A
scalar-field formalism is used to encompass the whole evo-
lution. This is a mathematical model which traces the
overall behavior of the evolution, without regard to the
actual physical process whereby the inflaton field decays,
creates particles, and transfers energy and entropy to
massless and electively massless particles. Strictly, the
solutions are unphysical after exit, since a "cold" scalar
field still drives the expansion rather than "hot" radia-
tion. Physical solutions with exit require a coupling of
the scalar field to radiation [21]. We find that noninter-
acting radiation which is present at the onset of inflation
is unable to dominate after exit, since there is no mech-
anism for energy exchange.

There is little hope of 6nding exact physical solutions,
and our exact mathematical solutions may provide a
&amework for comparison. We show that the solutions
are consistent with the typical approximate parameters
governing inflation. With t; « t, 10 s and about 60
e-folds, we find that p/p is within 10 4 of the radiation
value 3 by t = 10 s, and the temperature is T —10
K. The exponent for the nearly power-law inflation case
is n 13. The solutions do not satisfy the slow-roll con-
ditions, although the nearly power-law case does exhibit
"andante" [16] behavior near the start of inflation.
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( q
" ~'"-'~~' (1+—(t;) m qa, j

and if we use the approximate values [1]

103

we find that

+e GQ

a; (25)

13 & n & 14 .

If the number of e-foldings is increased &om 60 to 100,
we get n 26. However, the numerical results below do
not change significantly with this change in n, and we
will take n 13 subsequently.

Using (9), (24) implies [20]

/2n —lmt,P(t) = P; 6 +2n —1 arcsin
+2n(t + mt )

+ln[f(t) + t+ 2nmt. ]

—/2nln /2nt f(t) + 2n+ 2nmt, t p k,

where

(26)

f(t) = t +4nmt, t+ 2nm t.'

and Ic equals the expression in curly brackets evaluated at
t;. Clearly it is impossible to invert and obtain t = t(P),
so that we are unable to give V(P) explicitly. From (8)
and (24), we get the potential V(t) that governs P, hence
producing the evolution (24):

t' + 4nmt. t + 4n(3n —1)m't.'
4t'(t + mt. )' (27)

For t)) t„(26), (27) 'show that V(P) (const) x e 24

[in agreement with (12)], while, for t = t; « t„
n(3n —1)

V(P) = 2 exp
t,' (4 —4")

where the right hand side is of course the form for exact
power-law inflation [10]. V(P) is monotonically decreas-
ing, and during inBation it is bounded by

1 + 4nm + 4n(3n —1)m n(3n —1)
4(1 + m)2t2

and a(t, ) = 0. Then (24) is a smooth joining of asymp-
totic power-law inflation (for n & 1) to asymptotic radi-
ation expansion:

t &( mt, M a(t) = a, [1 + 1/m] ,„, , (t )"
t, )

t &) mt. ~a(t) = a.[1+m] '"—'~~'
~

—
~

e

By (24),

so that, for e &g 3,

m=1—= ——s w = -~'6n(2n —l)m st-(s) -1/2
p

3 3V'

and thus, for e = 10

(29)

t„10
13 & n & 14 m 293 ) & 291 . (30)

t~

Taking t, = 10 s2 s, (29) shows that the expansion is
electively behaving like radiation by about 10 s. We
could think of the period from t, to t (s) as an idealized P
decay, during which the expansion is "converting" to ra-
diation. The energy density at the onset of radiationlike
behavior follows &om (24) and (7) (restoring units):

9c'
(2567rG) (2n —1)m't'

With n 13 and t, 10 s, this gives

p (10 ) 4.7 x 10 erg cm

T„(10 ) =8.9 x 10 K, (»)
where we have used (5), which holds to a good approxi-
mation.

Using (25) and t, = 10 s2 s [1], this gives, with n = 13,

1.9x10 GeV-V & V & V; -2x10 GeV.
The exit value is well within the limit (= 10 GeV)
necessary to avoid too much large-scale anisotropy in the
microwave background radiation [23, 24].

In terms of the parameters

H H
gH =—

2HH
(28)

"slow roll" is characterized to first order by e~, ~g~~ &(
1. (See [25, 26] for a precise definition. ) For (14), we
find that eH, g~ are monotonically increasing, and during
inBation they are bounded by

1—&EH&1)
1 2+ 12nm+ 12nm + 4nm—&pa&
n 1 + 6nm + 2n(4n + 1)m2 + 4n2ms

With 13 & n & 14 this gives 0.076 & gH & 0.83. Thus
the slow-roll conditions cannot be met, although for t
close to t;, e~, g~ are moderately small, indicating mod-
erately slow roll ("andante" ) behavior [16].

From (4) and (26), (27), we see that the pressure be-
comes positive after the time

t+ ——2n Q4 —2/n —1 mt, ) t, ,
'

so that there is a delay after exit &om inBation before
there is an exit from negative pressure. After t+, the
pressure reaches a maximum and then decays to zero.
Thus, having "corrected" for inBationary behavior, the
pressure "overshoots" before adopting the decay that is
characteristic of an ordinary expanding Buid. We can
calculate the time t (s) for p/p to approach within s of
exact radiation behavior. From (26), (27) and (3), (4),

p t + 4nmt, t —4n(3n —2)m2t~

p 3t + 12nmt, t + 12n m2t2
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B. Exponential infiation to radiation era

H(.) = H, l'"+ "l = H ("/ ') +'
(a + a ) (a, /a;)2 + e2~

From (14)—(16), (32) implies

(32)

Here we return to the rate of evolution (23), which is
initially de Sitter —like (since H constant for small a),
and becomes radiationlike (since H 1/a for large a):

a = a, /i/2, when e~ is about s. Thus there is no inter-
val when the slow-roll, or even moderate-slow-roll, con-
ditions are met.

We consider now the pressure and the question of when
the expansion begins to behave like radiation. By (3), (4)
and (34),

(4tanh'e —3~
p = H, cosh C',. —=

z tanh 4' —1 .
cosh 4 ) p

(a& . (al
P = P, 6 2 arcsinh

l

—
l

—arcsinh
l

—'
(a, ) &a.). '

V(4) = (H; cosh 4;)
cosh 4

(a;)
P —P, + 2arcsinh

l

—'
4 ~ )

CL= karcsinh
l

—
l

ka )
u,'(u& (ul'='+ ~ inl

I
+

I2H;(a,'. + a2) (a, ) (a, )

(34)

(36)

It follows from (33)—(36) that the pressure is initially
nearly —3H, , and becomes positive after exit from infla-
tion:

2+ ln3

Subsequently, the pressure rises to a maximum
H; /108, and then falls away towards zero as t increases.
Once again, we can calculate the time t, (e) at which p/p
is within e of s. By (36) and (34), for e « s,

(35)

It follows that V has a maximum of 3H2 cosh 4, at C =
0 (before t;), and then falls away monotonically towards
zero as 4 increases, or equivalently as t increases. The
initial 6eld

(a;)
l4;l = arcsinh

l

—'
&a.)

u& (e)
(

2 ~3) —ii2
Ge

and then (35) and (25) give, for e' = 10

t„(10 ) =t, + 6669

2

If we take possible values [1,23] of

H, 6 x 10 s , t 10 s,

(37)

(38)

has a very small positive value [see (25)]. We can view
this situation as the field having been shifted by fluctua-
tions out of its unstable false vacuum 4 = 0 at the onset
of inflation, subsequently "rolling down" the potential.

From (34) we find the limits on the potential during
inflation,

H,'- = V. & V & V; = 3H,',

then (38) gives

t, (10 ) =1.1x10 s,
which is less than, but of the same order of magnitude
as, the value (30) obtained for the power-law model.

The energy density at t„(e) follows f'rom (32), (7) and
(34), (37) (restoring units):

so that, for H; = 6 x 10ss s i [1,23], we get

7.7x10" GeV= V'/' & V'/' & V
-13 x 10 GeV.

Thus V is greater than for the power-law model, but1/4

still well within the limit of about 10 GeV.
The slow-roll parameters (28) for (32),

2 —(a /a)
1+ (a, /a)2 1+ (a, /a)2

( 27c' &
p„(e) =

l

lH;e',
g512irG)

and by (38), (39) this implies

p„(10 ) 1.1 x 10 erg cin

MT„(10 ) =1.1 x 10 K,

(40)

(41)

are monotonically increasing and bounded by

(a;)'
/ac

—1&gH&—1
2

It follows that r~ && 1 only near the start of infla-
tion, when pe is about —1, while lg~l && 1 only near

, which is greater than, but of the same order of magnitude
as, the power-law value (31). We see that in the expo-
nential model, the transition to radiation is more rapid
and ends with a higher temperature than in the power-
law model. If we take H, 10 s4 s i (i.e., 100 rather
than 60 e-foldings), we find that the rapidity and final
temperature are slightly increased:

t„(10 ) 0.7x 10 s, T„(10 ) 1.4x 10 K.
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IV. SOLUTIONS % ITH ENTROPY
PRODUCTION

2p, =p, =3H (42)

while the field equation (6) shows that H shares the dis-
continuity of the pressure.

The instantaneous decay of P, producing a jump in p
&om zero to 3H, , generates radiation entropy S, in the
inflated comoving volume a . For t ) t, the expansion is
effectively isentropic, ignoring the comparatively negligi-
ble entropy production in subsequent phase transitions,
decouplings, and other dissipative processes. Thus the
total entropy in the comoving volume a(t) that expands
Rom as at t = t, is conserved: S(t) = S,. If a; covers the
causally connected region that evolves into the present-
day observable universe, then S is the total present-day
entropy So believed to have a value [1,27]

The solutions of the previous section are characterized
by a period t, & t & t, (s) during which the scalar field
"converts" isentropically from inflationary to radiation
behavior. In reality this process would involve decay of
the scalar field and conversion of its energy to the par-
ticles of the radiation era, with associated reheating and
entropy production. In order to estimate the entropy
production due to solutions like those of Sec. III (i.e. ,
infiation with exit to radiation), we construct idealized
models which do generate entropy via decay of P.

As a step towards more realistic models, we consider
exact solutions in which the decay and reheating take
place instantaneously at t, with a consequent discontinu-
ity in the pressure, which instantaneously changes from
negative to positive. Such "jump" solutions have been
used for rough estimates of entropy (see, for example,
[23]). We derive exact formulas and compare diff'erent
types of inflation.

The scale factor and Hubble rate are continuous, so
that the junction conditions are satisfied [17, 18]. If p,

denotes the radiation energy density, it follows from the
Friedmann equation (7) that

where

a, exp[H;(t —t;)],
a, /2H, (t —t. +,~ ) , t, &t, (46)

a, = a; exp[H;(t, —t;)] (47)

and the Hubble rate is

H;,

—,'(t —t +,„'.)
', t &r., ,

so that H, = H;. Using this together with (37) in (35),
we get

S, =
6m3G3k4 a, H, /exp[.3H, (t, —t;)], (48)

and taking the values (25) and (39), with a, = ct;, we
find

S -4.4 x 10 (49)

and the Hubble rate is

n(t —()—', t; &t&t. ,

2(t —v) ', t. & t, (51)

where n & 1 and the matching conditions are satisfied
for

in agreement with (43).
Second, consider power-law inflation matched to radi-

ation expansion at t . The scale factor is

a, [(t —()/(t; —()]",
a. [(t —v)/(t. —v)], t. & t,

Sp =10 (43)

Now S = o a, with o. the entropy density, given by vt- —t
(d —1

( ) i/n

0 a')
(4AilT = Ir 4ill(P

3k) & ~) (44)

where k is Boltzmann's constant, and we used (5) for p.
From (42), (44) it follows that (restoring units)

[(2n —l)~ —2n]t, —u)t;

2n((u —1)

S, =
6' 3G3k4

3~3/2
e e (45)

(It follows that ( & t, & v & t, )With (50), (5. 1) in (45),
we get

where the relation of a, H to a, , H; depends on the type
of inflation.

Consider first an exponential infiation (without radi-
ation) during t, &t & t„matched. to a radiation era
(without scalar field) during t ) t, . The scale factor is
thus given by

S, =
- ~/4Ac ) 3/2

a
6 'G'k'

( ) —i/n '/'
x 1 —

i

—'
&a')

(52)

Using the same values that led to (49), together with
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n —13, (52) gives

S 4.4x 10

which is not as close to (43) as (49), but still in reasonable
agreement with it. As expected from the results of Sec.
III, the exponential in8ation produces greater entropy.
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