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We present a natural scenario for obtaining an open universe (0 < 1) through inflation. In
this scenario, there are two epochs of inflationary expansion—an epoch of “old inflation,” during
which the inflaton field is stuck in a false vacuum, followed by an epoch of “new inflation,” during
which the inflaton field slowly rolls toward its true minimum. During the first epoch, inflaton solves
the smoothness and horizon problems. Then an open universe (with negative spatial curvature) is
created by the nucleation of a single bubble. In effect 2 is instantaneously “reset” to zero. During
the subsequent epoch of “new” inflation Q rises toward unity. The value of 2 today is calculable in
terms of the parameters of the potential, and we show that obtaining values significantly different
from zero or unity (though within the range 0 < Q < 1) does not require significant fine-tuning. We
compute the spectrum of density perturbations by evolving the Bunch-Davies vacuum modes across

the bubble wall into its interior.

PACS number(s): 98.80.Cq, 12.10.—g, 14.80.Bn

I. INTRODUCTION

According to conventional lore, inflation [1] predicts a
spatially flat universe with the cosmological density pa-
rameter )y being very close to unity. It is therefore in-
teresting to inquire whether inflation would be ruled out
as a viable cosmological theory, or at least rendered suf-
ficiently contrived to lose much of its underlying beauty
and attractiveness, if it were to become observationally
established that we live in an open universe with Q¢ < 1
today. In this paper we present a class of inflationary
models that generate such an open universe in a natu-
ral way. This means that observations indicating Qo is
less than unity can only limit the class of possible infla-
tionary models and cannot rule out the whole idea. Our
calculations shall show that in a sense the inflationary
scenario is compatible with any value of 2o between zero
and unity.

Before presenting our scenario we first review the stan-
dard noninflationary argument against Q¢ # 1. For
an equation of state of the form p ~ a™7, (27! — 1)
scales as a¥~2, where a is the scale factor of the uni-
verse. This means that during a radiation-dominated or
matter-dominated epoch, 2 flows away from one. How-
ever, during an inflationary epoch (defined here by the
condition v < 2) © flows toward one. In the usual com-
putation of the extreme unnaturalness of Qo being very
different from unity, one evolves Q back to some much
earlier time assuming that v =~ 3 — 4 and notes just how
precisely Q must coincide with unity at that early epoch
in order to evolve into a value of the order of unity today.
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If Qo is not exactly one, the deviation of this earlier value
of Q from one gives a very small number, which is taken
to reflect the degree of fine-tuning required to obtain a
nonflat universe.

Such a calculation, however, is inappropriate if there
is a preceding inflationary epoch, during which comoving
scales are pushed out of the Hubble radius, because in
such a scenario the comoving scale Z., characterizing
the curvature of an open (or closed) universe is within
the Hubble radius sometime during inflation, or perhaps
at the beginning of inflation. If curvature is introduced
as an initial condition prior to inflation, inflation acts to
mitigate some of the unnaturalness of Q # 1, but at a
high price. By tuning the length of inflation to be short,
one can by imposing curved initial conditions arrange
to have significant curvature today, but in this case one
would also have to put in by hand smoothness on scales
of order Z.urv, and thus much of the initial motivation
for proposing inflation would be lost.

The natural way to obtain an open universe from in-
flation is to introduce spatial curvature during inflation,
so that whatever inhomogeneities may exist prior to in-
flation are still erased, but spatial curvature is regener-
ated. In this way, inflation still provides a solution to
the smoothness and horizon problems, while producing
a nonflat universe. In such a scenario little fine-tuning
is required, because it is the length of inflation after the
event introducing the curvature that must be adjusted
to obtain the proper Q. Said another way, one does not
tune Q¢ but rather the logarithm of its difference from
one, which requires little fine-tuning.
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The remarkable fact that one can introduce spatial
curvature within an inflating universe in a completely
causal way, and without spoiling its homogeneity, was
first revealed in the calculations of Coleman and de Luc-
cia [2], prior to the invention of inflation. Their calcula-
tions showed that the spacetime interior of a (finite) nu-
cleating bubble actually encompasses an (infinite) open
Friedmann-Robertson-Walker (FRW) universe. The idea
that a realistic open universe could emerge from de Sit-
ter space was first proposed by Gott in 1982 [3], prior
to the introduction of the new inflationary scenario, and
independently of the work of Coleman and de Luccia.

A realistic open universe scenario may be obtained
via this mechanism, by combining old inflation with new
inflation.! The universe begins in a false vacuum in what
might be described as the “old inflationary epoch,” dur-
ing which any preexisting inhomogeneities are redshifted
away. The smoothness and horizon problems are solved
during this first epoch of old inflation. Then a single
bubble nucleates, inside of which the entire presently ob-
servable universe is formed. After bubble materializa-
tion, the surfaces on which the inflaton field ¢, which we
shall for the most part assume to be a single real scalar
field, is constant are surfaces of constant negative spatial
curvature. [If one ignores gravitational effects and thus
considers bubble nucleation in Minkowski space, ¢ is con-
stant on surfaces of constant s = (2 — z2 — y? — 22),
which for s2 > 0 are surfaces of constant negative spatial
curvature.] It is these surfaces that will become surfaces
of constant cosmic density, or constant cosmic “time”
in the usual sense. However, if one would proceed di-
rectly to an FRW postinflationary epoch by reheating
near the bubble wall one would obtain §2 somewhat less
than one at reheating, and the present value Qg would be
extremely close to zero. Such a scenario is clearly unac-
ceptable. Instead we propose passing to an epoch of new
inflation after bubble nucleation, tunneling from the false
vacuum onto a slow-rolling potential. To obtain an open
universe one wants the Hubble radius shortly after bub-
ble nucleation to be of approximately the same comoving
size as the present Hubble radius, so that g is near one.

We emphasize here that what we mean by new inflation is
simply inflation that proceeds whilst a scalar field is rolling
slowly down a potential (i.e., “slow-roll” inflation). In its orig-
inal incarnation, the new inflationary scenario [4,5] assumed
the universe began in a state close to thermal equilibrium be-
fore inflation began — this was presumed to explain how the
inflation field became localized around a potential maximum.
We shall make the much milder assumption that somehow a
scalar field became trapped in a false vacuum over a suffi-
ciently large region for inflation to begin. This could have
happened as a result of “random” initial conditions, in which
case our scenario would be more akin to chaotic inflation
(6], “special” initial conditions, such as the Hartle-Hawking-
Vilenkin proposals, or even through a state of thermal equilib-
rium. Once the scalar field becomes trapped, and the epoch
of “old” inflation begins, the details of how it became trapped
are of course very quickly erased. '
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This involves adjusting the length of the epoch of new
inflation. In models of new inflation designed to explain
o = 1 the length of new inflation is arbitrary, provided
that it is long enough to erase the initial inhomogeneities.
What happens at the end of inflation is observationally
accessible, but the earlier part of inflation is not because
what happened within the Hubble radius at earlier times
now lies hidden on comoving scales much larger than the
Hubble radius of our presently observable universe. In
the inflationary scenario that we consider, the entire new
inflationary epoch is observationally accessible, and part
of the old inflationary epoch as well.

We emphasize that none of the ideas we have discussed
so far are in any way new. Indeed they follow precisely
the historical lines of development of “old” and “new” in-
flation. However we believe that the predictive nature of
the “single-bubble” scenario in a situation where the spa-
tial curvature inside the bubble is not completely wiped
out by new inflation inside the bubble has been over-
looked. It is this significant lacuna in the literature which
this paper seeks to fill.

The bulk of this paper deals with calculating the spec-
trum of density perturbations in the open inflationary
model just described. On “small” comoving scales, where
small is defined relative to the scale of spatial curvature,
the spectrum of density perturbations is approximately
scale invariant, just as in conventional new inflation. This
is because small scales leave the Hubble radius at late
times during the epoch of new inflation, when the curva-
ture scale is much larger than the Hubble radius. Hence
curvature is of little relevance in determining the small-
scale perturbations.

By contrast, on larger comoving scales negative spatial
curvature becomes increasingly relevant, and we expect
deviations from scale invariance to occur. For large scales
quantum fluctuations that arise during the epoch of old
inflation are also relevant. There are also other effects
from the change in 82V /8¢? on passing through the bub-
ble wall that lead to parametric excitations. These may
be called “moving mirror” effects [7,8].

The zeroth order classical expanding bubble solution is
SO(3,1) invariant and described by a coordinate system
that divides spacetime into three regions, as indicated in
Fig. 1. In region I the metric has the form

ds? = —dt? + a®(t)[d¢® + sinhz(f)dﬂﬁz)] (1.1)
where dQ%2) = d? + sin® § dp®. The metric (1.1) repre-
sents an open expanding FRW universe. An important
feature of this metric is that it is nonsingular [the usual
“big-bang” singularity at a(t) = 0 is here just a coordi-
nate singularity] at small times a(t) ~ t and the metric
(1.1) describes the Milne universe (see, e.g., Ref. [7]), just
a coordinate rewriting of Minkowski space. In region IT
the metric has the form

ds? = do? + b*(0)[—d7? + coshz[‘r]dﬂfz)] (1.2)
and b(0)/o — 1 as 0 — 0. In region III, which essentially
is an open FRW universe expanding backward in time,
the metric the same form as in Eq. (1.1). In the perfect
expanding bubble solution the scalar field is constant on
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surfaces of constant ¢ and constant o as well as on the
light cone of the origin, which separates the three regions.

Only the upper half of the classical solution, sketched
in Fig. 1, is physically realized. The lower half, which
represents a bubble expanding backward in time, should
be replaced with an instanton, known as the Coleman—de
Luccia instanton, representing the classically forbidden
process of bubble nucleation, as sketched in Fig. 2. The
instanton and the classical expanding bubble solutions
are trivially related to each other by analytic continua-
tion.

At first it may seem paradoxical that an infinite open
universe can fit inside an expanding bubble, which at any

Region I

Region II

Region III

FIG. 1. SO(3,1) symmetric coordinates. Spacetime is di-
vided into three regions—regions I, II, and III. In the zeroth
order solution the scalar field is constant on each of the hy-
perboloids, and on the light cone of the origin O. The dashed
line shows the origin of spherical region I coordinates (£ = 0).
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moment would seem to have an increasing but finite size,
increasing at approximately the speed of light. Indeed
if one were to use a time foliation in Fig. 2 in which
horizontal lines would correspond to constant time hy-
persurfaces, at any finite time the bubble would have a
finite size, and an observer using such a coordinate sys-
tem would be quite justified in saying that the bubble is
always finite. But such a foliation would not correspond
to what we today would consider a natural definition of
constant time. To us constant cosmic time corresponds
to a constant cosmic microwave background (CMB) tem-
perature. A foliation that makes the spatial homogene-
ity and isotropy of the universe manifest seems preferred,
and such a time slicing corresponds to the hyperboloids
sketched in region I of Fig. 2, which have infinite vol-
ume. This is how an infinite open universe can fit inside
a bubble. Despite their contradictory appearance, these
two points of view are quite compatible.

Another possible source of density perturbations,
which we do not consider here, arises from imperfections
in the initial bubble. In the semiclassical limit A — 0
the scalar field configuration that results from quantum
tunneling is fixed, with no random variations from the
perfect expanding bubble solution. But as one considers
corrections of higher order in £, small random variations
occur, because the field does not tunnel exactly along the
configuration of least Euclidean action, but rather along
a nearby path. We believe that such perturbations in the
tunneling process itself are insignificant, for two reasons.
First, if the bubble nucleation is a strongly suppressed
process, the fluctuations around it are likely to be even
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FIG. 2. Slice through a bubble. In the (lower) Euclidean
domain a bubble nucleates via the Coleman—de Luccia instan-
ton. In the (upper) Lorentzian domain the bubble expands
classically at a speed approaching the speed of light. Region I,
the bubble interior, is an expanding FRW universe with spa-
tial hypersurfaces of constant negative curvature. Region II
is the exterior of the expanding bubble. The scalar field and
background density are constant along curves shown. The fu-
ture null cone of the center of the nucleating bubble is shown
as the line » = t. The background scalar field takes the value
¢n on this null surface.
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more strongly suppressed. And second, because in the
subsequent classical expansion of the bubble the details
of how the bubble was initially formed are likely to be
quickly erased. The dominant sources of perturbations
rather are the quantum fluctuations of the fields in de Sit-
ter space prior to bubble nucleation, which pass across
the bubble wall into its interior, and those that evolve
later inside the bubble.

Open inflation has been considered more recently in
Refs. [9-11]. Lyth and Stewart [9] and Ratra and Peebles
[10,11] have considered density perturbations in an open
inflationary scenario, a scenario of new inflation with neg-
ative spatial curvature put in by hand. They do not base
their calculation of the spectrum of density perturbations
on a specific model for the creation of negative curvature
at the beginning of their inflationary scenario. Rather
the discussion is confined to what we call region I, and as
initial conditions for the fluctuations of the inflaton field
at t = 0, they impose the requirement that operators
corresponding to the modes with asymptotic behavior
t=%~1 (as opposed to t*%~1) as t — 0+ annihilate the
vacuum. This state is sometimes referred to as the “con-
formal vacuum,” and it has the following unappealing
property. The energy density in scalar field fluctuations
in their assumed quantum state actually diverges as one
approaches ¢ — 0+, which means that the coordinate
singularity in the background solution at ¢ = 0 becomes
a real singularity in this state. Thus one loses one of the
principal attractions of open inflation, that the standard
big-bang singularity is removed. In contrast, with our
choice of initial state, the energy density is nonsingular
as t — 04, and continues smoothly through the coordi-
nate singularity at ¢ = 0, into de Sitter space. So whereas
Lyth and Stewart, and Ratra and Peebles, simply as-
sume their universe begins on a spatially homogeneous
and isotropic slice some short time after ¢ = 0, and thus
give up on the inflationary solution of the horizon or ho-
mogeneity puzzles, we have as our starting point a long
era of old inflation outside the single-bubble universe, in
which those problems are solved.

The quantum state of a scalar field of constant mass
outside an expanding bubble in Minkowski space was
considered by Rubakov [12], by Vachaspati and Vilenkin,
and Garriga and Vilenkin [13]. Sasaki et al. [14] consid-
ered the quantum state inside such a bubble in the usual
thin-wall approximation. Recently they have extended
this work to the case of de Sitter space, but where the
interior of the bubble is empty, so no new inflation and
reheating occurs [15].

The organization of the paper is the following. In Sec.
II we give a simple discussion of how the value of Qo de-
pends on the parameters of the inflaton potential V' (¢)
and the reheating temperature. In Sec. III we give a
brief review of bubble nucleation in de Sitter space in
the semiclassical limit, in which there are no perturba-
tions. The Euclidean bounce is the zeroth order solution,
about which we consider small perturbations treated as
free quantum fields. Section IV contains a new “thin
wall” approximate bounce solution which we use to show
that there is a well defined region of parameter space
in which significant simplifications of the nucleating and
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expanding bubble solutions occur. The analytic contin-
uation of the Euclidean bounce into a spacetime with
a Lorentzian spacetime signature possesses an SO(3,1)
symmetry which we exploit to simply our calculations.
Section V develops the formalism necessary to do this.
In Sec. VI we consider initial conditions prior to bubble
nucleation. This involves rewriting the two-point func-
tion for the Bunch-Davies vacuum in terms of the region
II mode functions. In Sec. VII we deal with the evolution
of cosmological perturbations in region I. In Sec. VIII we
deal with reheating and observational consequences, and
finally in Sec. IX we present some concluding remarks.

II. CALCULATING Q@ FROM INFLATION

The scenario we shall explore in this paper is based on
a scalar potential V(¢) of the general form illustrated in
Fig. 3. We assume that the scalar field ¢ became stuck
in a “false vacuum” F in a region of the universe large
enough for an extended period of inflation to occur. Once
this has happened, it is very plausible that the universe
approaches de Sitter spacetime to a very good approx-
imation. This state of affairs is interrupted by the nu-
cleation of a bubble. In a localized region of space the
inflaton field tunnels quantum mechanically through the
potential barrier from its initial value ¢; to a value ¢,,
the value of the field at the center of the nucleated bubble
at the instant of nucleation. We describe the nucleation
process semiclassically, using a Euclidean “bounce” so-
lution. Inside the bubble, the field ¢ rolls down the po-
tential toward ¢,, where oscillations of the scalar field
reheat the universe and lead to a conventional radiation-
dominated universe.? A spacetime picture of the bubble
nucleation and subsequent reheating is shown in Fig. 2.
¢ = ¢n on the future light cone of the point at the center
of the nucleated bubble. Surfaces of constant ¢ within
this light cone are spaces of constant negative curvature
(open universes). They are also surfaces of constant den-
sity in the subsequent evolution of the universe, which we
would call surfaces of constant cosmic time today. But
these surfaces are of course infinite. So inside a finite
bubble one has produced an infinite open universe. This
remarkable picture was first revealed in the calculations
of Coleman and de Luccia [2].

We shall begin with a simple point. In this scenario
the initial conditions prior to bubble nucleation and new
inflation are very definite—the universe has become very
homogeneous and the value of ¢ has been fixed. From
this follows a great deal of predictive power. In partic-
ular the value of Q today is not a free parameter; it is
fully determined by the form of the potential, and by the
microphysical details of the reheating process. So one

2The detailed structure of V(¢) around ¢, shall play little
role in our discussion.
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FIG. 3. Potential for “old” + “new” Inflation. Initially the
inflaton field is stuck in the false vacuum F', during the epoch
of old inflation. This is exited by the nucleation of a single
bubble, which eventually grows to encompass our entire ob-
servable universe. Instead of tunneling to the true vacuum T,
the scalar field tunnels onto a slow rollover potential, at the
point ¢, and the interior of the bubble expands quasiexpo-
nentially, during the epoch of new inflation. In our scenario,
this is shortened compared to conventional inflation so that
the negative spatial curvature survives. Then as the field be-
gins to roll more rapidly, and starts to oscillate about the true
vacuum value ¢., reheating occurs, converting vacuum energy
into radiation and matter.

can sensibly ask the question of how much “fine-tuning”
of the parameters in the potential is needed in order to
produce a given value of Q today. This is easily calcu-
lable with some reasonable simplifying approximations.
We shall assume. that the potential well around ¢; is nar-
row, so that ¢,, = ¢;. We further assume that for most of
the region between ¢, and ¢,, the linear approximation

V(¢) =~ —u’¢

is valid. [This is easily generalized to an arbitrary power
law form for V(¢), with very minor changes in the con-
clusions.] For simplicity we have defined the value of ¢
at reheating, ¢, in Fig. 3, to be zero. As in all infla-
tionary scenarios, we have to adjust the potential so that
V = 0 (no cosmological constant) in the universe after
reheating. The motion of ¢ is described by the equation

(2.1)

(2.2)

with H as usual the Hubble constant, and we take ¢ to
be homogeneous on surfaces of constant cosmic time ¢.
The Einstein equation in an open universe is just

2 = (_) ~EE RV . 29

where a(t) is the scale factor. These equations describe
the classical field solution for the interior of a nucleating
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bubble (see Fig. 2).

In the “slow-roll” approximation, which becomes very
good after a short initial transient, the ¢ term in (2.2) and
the ¢? term in (2.3) may be dropped. The scale factor
a(t) is then well described by an adiabatic approximate
solution to (2.3):

a(t)z%sinh[/(;tdtB], Bzzs_ﬂgg_(fﬂ.

At early times, the spatial curvature dominates and
a(t) o t, but as inflation sets in a(t) starts growing expo-
nentially, with a(t) o exp(f H dt). Once this happens,
the curvature term in Eq. (2.3) becomes negligible and
H =~ B. The number of e-foldings during inflation is
approximately

d¢ H?

/dtH:/H%;fz—3 V()

- doV(e) _
~—8n [ V(g AmGAd,

where A¢p =~ ¢, — ¢.. Thus the number e-foldings de-
pends only on the total change in the scalar field during
inflation, and not on the parameter determining the slope
of the potential, which we call 4. (The magnitude of the
density perturbations produced during inflation does de-
pend on y, and requiring them to be small requires that
p <L mp.)

In this scenario the value of Q begins at zero on the
null surface defined by t = 0 (or ¢ = 0) but rapidly
approaches unity during the inflation inside the bubble.
From Eq. (2.3) one has

(2.4)

(2.5)

3H? 2
Q' —— =1 ~ 14 4e BTGRP
8TGV + +ae

2B (2.6)
where the last expression holds at reheating, and follows
from Eq. (2.5). After reheating, we have Q7! — 1 o
(pa?)~1, growing as a? in the radiation and as a in the
matter eras, respectively. The value of Q today is then
given by

Q0 ~ 1 An (Trn ? Toq
07 14 4e-8nGaF 4 Tew ) To '

where T is the CMB temperature today, Try that after
reheating, and T, that at equal density of matter and
radiation.® If Try is of order the electroweak scale, ~
100 GeV, then A =~ 1025, but if Try is of order the
grand unified theory (GUT) scale, then A ~ 105°. The
qualitative behavior of Eq. (2.7) is easily understood. If
Ad¢ is small, then little inflation occurs and Qg is very

(2.7)

3We have here assumed instantaneous reheating. If reheat-
ing is slower, there can be an intermediate, matter dominated
stage during which Q7' — 1 scales inversely with temperature
rather than temperature squared. This is a minor numerical
detail.
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close to zero. Conversely, if A¢ is large, a lot of inflation
occurs, and g is very close to unity. Generalizing the
calculation to arbitrary power law form for the potential,
V($) x ¢, one finds that the factor 8x is replaced by
87 /n.

Defining the value of ¢ at reheating to be zero, the
value of ¢; (or equivalently of ¢,, because we have as-
sumed they are nearly equal) required to obtain Q4 today
is given by

¢?=m§’1"1n[ A ] (2.8)

: 8w Q-1

As a concrete numerical example, let us assume reheating
up to the electroweak scale, so that A = 1025, and a linear
potential, so that n = 1. A value of Q¢ between 0.1 and
0.9 today then requires 1.48 < (¢;/mp;) < 1.54.

Following this exercise, it seems to us that it is hard
to argue that inflation is incompatible with an open uni-
verse. In any fundamental theory, one expects that the
value of ¢; would be fixed, presumably in Planck mass
units. It would not seem very implausible that ¢; should
lie within the few percent of parameter space required to
produce an interesting value of €2 significantly different
from unity today.

III. BACKGROUND SOLUTION

The details of bubble nucleation in a curved space of
nonvanishing constant curvature (i.e., de Sitter space)
were first worked out by Coleman and de Luccia [2],
who generalized earlier work on bubble nucleation in flat
Minkowski space [16] where the gravitational back reac-
tion from the nucleating bubble is not taken into account.

Before outlining the modifications necessary to include
the effects of gravity, we first give a lightning review of
bubble nucleation in Minkowski space through quantum
tunneling at zero temperature. The bubble nucleation
rate is

T= Aexp [-%Sg[m(z)l] : (3.1)

where Sp is the Euclidean action and ¢p(xz) is the
SO(4) symmetric Euclidean bounce solution, satisfying
the equation

oy 306 OV _
Os2 s Os 8¢

0, (3.2)

where s = (22 + y% + 22 + t2)*/2. The constant A has
dimensions of (mass)?, and is harder to calculate, but
may be estimated crudely as m* where m is the mass of
the scalar field in the false vacuum.

The Euclidean bounce solution should be interpreted
in the following manner. To materialize a bubble, the
scalar field must pass through a classically forbidden re-
gion, under a classical potential barrier. For the Eu-
clidean bounce given above (with its materialization cen-
ter located at x = ¢ = 0), the classically forbidden evo-
lution occurs during ¢ < 0, and is described using the
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Euclidean path integral formalism. The classical bounce
represents the path of least Euclidean action to the clas-
sical turning point. For ¢ > 0, the evolution is classi-
cally allowed, and thus treated classically. Formally one
changes the signature of the metric from Euclidean for
t < 0 to Lorentzian for ¢ > 0. In the Minkowski space
case, one can regard this as distorting the path integral
over ¢ into the complex ¢ plane, to run over a (complex)
saddle point.

We now review the generalization with gravity taken
into account. When V[¢;] > 0, the underlying space-
time is de Sitter space, whose Euclideanized version is
54 because under analytic continuation the metric ds? =
—dt? + cosh? [t]dﬂfs) becomes ds? = +dt? + cosz{t]dﬂfa),
which describes a four-dimensional sphere of radius R =
H.

The equations of motion of the Coleman—de Luccia
bounce are derived by considering the Euclidean action
for the scalar field coupled to gravity, where SO(4) sym-
metry is imposed to restrict the form of the metric to

ds? = do? + bz(a)dﬂfa) . (3.3)
They are
1t 3b’(‘7) ’ _ 6_‘_/_
¢ (U)+ b(U) ¢(U)— (9¢ ’
(3.4)
b (o) 2_ 1 87G (1 ,5
(53] =+ 55 {307 - Vi)
subject to the boundary conditions
b(c =0) =b(0c = Omax) =0,
(3.5)

¢'(0=0)=¢ (0 =0max) =0 .

[The latter two conditions follow from the continuity of
the solution—the parameter o is related to the time ¢
inside the bubble by 0 = —it, so we have at c =t =0
that (8¢/00) = i(0¢/8t), with ¢(t) and ¢(o) real.]

In the flat space case (where the coupling to gravity is
turned off), 0max = +00 and the bounce action starts in
the false vacuum, with ¢(o = +00) = ¢;. Because of the
first derivative term (which behaves as a sort of friction
term), V[¢(c = 0)] is slightly higher than V[¢;]. With
gravity turned on o,y is finite, and the Euclidean instan-
ton does not quite start in the false vacuum but rather
partially into the barrier. As the coupling to gravity is
further increased, the Coleman—de Luccia instanton ap-
proaches the Hawking-Moss instanton—in other words,
¢(c = 0) and ¢(0 = Omax) approach the maximum of
the potential [17]. For a discussion of the interpretation
of the Hawking-Moss instanton, we refer the reader to
Ref. [18].

If one continues the Coleman—de Luccia bounce to a
spacetime with a Lorentzian spacetime signature, the
functions ¢(o) and b(o) describe the solution in region
II. In region I (inside the bubble), the field ¢ rolls toward
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the true vacuum. In region IV the field rolls toward the
false vacuum, undergoing decay and an infinite number
of oscillations. [In the maximal Lorentzian extension, re-
gions III and V mirror the behavior in regions I and IV,
but these regions lie in the domain of Euclidean evolu-
tion.|

We shall be primarily concerned with the case where
the size of the bubble is small so that a good deal of the
Euclidean bounce is very nearly de Sitter space. In this
case we may use the Bunch-Davies vacuum [19,20] (for
a scalar field of constant mass in de Sitter space) as an
initial condition for the fluctuations in the scalar field at
t=0.

There are two unsettling aspects of the Coleman—de
Luccia instanton. The first is the global character of
the tunneling process. All of de Sitter space is involved.
There is no asymptotic region in which the deviations in
the fields from their false vacuum values vanishes. For-
mally, this is the result of constructing the instanton from
a closed geometry (i.e., choosing a time variable for ana-
lytic continuation such that the constant time hypersur-
faces are compact). One might prefer an instanton based
on the “flat” coordinatization of de Sitter space, in which
the tunneling event would occur within a Hubble radius,
and in which the instanton would have a tail falling off
rapidly outside the Hubble radius. Such an instanton
would seem more physical, but unfortunately no such in-
stanton is known. The second unsettling aspect is that
these instantons involve continuing the spacetime metric
as well as the scalar field. In a sense one is consider-
ing complex metric configurations. So there is implicitly
some sort of integration of spacetime metrics being per-
formed (i.e., a path integral for quantum gravity), which
one is then distorting to run over a complex saddle point.
We shall in this paper adopt a conservative view, namely
imagine that we are working in the regime where the nu-
cleated bubble is much smaller than the Hubble radius
H~1, so that the gravitational effects are small. Our bub-
ble solutions are then well described by the Minkowski
space solutions, and so (hopefully) little affected by these
quantum gravitational issues.

IV. A NEW “THIN-WALL” LIMIT

This open inflation scenario can be most simply ex-
plored in the following regime.

(1) The bubble nucleation rate is small, so that it is
reasonable to suppose that the universe became very ac-
curately described by de Sitter space, and the quantum
field mode functions became well approximated by the
Bunch-Davies vacuum modes.

(2) The size of the nucleated bubble is small compared
to H~!. This allows us to treat the nucleating bubble
as a geometrical “point” on the scales ~ H~! of primary
interest, and to suppose that it has very little effect on
smaller scales.

(3) The bubble wall is thin. This allows us to match
modes across a geometrical null surface, rather than
evolve scalar field modes through the complicated struc-
ture of a bubble wall.
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(4) The potential V(¢) around the region ¢, is accu-
rately approximated as linear. This again affords a useful
technical simplification. Since we wish old inflation to be
followed by new or slow-roll inflation it seems reasonable
to assume that V(@) is a slowly varying (i.e., approxi-
mately linear) function around ¢,,.

(5) The vacuum energy in the false vacuum F' is nearly
equal to that along the light cone n. This requires that
AV K V (see Fig. 3). Again this allows us to treat the
background de Sitter geometry as fixed in the matching
of modes across the bubble wall.

It is not obvious that such a regime exists, and it is
the purpose of this section to show that it does. The thin
wall solution that we are looking for is not the standard
one, described for example by Coleman and de Luccia,
which holds when the false vacuum F' is nearly degenerate
with the true vacuum. Clearly we do not want to be
in this regime, since then we would not have much new
inflation inside the bubble. In this section we find an
analytic solution for the Euclidean bounce and classical
Minkowski bubble which holds in the regime we want.

We consider the case where the mass m of the field
¢ in the false vacuum F' is large so the potential well
around ¢; becomes very narrow, but its height AV is
fixed (see Fig. 3). Our solution is exact in the limit as
m becomes infinite. This is not in itself a case of much
physical interest, but we do expect the infinite m solution
to be a reasonable approximation to the case we are most
interested in, where m is substantially larger than H.

Anticipating that the final bubble size will be much
smaller than H~!, we use Eq. (3.4), in the limit Ho < 1.
The equation for b(o) tells us that at small o, b~ 0 ~ 7,
the usual radial variable in flat space. The scalar field
equation then reduces to the flat spacetime equation for
the Euclidean bounce:

G = V= (4.1)
Here we have assumed the potential is linear over the en-
tire relevant range. This is true right up to the beginning
of the “well” around ¢;, which we assume to be very nar-
row. The bounce starts with ¢ = ¢,, at » = 0. ¢ evolves
according to Eq. (4.1) up to the edge of the well, and we
have

2
b= bn — §7'2 . (4.2)
As usual, the solution ¢(r) may be thought of as the tra-
jectory of a particle moving in a potential —V (¢) with r
playing the role of time. With this interpretation, the so-
lution of the equation is then clear. ¢ accelerates accord-
ing to (4.2), and hits the barrier —AV at some value of r
we shall call 3, its kinetic energy being converted into po-
tential energy. (When the potential well is very narrow,
¢ is decelerated to a standstill in a very small interval
of 7, during which the loss of energy from the damping
term is insignificant.) Thus one finds using Eq. (4.2) and
setting ¢ = ¢; that, at rp,

1

2 u
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This equation determines ¢,, and then Eq. (4.2) deter-
mines rp so that

AV 32AV

¢n = ¢i + 4-“—3, Ty = 5 (4.4)
The Euclidean action for this solution is
SE’ = 27!'2/ 7‘3d’l" {§¢I2 + [V(¢) — V((,b,)]}
0
512 ,AV3
= Tﬂ'z “12 (4-5)

Let us check the consistency of this solution. The semi-
classical approximation is only likely to be reliable in the
case where the Euclidean action is large, which is true if
we take AV ~ u*. The mass m has to be large in or-
der that we can treat the false vacuum potential well as
narrow—approximating it as (const)+m?2(¢ — ¢,)%, we
require that the width of the well |¢p — ¢,.| ~ VAV /m
be much less than ¢, = 4AVu~3. Taking AV ~ u?,
we see the narrow well approximation should hold well
if m > u. Next we compare the bubble size r, ~ p=?!

[Eq. (4.4)] to the Hubble radius H~! ~ 3mpV~1/2 ~

mrl_,/lz,u_a/2 > p~ ! if p < mp). This justifies our use of

the flat spacetime approximation in Eq. (4.1).

These results mean that conditions 1 and 2 above are
satisfied. Condition 3 follows after noting that the classi-
cal solution for the expanding bubble is given by exactly
the same solution (analytically continued) as the Eu-
clidean bounce outside the forward light cone of the nu-
cleated bubble’s center, so conditions 3 and 2 are equiv-
alent. Condition 4 is satisfied by construction, and con-
dition 5 holds as long as AV « V, which is also true if
p < mp) (recall from Sec. II that the total range of ¢
from ¢; to ¢, has to be of order mp; to get a reasonable
value for Q).

We have shown that there exists a regime in which the
nucleating bubble and the bubble wall become “geomet-
rical,” and the problem simplifies. This is the case if
the mass in the false vacuum m obeys m? > HZ%. How-
ever this case appears to be technically more complicated
than the case where m? = 2H?, for which a minimally
coupled scalar field has the same dynamics as a confor-
mally coupled, massless field. So for the remainder of
the paper we shall restrict ourselves to m? = 2H?2, but
nevertheless treat the bubble wall as “thin.” We do this
simply in order to be able to pursue the calculation right
through to the end in a simple way. We do not anticipate
any difficulties of principle in extending the treatment to
m? > H? (see note added).

The m? = 2H? case may actually be a reasonable ap-
proximation in the case of a two-field inflation theory, in
which the first field undergoes a bubble nucleation transi-
tion, in which it has a large mass squared in both phases,
and there is no slow-roll phase. If this couples to a sec-
ond field, in such a way that the latter has m? = 2H? in
the false vacuum, and m? ~ 0 after the tunneling event,
then the second field can subsequently undergo a slow-
roll transition. As far as the second field is concerned,
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the bubble wall may then be treated as thin. However
we do not wish to enter into the complexities of two-field
inflation here, and in fact regard it as a more interesting
problem to extend the discussion to a single field, with
m?2 > H? (see note added).

V. SO(3,1) INVARIANT COORDINATES

In this section we set up the coordinate systems and
mode expansions most convenient for describing the ex-
panding bubble and the perturbations about the per-
fect expanding bubble solution. The coordinate system
that maximally exploits the SO(3,1) invariance divides
the (3+1)-dimensional spacetime into three regions, in-
dicated in Fig. 2, in much the same way as Rindler coor-
dinates divide (1+1)-dimensional Minkowski space into
four regions. Region I consists of the interior of the for-
ward light cone of the origin O, region II consists of points
with a spacelike separation relative to O, and region III
consists of the interior of the backward light cone of O.

In many parts of our calculations, we shall consider
only the s-wave sector. Because of the high underlying
symmetry of the perturbations produced in the expand-
ing bubble background, all of the density perturbations
may be deduced from the s-wave sector. We calculate the
two-point function choosing the origin as one of the two
points, in which case only the s-wave sector contributes.
Because of homogeneity and isotropy, the two-point func-
tion for all positions of the two points is determined, and
thus the behavior of all other modes with higher angular
momenta.

For region I, the metric has the line element

ds® = —dt® + a®(t)[d¢? + sinh? £(dO? + sin® 0d¢?)] ,
(5.1)
and \/—g = a3(t)sinh?¢ sind. (For the special cases of de
Sitter space and Minkowski space, a(t) = H~!sinh[H{]
and a(t) = t, respectively.) In region I, the equation of

motion for the scalar field of the unperturbed bubble so-
lution is

Jo(t) + 3%%@) + V/[o()] = 0

and the Einstein equation is
a%(t) 1 87 1 (8¢ 2
a?(t)  a2(t) + 3m2, {5 (3{) + Vigo(t)] p - (5.3)

For region II, the metric has the line element

(5.2)

ds? = do? + b*(0)[—d1? + cosh® 7(d6? + sin® d¢?)] ,
(5.4)
and \/—g = b3(0)cosh?7 sinf. [For the special cases of de
Sitter space and Minkowski space, b(c) = Hlsin[Ho]

and b(o) = o, respectively.] Likewise, in region II the
equation of motion for the unperturbed bubble solution
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is (denoting 9,¢ = ¢')

3b'( a')

§0) + () — otk =0, (55)

and the Einstein equation is

b’2(a’) 1 87 1 % 2 ~ i _
b2(0) ~ ¥*(o) * 3mg, {2 (60) Vio( )]} 0.

(5.6)

Note that these are exactly the same equations as those
for the Euclidean bounce. Also, Egs. (5.5) and (5.6)
are related to Eqgs. (5.2) and (5.3) by the substitutions
E=1+1ir/2,t =i0,a = ib.

0= J—lzap[\/——ggway]

MARTIN BUCHER, ALFRED S. GOLDHABER, AND NEIL TUROK 52

The functions ¢o(t) and ¢o(o) form the “perfect” [i.e.,
SO(3,1) invariant] bubble solution in regions I and II,
respectively. If they are to match smoothly on the future
light cone of the nucleated bubble (o = t = 0), we must
require that

¢o(0 =0) = ¢o(t =0),
(5.7)

do(t = 0) = ¢h(c = 0).

We now consider, to linear order in ¢, small perturbations
of the perfect bubble
¢=co+o. (5.8)

For region I, the d’Alembertian takes the form

3a(t) 1 1 2
=82+ th&d 5.9
=0 + S50~ gy |08 + 2ot + hs( 5%)] 59
2 3‘1(t) 1 2 2
= 87 + 2 cothéd, -L .
O+ 5 %~ @ |% T 2eothed + sinh2 )
f
Using separation of variables, we find the mode expan- w3 (o) w3s 2 _
sion for the solutions of the wave equation ST+ b(o S b2(a) m(o)*| §=0, (5.15a)
(o) (o)
- . : l(l+1
O+ m?(t)]é = (5.10) Q +2 tanh7Q + [c(()s-l'1_27)' + wgs] Q=0 (5.15b)
where m2(t) = V"[¢o(t)]. Writing Define
$(t,€,0,8) = T(t;kn)R(E; kn, )Yim(6,4) ,  (5.11) _ _
, destm = [ d0VL @608,  (516)
one obtains 52
3a(t) and define ¢(o,7;1, m) similarly.
2 2 2 . —
0 t 0 + t ki, +m*(t)| T(t;kn) =0, In region I one may express the most general solution
a(t) ( )

(5.12)

I(t+1)
82 + 2 cothéd, —
[ ¢ +2co £0 sinh2§

+k,2,] R(&kn, 1) =0.

For region II one has

— 3b'(a) 2
O=-82— b() 0o + (o )[6T+2tanh7'6.,
_ 2
coshz (-L )] (5.13)
Writing
é(0,7,0,¢) = S(0;was)Q(T;was, 1) Yim(0,¢) , (5.14)

one obtains the equations

in the form

(t,&1,m) = / dCn R(E; Cur 1)
X [ASD) (Ch, L, m) T (5.¢n)
+AS (Chy 1, m)T O (85.Gn)] -

We define k = (? + 1 for future convenience, and (+)
and (—) label two linearly independent solutions for the
temporal evolution. Likewise, in region IT we may expand
the most general solution in the form

(5.17)

+oo

é(a,7;1,m) =/ d(as S(o;Cas)

—0o0

x [A§§’ (Casi 1, m)Q® (75 Cas, 1)

Aﬁ')(Cds;l,m)Q(“’(T;Cds,l)], (5.18)
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where wig = (35 + 1.

We now proceed to calculate the properties of the mode
functions. Note that the hyperbolic spherical functions
Rz(§ ¢») and the de Sitter functions Q*)(7;(as,!) and
Q@ (75 ¢as, 1) are universal, because they are completely
determined by the SO(3,1) symmetry; these functions do
not depend on a(t), b(c), m2(t), and m2(c). By con-
trast, the coefficient functions Ti(¢; (») and Si(o; {as) are
not universal and do depend on the functions a(t), b(c),

m?(t), and m?(o).

Hyperbolic spherical functions. A nice discussion of the
hyperbolic spherical functions with references to earlier
work appears in Ref. [22]. These functions satisfy the
equation

d? I+1
(7 + 2ot + @+ - D] Ry o,

(5.19)
where k2 = (? + 1. It is convenient to rewrite (5.19) as

sinh? § @ +3 hﬁ—(—i-—

osh &2 coshe g cosh
It+1)
sinh? ¢

It may be shown [23] that the functions

+HCh+1) - ] X Ry(&;¢n) = 0. (5.20)

1+1
Ri(€5n) = Ni(Gr) (-)"*sink! €% cos(e)
(5.21)
satisfy (5.20), where
Ni(eh) = - (522)

VERGH1G+2) (G + D)

and the orthogonality relation

L ~ d sinh? ERI(& C)RIE ) = 5(CL— C2)  (5.23)

and the completeness relation

6(&1 £b)

A dCh Ri(&a; Cn) Ri(&p5 Cn) = “sinh?¢,

(5.24)

|

AT (Gilm) ) )

(AE*’(ch;z,m) ) _ /+°° das (T‘* 2 (Gleas) T (Galas) ) ( AR (Casi L, m) )

7,59 (¢l Cas) T (CnlCas)
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hold. Note that

Rl o) = /2 i,

de Sitter functions. The de Sitter functions satisfy the
equation

(5.25)

d2
[d 3 +2tanh7’g— + (Cas® +1)

cosh?

G )]Qz(T Cas) =0, (5.26)

which can be rewritten as

+3 smh*r

4
d sinh 72 mhr T (Cs+1)

[cosh2 T

+1(z +1)

]Qz(f Cas) = 0 (5.27)
with wig = (35 + 1. We demonstrate that

(75 ¢as) = nu(Cas) cosh' 7 etias™ (5.28)

dsinh 7i+1

satisfies* (5.26).

Peculiar mode functions. We now discuss the other
mode functions T;(t; () and S;(o;¢as), which depend on
the particular choices for a(t), b(o), m?(t), and m2(o).
In the general case, for the expanding bubble, the behav-
ior of these functions depends on the particular choice
of potential and will have to be evaluated nunierically.
However, for certain special cases we may solve for these
functions analytically—in particular for a field of con-
stant mass (i.e., whose mass does not vary with spacetime
position) in de Sitter space and in Minkowski space.

There are two reasons for considering these special
cases. First of all, by considering a massless field in
Minkowski space, we may determine matching conditions
at the light cone that are generally valid. More specifi-
cally, we would like to determine the matrix elements of
the integral transform

1 5.30
Ah ) (Cas;t,m) ( )

It is readily verified that Qgi)('r; Cas) = €457/ cosh|r] satisfies (5.26) with I = 0. We generalize this result inductively to
all I. For this it is convenient to rescale z = sinh 7 and Q(7) = cosh' 7 wi(z), so that (5.26) becomes

(2% + Dwi/(2) + (2L + 3)zwi(z) + [(¢3s + 1) + 11 + 2)]wi(z) =0 .

If w; satisfies (5.29) for I, then w; satisfies (5.29) for (I + 1).

(5.29)
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relating the expansion coefficients in regions I and II.

This task would be quite simple if the individual mode
functions in regions I and II did not become singular as
t — 0 and o0 — 0, respectively. One would simply require
that ¢ and its transverse derivative be continuous across
the light cone. However, each of the individual modes
becomes highly oscillatory as one approaches the light
cone. Therefore, wave packets that are well behaved near
the light cone must be constructed as suitable smeared
superpositions of individual modes.

For matching the two expansions across the light cone,
only the asymptotic behavior of Ti(t; () and Si(o;{as)
for small ¢t and o is relevant. Therefore, we may calcu-
late the matching for Minkowski space, with a(t) = t and
b(o) = o, and the result obtained will be generally appli-
cable, for all choices for the functions a(t), b(a), m?(t),
and m?(o), provided that the mode functions Tj(t;(s)
and Sj(o;(4s) are normalized to have the same asymp-
totic behavior near the light cone as the functions to
calculate the matching in Minkowski space.

Mode functions for Minkowski space. In Minkowski
space, Eq. (5.12) becomes

. 3. 2 k,zl
T+3T+|m*+ 2|T=0, (5.31)

which with the change of dependent variable T'(t) =
Y (t)/t becomes

. 1. (3
Y+ZY+[m2+§]Y=0, (5.32)
where k2 = (2 + 1. The solutions are Bessel functions of
imaginary order Ji;¢, (mt), and

1
T (t5Gh) =  Tigs (mt) - (5.33)
For the massless case m? = 0, one has
TE) (¢ = ¥4 = 1 sicnme (5.34)

Similarly in region II, for Minkowski space (5.15b) be-
comes

2
S” + gs’ + [ﬁ (5.35)

o2 —m2]5=0.

Making the substitution S(o) = Z(o)/o, one obtains

2
Z" + %Z’ + [?—25 - mz] Z=0, (5.36)

where w3g = (%5 + 1. The solutions are modified Bessel
functions of imaginary order, and

S(o) = gxi,-cds (mo) . (5.37)

For small o

X +i€as In[o]
S(0) ~ gFites—1 = ‘ig— (5.38)
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For m? > 0 only one solution has acceptable behavior
for large 0. For the massless case, there are twice as
many acceptable solutions, since both solutions oscillate
as 0 — oo. This doubling has a simple explanation. For
the massive case, the light cone regarded as a Cauchy
surface is equivalent to the Cauchy surface defined by
T = 0, because for a massive field, or at least massive in
the limit 0 — oo, all of the information on the 7 = 0
surface must eventually propagate into the light cone.
For a massless field this is not so. There is a set of modes
that propagate to null infinity ahead of the light cone,
and hence never enter the light cone.

Coordinate systems for de Sitter space. Before giving
the mode functions for de Sitter space, to establish nota-
tion we write down the four sets of coordinates for de Sit-
ter space used in the course of our calculations, which we
shall call “hyperbolic,” “flat,” “closed,” and “embedded”
coordinates, and the transformations between them.

One may construct (3 + 1)-dimensional de Sitter space
as an embedding in (4 + 1)-dimensional flat Minkowski
space, defined by the equation

B2+ +at-a’=1. (5.39)

nates.
The closed coordinates are then given by

W = sinh[ty] ,

@ = cosh[tq] cos[xa] ,

Z = cosh[tq] sin[x.] cos[d] , (5.40)
=

[
co Sh[tcl] Sln[Xcl] sm[0] COS[¢]
g = coshl[t] sin[xc] sin[6] sin[¢)] .

They cover all of de Sitter space, and the line element is

ds® = —dt? + cosh®[t.](dx? + sin xddﬂ(2)) . (5.41)

In the flat coordinates, the constant time hypersur-
faces are null planes in the five-dimensional Minkowski
space into which the de Sitter space is embedded. More
specifically,

ty =Infw + 4] , (5.42)
T = r ‘
F~wra’
and the line element is
ds® = —dt} + e*1[dr} + r3dQ,)] , (5.43)

where 7 = (22 + 2 + z2)'/2. The flat coordinates cover

only the half of de Sitter space defined by w41 > 0. The

other half is covered by another set of flat coordinates.
Next we discuss the region II hyperbolic coordinates

w = sinh[7] sin[o] ,

§|

= cos[o] ,

NI

= cosh[7] sin[o] cos[d]
= cosh[7] sin[o] sin[6] cos[¢] ,
g = cosh|[7] sin[o] sin[f] sin[¢] ,

(5.44)
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in which the line element is

ds? = do? + sin?[o][—d7? + coshz['r]dﬂ(z)] (5.45)

Finally we have the region I hyperbolic coordinates
= sinh[t] cosh[{] ,
= cosh[t] ,

= sinh|[t] sinh[£] sin[6] cos[¢)] ,
= sin

=si

El

Sl

(5.46)

h[t] sinh[¢] sin[6] sin[¢] ,
inh[¢] sinh[£] cos[6] ,

in which the line element is

ds? = —dt® + sinh?[¢][d€? + sinh®[¢]dQY,)] . (5.47)

These coordinates cover the forward light cone of the
point P described by the embedded coordinates 4@ =
1,z = § =z =w = 0. To cover all of de Sitter space with
hyperbolic coordinates, three more coordinates patches
of a form similar to region I are required. Region III
consists of the backward light cone of P. Region IV con-
sists of the forward light cone of the antipodal point of
P, which we call P, and which is described by the em-
bedded coordinates & = —1,Z = § = z = w = 0. Finally,
region V is the backward light cone of P.

Peculiar functions for de Sitter space. For de Sitter
space in region II, the scale factor takes the form b(o) =
H~'sin[Ho]. For simplicity we set H = 1. Equation
(5.15a) becomes

2

S"(o) + 3 cot[o]S' (o) — m2S + [C‘}siz-i—l]S(a) =0,

sin®[o]

(5.48)

where 0 < 0 < 7. Let £ = coso and S = F/sin[o] =
F/(1 - z%)'/2, so that Eq. (5 48) becomes

%[(1—m2)%§]+[(2 m?) + 5 C“S ]F=0

which is the Legendre differential equation, with lin-
early independent solutions PZFas(z) and QFes(z)
with v(v + 1) = (2 — m?)

For m? = 2, which we shall call the “conformal mass”
case (because the quadratic term in the action has the
same effect as no mass with conformal coupling), we solve
Eq. (5.49) by making the change of variable z = tanh[u],
with —oo < u < +00, so that Eq. (5.49) becomes

, (5.49)

d’F 2 2
) + (2 — m?)sech®[u]F + (3,F =0, (5.50)
which for m2? = 2 has the solutions F = e**4s®  For the

massless case (m? = 0) one has F = (¢ — tanh[u])e*%x,

VI. INITIAL CONDITIONS

One of the remarkable properties of a de Sitter space
background is its ability to erase initial conditions
through exponential expansion. After a sufficient number
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of e-foldings, the state of the scalar field within a Hub-
ble volume becomes almost completely determined and
almost completely independent of the initial conditions.

In this section we discuss the quantum fluctuations of
the inflaton field prior to bubble nucleation, when the
inflaton field is stuck in the false vacuum. There ex-
ist extensive discussions in the literature of the quantum
fluctuations of a free scalar field of fixed mass in de Sitter
space. The principal result of this section is an expansion
of the two-point function describing the Bunch-Davies
vacuum (see Ref. [7] and references therein) in terms of
the region II hyperbolic mode functions. To follow the
evolution of the quantum fluctuations through the bub-
ble wall, it is necessary to describe the initial state in this
manner.

The choice of the Bunch-Davies vacuum as a reason-
able initial condition can be justified in the following way.
In de Sitter space, if one follows any scalar field mode in
the flat spatial slicing, its proper wavelength begins in-
side the Hubble radius, and is exponentially stretched
outside the Hubble radius as time proceeds. So the early
evolution is effectively the same as in Minkowski space-
time. The energy density in the scalar field fluctuations
is the renormalized sum of the energy in each field mode.
If this is to be finite, it is clear that the very short wave-
length modes must begin in their ground state (i.e., the
Minkowski vacuum). It follows that after a sufficient
number of expansion times, the state of the scalar field
(as observed over a fixed physical volume) becomes in-
dependent of the initial state of the scalar field, because
all one sees are the modes which began in their ground
state. This “evolved Minkowski space vacuum” is the
Bunch-Davies vacuum.

For the two-point function in the Bunch-Davies vac-
uum |0gp) we shall use the Wightman function

G (X, X') = (0sp|d(X)(X')|08D) ,

(6.1)

of the previous sectlon Since G(*) is invariant under the
action of the connected part of SO(4,1), we express G(+)
in terms of the invariant

I(X,X") = —ww' + ud’' + 27’ + g7 + 22’ —iee(X, X') .
(6.2)

Note that I(X,X') > +1 when X lies inside either the
forward or backward light cone of X'. I(X,X') =
when X lies on the light cone of X/. When —1 <
I(X,X') < +1, there exists a spacelike geodesic con-
necting X and X’. When I(X, X’) = —1, then X lies on
the light cone of the antipodal point of X’. Finally, when
I(X,X') < —1, X lies in the interior of the light cone of
the antipodal point of X', and in this case there is no
geodesic connecting X to X’. We add a small imaginary
part to I(X,X') to indicate the time ordering of X and
X'. e(X,X') vanishes when I(X, X’) < 1, is equal to +1
when X lies inside the forward light cone of X', and is
equal to —1 when X lies inside the backward light cone
of X'.
We have
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) i.—.uz
n —
GUI(X, X" = T6n sec[my]
3 3 IX,X")+1
X2F1 [E—u,§+u;2,—(-’—2——)—} ,

(6.3)

where v2 = 9/4 — m2. Except for special degenerate val-
ues of v, the hypergeometric function F [% —-v, % +v;2;2]
has a branch point at z = 0 and a cut extends from
z = +1 along the real axis to 2 = +o0o0. The infinitesi-
mal imaginary part of I provides a compact notation for
indicating on which side of the cut the hypergeometric
function should be evaluated. We shall for the most part
work in units where H = 1, and restore H by dimensional
analysis later.

To simplify the algebra, we shall in this paper only
consider the special case where m2 = 2, for which the
Wightman function has the particularly simple form

-1 1

XX = e iy 1

(6.4)

In this case the spatial mode functions S(o;() also have
a particularly simple form

u
S(o;¢) = ;nl[}—] exp[i¢ arctanh(cos o)] = élﬁu_] , (6.5)
where tanh[u] = cos[o]. To normalize our mode func-

tions, we use the nondegenerate bilinear form
(£.9) = (i) [ a2 {F(X)[0,9(0)] - (0. (X)a(X)}
(6.6)

M (3 +1]Ges£2) = FEV(X;¢G) ox (X, Y) oy fEY; ),

MARTIN BUCHER, ALFRED S. GOLDHABER, AND NEIL TUROK 52

where ¥ is a Cauchy surface, with unit normal n*, and
dX#* = d¥n*, with dT the volume element on ¥. For the
s wave, the normalized mode functions are

Gy 1 eiu T
F P w70 = 47+/C sech(u] cosh[r] ’ (6.7)
which satisfy the relations
P17 = +8(¢ - ¢,
1) = =8¢ -0y,
(6.8)

18 =0,
(5 =0

We choose this normalization so that when we expand
the s-wave component of the field operator as

N +oo
$(X) = /_ dCLF ) (X;50)a(C) + £ (X;0at(0)]

oo

(6.9)

the usual commutation relations [a(¢), a'(¢’)] = 6(¢—¢")
[@(¢),a(¢")] = 0, and [a(¢),at(¢")] = O result.

To expand G'*) in terms of the region II mode func-
tions, we calculate the matrix elements

I

(6.10)

where the contraction o is defined according to Eq. (6.6). We compute both products choosing the surface defined by

7 = 0 to be the Cauchy surface X.
In terms of the region II hyperbolic coordinates,

I(X, X') = cos|o] cos[o'] + sin[o] sin[o](cosh([r] cosh[r'] cos[®] — sinh[r] sinh[7']) — see(T — 7')

= tanh([u] tanh[u'] + sech[u]sech[u](Z cosh[r] cosh[r'] — sinh[7]sinh[r]) — iee(T — 7') ,

(6.11)

where Z = cos ©[0, ¢;0', ¢'] = cosfcos b’ + sinfsin b’ cos(¢p — ¢').

Consequently,

GH(X, X') = 8;1r1§[tanh[u] tanh[u'] 4+ sech[u]sech[u’](Z cosh[r] cosh[r’] — sinh[7]sinh[7'])

—1 —dee(r —7")]7*
-1 1

(6.12)

82 sech[u]sech[u'] cosh[r] cosh[7’]

1

7= cosh[u — u/]sech[7]sech[r'] — tanh([r] tanh[r] — iee(T — ')

We evaluate

GH(X', X) ox fE(X;¢) = (—i) /+°° du sech®[u](27) /+1 dz
—oo -1

-1 1
472 sech[u]sech[u/] cosh([7] cosh[7]

(6.13)
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1
7= cosh[u — u']sech[r]sech[r’] — tanh[r] tanh[r'] — iee(7')

1 1 eiCu  gFilClr
x (sech[u] T) 4m,/|(| sech[u] cosh[7]
at 7 = 0. (Note primed and unprimed indices have been interchanged.) Define
. +1 +oo vie 1
H 1) = dz due™*tt
(W', ,7) /;1 /_oo we Z — cosh[u — w'[sech[r]sech[r'] — tanh[r] tanh[7'] — iee(7)

_ /+°° du %% In cosh[u — u']sech[r]sech[r’] + tanh[r] tanh[r'] — 1 + iec(7')
N cosh[u — u']sech[7]sech[r'] + tanh[r] tanh[7/] + 1 + iee(7')

—00

+oo ; h{u — '] — cosh[r’ — 7] + tee(7')
_ du e+i¢u I [ 8 '
/.:oo we . [cosh[u — '] + cosh[r’ + 7'] + iee(7') | ’ (6.14)
so that
+1 1 —8H (v, 7', 1) _ .
e (x' x ) (x:.¢) = ' T rt ]
(X', X) ox f(X50) 1672 /1¢] sech[u] coshlr] 57 Fil¢|H @, 7', T) (6.15)
at 7 =0.
We now evaluate
/+°° du e+t 1 cosh[u — u'] — cosh[r' — 7] + iec(7')
oo cosh[u — u'] + cosh[r’ + 7] + jee(1')
+oo ’ . ’
_ Ficu! du eHiCu | cosh(u] — cosh[r' — 7] + iee(’)
e /;oo ue n [cosh[u’] ¥ cosh[r’ + 7] + dee(r) | (6.16)
Define
+oo ’ .
() _ +igu coshfu] — cosh[r’ — 7] + i€ 17
& [_oo due " [cosh['u.] + cosh[r/ + 7]+ ie| ° (6.17)

We first evaluate I§+). Examining the properties of the integrand in the complex plane, we find two branch points
near the real axis, just above or below the two points u = (7' — 7). The branch point to the left at u = —|7’ — 7|+ ie
lies just above the real axis and the branch point at v = +|r’ — 7| — i€ lies just below the real axis. [Under the
transformation +ie — —ie this situation is reversed.]

We now consider the contour C from —7T to +T to T + 2mi to —T + 2i and finally back to —T', considered in the

limit T — oo. Inside the rectangle enclosed by the contour, in addition to the branch point at u = — |7/ — 7| + i€, there
are three more branch points at u = —|7/ + 7| +iw —ie,u = +|7' + 7| +im + i€, and u = +|7’ — 7|+ 27 — te. One branch
cut connects u = —|7’ — 7| + i€ to u = —|7’ + 7| + im — i€, and another branch cut connects v = +|7’ + 7| + im + i€ to

u = +|7' — 7| + 927 — ie. In the limit T — oo the contributions from the vertical parts of the contours vanish. Since
a translation by 2mi has the effect of multiplying the integrand by e~2¢",

— ! —_— 7
}{ duetiuy [0Syl —coshlr — 7] Hiel ) —amy o)
c cosh[u] + cosh[r! + 7] + e

—|' 7| +in ) +|7' —7|+2im )
= (—2mi) / du et 4 (2mi) dueti*  (6.18)
—|r'—7| +|7!' 47| +inw

= 2T (=it =7l _ gmtm—idlr' Iy _ (gmCmidir'r| _ g=2millr'~7l]

where the integral is evaluated by deforming the contour into two pieces surrounding the two branch cuts. It follows
that

(+) — _ 27
= ¢ sinh[(n]
S - ! — cosh[¢w] cos[¢|T" — 7|] + ¢ sinh[¢n]sin[¢|7’ — T
=~ Cetnhjen oSl + 7l h[{m] cos((] |] + i sinh[¢n] sin[¢] I - (6.19)

[cos[¢|7" + 7|] = cosh[¢{m — (|7 — 7|]]
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Similarly,
I16) = —Cs—lzm [cos[¢|T" + 7|] — cosh[¢m + (|7’ — 7]]]
= —C—gm [cos[¢|7" + 7] — cosh[¢{] cos[¢|T — 7|] — 4 sinh[{n]sin[¢|7 — 7]]] . (6.20)
It follows for both signs of 7/ that
H= —C—sﬁzw—]eﬁcul {cos[¢(7' + T)] — cosh[¢n] cos[¢( (7' — 7)] + i sinh[{]sin[¢(7' — 7)]} . (6.21)
Therefore
) o f@®y(xy o —t 1 eti [¢]
(G o fX) = 8m/|¢| sinh[(7] sech[u’] cosh[7’] ( ar T° ¢ ) (622)
x[cos[¢ (7’ + T)] — cosh[¢{w] cos[¢ (7' — 7)] + ¢ sinh[¢n]sin[¢(r' — 7)]] .
Since
(ZW T l%) cos[¢T] = ;zme?"("' , (C 57 T zl—gl-) sin[¢7] = eFildlT" (6.23)
Eq. (6.22) may be rewritten (setting 7 = 0) as
(G o f(ﬂ:))(X/) -1 eticy _ [__efFilclf‘ sinh[¢7] F Lc_l{_eiiICIf’ + eFilél Cosh[cﬂ]}] (6.24)
¢ 8m+/|¢| sech[u'] cosh[r’] smh[Cﬂ'] ¢ )
1 eticu’ g Fil¢lr’ -1

+¢ImFil¢|T eﬂ:iIle’} .

- 4m+/|(| sech[u'] cosh[7’] 2 sinh[|(|n] {Fe

o (1) -cr ()
¢ ¢

_ -1 etlClm 1 f(+)
T etlllr — e—[CIm +1 _e—lCh) f( ) )

and the normalized positive and negative frequency mode functions are

Therefore

(6.25)

elIm/2 £(+) _ = IKIm/2 (=) el¢Im/2 f(=) _ e—I¢Im/2 £(+)

) = =) =
g (e+lem —e-lcmyiz 0 9 (eHleim — eIz (6.26)

From the fact that G(*) obeys the wave equation everywhere in both variables and from the orthonormality relations
for the mode functions given in Eq. (6.9), it follows that

GH(X,X) = /_ - SOMICICH (FE2@) oy GDEY) oy SED () FEV O FED (X . (627)

The matrix elements féil)(Y) oy GH)(Y,Y') oy fc(i"’)(Y’) are given in Eq. (6.25).

VII. COSMOLOGICAL PERTURBATIONS tion Wlth no ﬂuctua!ﬁions. To ignore the back react}on (?f
the linear perturbations on the background spacetime is
In the previous sections, we calculated the quantum a valid approximation when the perturbations are well

fluctuations of the inflaton field ¢(z) about the classical within the Hubble radius. However, as the expansion of
background solution ¢y(z) treating the curved space as the universe causes the size of a perturbation to increase
fixed background, determined by the background solu- relative to the Hubble length, this approximation breaks
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down. In this section we consider the coupling to grav-
ity of the scalar field perturbations—in other words, how
the quantum fluctuations of the inflaton field translate
into density perturbations as they are pushed outside the
Hubble radius. It is permissible to treat the fluctuations
in the scalar field (and their associated metric perturba-
tions) as classical fields.

There are many physically equivalent ways to treat
density perturbations. Here we use the gauge-invariant
formalism of Bardeen [24,25], closely following the nota-
tion in the review in Ref. [26]. We consider only scalar
perturbations and write the metric in the form

ds? = a®(n)[—(1 + 2¢)dn® + 2B);dn dz?

+{(1 — 21&)’}’1':,' -+ 2E|”}d.’l}ld{l)‘7] y (71)

where 7 is conformal time, and the spacetime functions
@, ¥, B, and FE are linear metric perturbations. Primes
denote derivatives with respect to conformal time and
H = a’/a = aH. Covariant spatial differentiation with
respect to the spatial background metric v;; is denoted

D;F = F};, etc.
We set
vijda'da? = de? + f2(£)dQY, (7.2)
where
sinh[¢] for K = —1,
HOE { § for K =0, (7.3)
sin[¢] for K = +1.

Although we are primarily interested in the open geom-
etry (K = —1), we consider the cases X = —1, 0, and
+1 (corresponding to open. flat, and closed spatial ge-
ometries, respectively), to allow comparison between the
open and flat cases, so that the influence of spatial curva-
ture is manifest.> In comparing open and flat geometries,
it should be kept in mind that spatial curvature affects
the eigenvalues of the Laplacian V2 = ~% D;D; used in
the mode decomposition. For X = 0, the eigenvalues of
—V?2 are k2 where k ranges from 0 to +oo; for K = —1,
the eigenvalues of —V?2 are ¢2 + 1 where ¢ ranges from 0
to +oo.

5In Ref. [26] the metric is written as (dr® + rzdﬂfz))/(l +
Kr?/4)%. The substitutions r = 2tanh[¢/2] for K = —1 and
r = 2tan[¢/2] for £ = +1 demonstrate equivalence to the line
element in Eq. (7.2). Likewise, in Ref. [27] the line element is
written as d?/(1 — K7?) + deﬂﬁz). Equivalence to Eq. (7.2)
may be demonstrated by the substitutions # =sinh[{] and
7 = sin[¢] for K = —1 and K = +1, respectively.
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From these linear perturbations, we construct the
“gauge-invariant” variables

1
e=¢+ _[(B-E)d,
(7.4)
al
v=79—-—[B-—E,
a
where gauge-invariant means invariant to linear order un-
der infinitesimal coordinate transformations. We con-

struct the gauge-invariant perturbations of the Einstein
tensor

§G5 = 6G¢ + [*Go)' (B — E),

1
G2 = 6G? + ["G? - g"G:] (B — B, (7.5)
6G: = 8G: + °GY'(B - E') ,
and similarly of the stress-energy tensor
5T = OTS + PTYY(B ~ ),

8T} = 6T} + [°T})'(B - E') .
In terms of the gauge-invariant metric perturbations,

2
8G9 = S[-3H(HS + ') + V20 4+ 3K9]

2
8G) = —[HE + V']

i _2

{(27{' +H)® + HY + T +2HTY  (7.7)

b

1 1

where D = (® — ¥). The gauge-invariant stress energy
from the inflaton field is

5T = (0128 + 44(60) + a*V,o(09)]
1 ~
5T = 144695

5TF = L 1e28 — 6,08) + a*V,0 (6015

(7.8)

where (§¢) = (64) + ¢}(B — E') is the gauge-invariant
variable for the inflaton field perturbation. The lin-
earized Einstein equation 6G}, = (87G)d7, gives D = 0
(so that ¥ = ®) and the equations
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3(K — H2)@ — BHY + V28 = (4nG)[~4}2@ + 64(68)’ + a?V,4(69)]
HE + &' = (47G)[¢,(69)] »
3" + 3HP + 2H +H? — K)® = (47G)[—¢42® + ¢}(68)' — a®V 4(59)] -
Because of the background Einstein equations

S0 4 K] = (7G)(+) = (556) [ 530 + V()|

LI+ + K] = (876) (-ps) = (87G) [~ 530 + V)|

it follows that (47G)¢ = (H? — H' + K). Thus Eq. (7.9) may be rewritten as
—3HP + V20 + (4K — H' — 2H?)® = (47G)[¢}(8¢) + a*V 4(59)] ,

We now subtract the first equation from the third equa-
tion. Because of the background equation of motion for
the scalar field

Y+ 2Hp, +a?Vg(ds) =0, (7.12)

52
(7.9)
(7.10)
HD + &' = (47G) [} (68)] , (7.11)
" + 3HD' + (H' + 2H?)® = (47 G)[$4(64) — aV 4(64)] -
[
“ 1 1 .

(69) = ma[q"FH‘I’] )
(7.16)

o -1 1 _@ .

o9 = oy | (-5)

we can subtract [AH + 2(¢} /#})] times the second equa-
tion, obtaining
/!
'I>”+2(’H——',’)<I>’~V2‘I>
b

"
+ (2%’ - 2%¢—’; - 41c) ®=0. (7.13)
b
We rewrite Eq. (7.13) in terms of proper time, using the
relation dt = a(n)dn, so that

d + (H - zﬁ) ® + lz(—v2 —4K)®
o a
+2 (H - Hﬂ) ®=0. (7.14)
78

We now relate the gauge-invariant potential pertur-
bations to the gauge-invariant scalar field perturbations.
From Egs. (7.11) and (7.13) it follows that

2 1 1
0= e 4,

697 = Gy (= 4)*

/!
+(Cz+5+%’—ﬂ¢i)@]’

[®' + HP], (7.15)

so that in terms of proper time derivatives

+s5 H
H{Ea () o]

To calculate the evolution of the density perturbations
during the early part of region I inflation (until Q is close
to one), we use a linear approximation to the potential.
In the general case, at t = 0 (at the end of the Coleman—

de Luccia bounce), é» = 0 and the potential slopes down-
ward, toward the true vacuum. To make the problem
tractable analytically, we take

V(¢) =Vo— Vo,

where we set ¢,(t = 0) = 0 and take V4 to be constant.
We first solve for the evolution of ¢s, for simplicity as-
suming that a(t) is well approximated by a(t) = sinh[t]
until Q is close to one. Thus the equation of motion for

oy is
ds+3 COth[t](i.)b =Vs, (7.17)

and the solution with q.Sb =0att=0is

cosh®[t] — 3 cosh[t] + 2

bo(t) =V, : 7.18
#o(t) . 3 sinh3[t] ( )
which for small ¢ behaves as ;V,4t and for large t as 1V 4.
It follows that
Pult) _ 3 (7.19)

éu(t)  sinh[t](cosh[t] +2) ’

so that Eq. (7.14) becomes
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b+ {Knlf{[ﬂ <cosh[t] - 5&3‘[%3) } b

1 2 _ 4(2 cosh[t] +1) } _
+sinh2[t] {C +3 coshlt] + 2 ®=0.

(7.20)

To solve Eq. (7.20) it is convenient to replace the variable
t with the conformal time variable n = In[tanh[t/2]], thus
mapping the interval (0 < t < +00) into (—o0 < 7 < 0),
so that Eq. (7.20) becomes

" 6(1 - 6271) ! 2 4(3 + 627]) _
(7.21)
The general solution to Eq. (7.21) is®
; +i
d=c etinen (1 — —C———,—ez")]
) [ 3(¢—1i)
+c e %nen (1 — ——C;i—ez" . (7.22)
“ 3(C+9)
For small ¢, (ie, n — —o0),t = 2e”7 and

d ~ c(+)e"e+i(” + c(_)e"e_ic" = C(+)(t/2)(t/2)+“ +
c(—)(t/2)(t/2)7*. For large t (i.e., n —» 0—), ® is domi-
nated by the growing mode and

2 (C+2i 2 (¢ -2
ot (2) 3 (52).
Finally, inserting the small ¢ asymptotic forms & ~

tE¥H o~ t, H mt7), ¢y = 1Vyt, and ¢y & 1V, into
Eq. (7.16), we obtain the small ¢ matching condition

(7.23)

. Fi(+2®

0p) ~ . .
68~ Tt (7.24)
In spatially flat inflation the conserved quantity [21]
2H1® + &
X = 3 1xw +@ (7.25)

[called ¢ in Ref. [26]] is very useful to track density pertur-
bations on super-Hubble radius scales. During inflation

Vige — 362 1 (mPIV,¢)2 1.

w=py/pp = (*I)V[m] T ig2 " 24n 1%

(7.26)

Assuming the absence of entropy perturbations (i.e., that
the perturbations obey the equation of state py(pp) given
by the background solution) and neglecting the spatial
derivative term in the evolution equation for the gauge-
invariant potential ®, one obtains x = 0. On super-
Hubble radius scales these assumptions hold reasonably

We thank Bharat Ratra for pointing out the Eq. (7.21) can
be solved analytically.
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well. In flat inflation the existence of this conserved quan-
tity provides an elegant way of demonstrating that the
spectrum of density perturbations at late times is inde-
pendent of the details of reheating. The precise way in
which w evolves, from a value slightly greater than —1
during inflation to —:1; during radiation domination, and
later to nearly zero during matter domination, does not
affect the final density perturbations.

Unfortunately, the conservation of x for super-Hubble
radius scales does not completely generalize to an open
expanding universe. x varies with time when 2 is not
close to one, in our scenario during the early part of re-
gion I inflation and then much later, during the latter
part of the matter domination, when the universe be-
comes curvature dominated again. Therefore we may use
x in the following way. During the early part of inflation
(when  is significantly less than one), we calculate the
evolution of the modes explicitly. Then at a later time
(before reheating but when 2 is still very nearly one),
when all of the modes of interest are well outside the
Hubble radius, we calculate x. (It should be noted that
while €2 is less than one, x varies in time in a manner
independent of wave number. Therefore, all modes are
affected in the same way, and only the overall normaliza-
tion of the power spectrum is altered. Its shape remains
the same. This is because the evolution of density per-
turbations on super-Hubble radius scales is essentially a
local process.)

VIII. POWER SPECTRUM
OF THE INFLATIONARY OPEN UNIVERSE

In the last three sections we developed the tools for
calculating density perturbations. In this section we put
together the various pieces to give a concrete result. To
keep the calculation as simple as possible, we consider
the following idealized scenario. In region II we assign
to the inflaton field perturbations a mass m? = 2, which
changes discontinuously across the light cone to m2 = 0
in region I. This should be a reasonable approximation
when the bubble wall is very thin and the bubble size
is small compared to the Hubble length. [The scenarios
with two scalar fields work best for this regime. See the
discussion at the end of Sec. IV.]

We start with the mode functions associated with the
annihilation operators of the Bunch-Davis initial state in
region II (where m? = 2), determined in Eq. (6.26) to be

e'ﬂ"/zfc(*) _ e—|(|1r/2f<(“)

(+) _
9 T T (et e KImyiz (8.1)
o) =11,
where
iCu Fil¢|T
) 1 et e . 8.2
fC (u,7) am/[C] sech[u] cosh[T] (8.2)

We continue these mode functions into region I. For large
u, (e%*/sech[u]) = (1/0)(c/2)~%. Therefore in region II
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near the light cone one has

Fil¢|r —ic
(%) 1 e 1 (0’) (8.3)

¢~ 477\/|C_| cosh|[7] o \2

Recall that (as shown in the Appendix) the matching
conditions across the light cone are

i¢— etir ., sin[¢{] i¢—1
oF 1cosh['r] (Zz)sinh[ﬁ]t-’— ’

yico1 €%
cosh|[7]
e+i(7‘

(o4

-0, (8.4)

—i¢—1

o -0,

cosh[7]

e % ~Sin[CE] e
cosh[7] (_2z)sinh[£]t .

Therefore, for ¢ > 0 only fé+) has a nonvanishing contin-

—i¢—1

uation into region I, and similarly for { < 0 only fc('—) has
a nonvanishing continuation into region I. We set { > 0.
In region I near the light cone,

ot = eme/2 —1_gricSinlce]
¢ Ver© —e-7¢ 2m\/C~  sinh[€]
xt~%"1 + O(1)],
(8.5)
) _ e—C/2 —i _;sin[C€]
9-¢ T Jemt —e-nC 2m /¢ sinh[g]

xt+iC=1[1 + O(t)] .

We now change variables to the gauge-invariant po-
tential ® using Eq. (7.24), thus introducing a factor of
271GV, /(Fi¢+2). We write & as a quantum-mechanical
operator, so that the s-wave component

s [T e, g sinl¢é]
(I,_/O d¢ [@C +& ]sinh[{]’

(8.6)

where
—1 1
=GV
™ ,¢.27r\/z /eﬂ,c_e_.’rc

2%
w¢/2_ 2 -Oa
x[e _iC+2F(t,C)aC

5 (+)
@,

2-% .-
e LR (8.7)

i +2
and F(t;¢) satisfies Eq. (7.20) and is normalized to be-
have as F(¢;¢) ~ t~%*! for small ¢, so that

™) is the “positive frequency” part of &—that part
which annihilates the Bunch-Davies vacuum. The ex-
pression for ®; (which consists of one quantum mechan-
ical degree of freedom) involves two harmonic oscillator
degrees of freedom, rather than just one such degree of

F(t;¢) = 20— tilngn [1 - (8.8)
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freedom, because there exist correlations between regions
I and II. (If one considers the Bunch-Davies vacuum re-
stricted to region I, one has a mixed state rather than a
pure state because of correlations across the light cone.)

As discussed in the previous section, F'(t; ) oscillates
for small ¢ while the mode labeled by ( is within the
Hubble radius, and then for large ¢, when the mode is
well outside the Hubble radius, F(¢;¢) =~ Cég )4 Céd)e"t.
We are primarily interested in the growing mode at late
times. Therefore we compute the power spectrum for ®
as

Jim (@ (t)@¢:(t)) = Pa(¢)5(¢ — (')
(8.9)

_ (GV.s\* 4 coth[n(]

where by dimensions we have restored the Hubble con-
stant H during inflation. In this formula we maintain ¢
as a dimensionless variable. In terms of the Laplacian on
hyperbolic space, we have —V? = k2 = H?(¢%2+1). Using
x = 167G(V?2/ V;)Q (during inflation), one obtains that
the power spectrum for x (which has a normalization
that relates more directly to the density perturbations
seen after reheating) is

9 f{_s 2 coth[n(]
4 (V,¢) ¢(¢2+1)°

With the convention used here P ~ (3 corresponds to
scale invariance. This is seen for example by computing
($2(0)) using the small ¢ limit of Eq. (8.6) and noting
that there is a logarithmic divergence at large ¢. This re-
sult generalizes the standard calculations [28-31] of fluc-
tuations produced in a flat universe during inflation to
our open inflationary scenario. We compute the CMB
perturbations and other cosmological consequences in a
separate letter [32].

Our result differs from that of Lyth and Stewart [9],
and of Ratra and Peebles [10,11] who assume different
initial conditions for the quantum fields, only by the fac-
tor coth[w(/2]. This is very close to unity on all scales
accessible to observation (e.g., in the large angle CMB
anisotropy), so we expect very similar phenomenology to
the Lyth-Stewart-Ratra-Peebles spectrum. However, it
is probably fair to say that our calculation, in which the
initial conditions are physically justified, puts the result
on a firmer footing.

P (Q) = (8.10)

IX. CONCLUDING REMARKS

Finally, we conclude with the following comments.

(1) Although it is possible, as we have shown, to extend
inflation from a theory that predicts 2 = 1 to one that
predicts 2 < 1, we do not believe that a similar extension
is possible for 2 > 1. To be sure, one can construct a
closed inflationary model by postulating positive spatial
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curvature at the beginning of inflation, but then inflation
no longer solves the smoothness problem, and much of
the original motivation for inflation is lost.

The fundamental distinction between closed and open
inflation is that negative curvature can be introduced lo-
cally, by an event localized in space and time (in our sce-
nario the nucleation of an isolated bubble) which propa-
gates at a speed asymptotically approaching the speed of
light, thus producing smooth surfaces of constant nega-
tive spatial curvature. By contrast, to single out surfaces
of constant positive curvature subsequent to the begin-
ning of inflation would seem to require some sort of non-
local process.

(2) One possible source of error in our calculation of the
density perturbations is the neglect of gravitational per-
turbations in region II. In region II we used the “stiff” ap-
proximation, in which the effect of metric perturbations
on the scalar field perturbations is ignored. We know
that the stiff approximation works well while modes are
well within the Hubble radius. Therefore, for ¢ 2> 1, in
other words for modes well within the Hubble radius at
the beginning of the region I phase of inflation, we do not
expect using the stiff approximation in region II to be a
significant source of error. However, modes with { < 1
are never within the Hubble radius at the beginning of
region I. This is because as one approaches the beginning
of region I, formally at least, the universe becomes cur-
vature dominated, and the size of the comoving Hubble
radius approaches a constant. Fortunately, since con-
sistency with observation requires that Q > 0.1-0.2, all
scales accessible to observation (i.e., within the present
apparent horizon) are never far from the range of validity
for the stiff approximation in region II.

(3) In calculating a density perturbation spectrum, for
purposes of computational simplicity, we assumed that
the effective mass of the inflaton field changes instan-
taneously from m2? = 2H? outside the bubble wall to
m? = 0 inside the bubble wall, which is assumed to be
infinitely thin. One would expect a slightly different spec-
trum for a wall of finite thickness, especially for large
wave numbers. In particular for ¢ large in relation to
the inverse of the wall thickness, the modes respond to
the change in mass adiabatically rather than according
to the sudden impulse approximation. We have extended
our calculation to the case m? > 2H? case, in which case
the thin wall approximation would be fully justified. The
results will be presented elsewhere [33]. On scales acces-
sible to observation it turns out that varying m2?/H? has
little effect on the power spectrum.

(4) References 7 and 8 consider a scenario of open
inflation restricted to region I. As an initial condition
they impose the requirement that the initial state is an-
nihilated by the operators associated with modes that
have positive frequency with respect to conformal time
(i.e., with the asymptotic behavior ¢~%¢|=1 near the light
cone). This choice of initial condition is not connected
to what happens outside the light cone (prior to the co-
ordinate singularity at ¢ = 0) and not surprisingly gives
unphysical behavior near the light cone: It is a state akin
to the Rindler vacuum for ordinary Minkowski space. For
such a state the stress-energy observed by a freely falling
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observer crossing the light cone diverges; for the Bunch-
Davies vacuum there is no such divergence.

Except for the factor of coth[r€] in Eq. (8.10), our
power spectrum is in agreement with Refs. [9] and [10].
This is precisely the expected discrepancy, resulting from
the Bogolubov transformation, because as far as the evo-
lution in region I is concerned, we are in agreement with
Refs. [9] and [10].

(5) In the model of open inflation scenario presented
here the “big-bang” singularity at ¢ = 0 in the open
expanding FRW universe is not a genuine singularity.
Rather it has been reduced to a coordinate singularity,
similar in character to the coordinate singularity of the
black hole horizon in conventional Schwarzschild coordi-
nates. A freely falling observer passing from region II into
region I would not experience any singularity. With this
big-bang singularity removed, it is tempting to contem-
plate a universe eternal in the backward time direction,
with no initial singularity or Planck era. Unfortunately,
as shown by Vilenkin and by Borde and Vilenkin [34],
eternal inflation backward in time seems to be inconsis-
tent with a finite bubble nucleation rate.

(6) We did not consider the generation of gravitational
waves in our model. One would expect a sizable contri-
bution to the CMB from tensor modes when the energy
scale of inflation is close to the Planck scale, just as in
flat inflation.

Note added. We have recently extended the calculation
of the spectrum of density perturbations to the case of
arbitrary false vacuum mass m2 > 2HZ2. The result is
surprisingly insensitive to the precise value of m, chang-
ing little as m is increased to infinity [33]. We have also
received a recent paper by Yamamoto et al. [37] in which
they attempt to perform the same calculation as we have
done here using instead analytic continuation of the Eu-
clidean vacuum modes, with no change in the mass of the
scalar field occurring across the bubble wall (they assume
m? is constant and much less than H? everywhere in de
Sitter space).
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APPENDIX: MATCHING CONDITIONS
FOR MINKOWSKI SPACE

In this Appendix we present the details of the derivation of the matching conditions for Minkowski space for the

expansion in regions I and II assuming a massless scalar field. The calculation is carried out only for the s wave.
Our strategy is the following. We expand ¢ in terms of the more customary mode expansion

q~$(rm, tm) = /0‘00 dk kzjg(krm){a(’)(k) coslkt,] + a(“)(k) sin[kt,]} , (A1)

which is nonsingular on the light cone and valid in both regions I and II.
The expansion in region II,

: +oo
$(o,7) = / dCaso a5 LA (Cas) Q) (75 Cas) + ALY (Cas) Q) (75 Cas) }

_‘T’o"o iCas—1
= [ dtan T AR Gas)cos(Cas) + AL () sin(Gas)} (42)

contains enough information to determine the coefficient functions a(®)(k) and a(*) (k), because region II contains a
Cauchy surface, defined by 7 = 0.
It follows that

a(s)(k) _ E °° 2 dr i r ¢(rm’ - 0)
(a(a)(k) ) i L md m]O(k m) ( (l/k) 8fm¢(rm’ m = 0) )
Foo sm ka] pitas—1 Agf)(CdS)
ST s ( (Cas/ ko) A (Cas) (43

= /+°° dc, ( M) (k; (as) 0 ) A7 (Gas)
. 0 M@ (k; {as) A%?)(Cds) ,

M (k;¢as) = % do sin[ko]o+ies (A4)

_F(1+szs)k“‘<ds 2 cosh (”Czds) ,

where

and similarly

2 e ;
M@ (k; Cgs) = 75:25 / do sin[ko]o ti¢es—1 (A5)
1]

ZZCds D(+iCas )k~ =2 sinh (WC;S) ’
where we have used the relation
/ dt t* sin(at) = a~~*T(1 + ) cosh (”’T") . (A6)
0

We now compute the coefficients of the region I expansion:

3(E0) / d¢n S‘n[c’ﬁ]{A‘“(c JeHn =t 4 AL (e (A7)

in terms of a(®)(k) and a(® (k).
The relation

AN i e, sin[Ché] [ [—iCh — 1|t=nt+1 —g=int2 b(E:t)
(Aﬁ—wch) = ), desmreind (D6 e 25 (4520)) e
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where ¢ > 0 is arbitrary but fixed, may be rewritten as

AP = o / dg sinh? £Ro(€; ) tFin+1 [( G F ) F o ]¢(c,t)

= e [( G F 1) F i ] / dg sinh? ¢SRICHEL [ 1o g sin(kt sinh€)

sinh[§] Jo kt sinh[£]
x{a(® (k) cos(kt cosh¢) + a(“)(k) sin(kt cosh§)} .

Taking into account Egs. (A3)—(A5), we may write

() — ,Fich o] 1 . 12 ,.8in[¢é]
AL (¢n) = Tt [( i F1) Ft— ] Ch / d€ sinh“ ¢ Sinh[¢]
et sin(kt sinh &) 2. —iCas—
<R [ s ek

x {(icds) cosh (Cdg”) cos[kt cosh £] AL (Cas)

+(iCas) sinh (C )sm[kt cosh£]A{¢ (cds)}

+oo

- / dCas {M (Chi Cas, 8) A (Cas) + M (Cu; Cas, 3) A@ (Cas)} -

— 00
We evaluate

M (Ch Cas, ) = 24“5

X / dk k=5~ sin[kt sinh €] cos[kt cosh¢] .
0
First carrying out the integration over k,

/ dk k=43~ sin(kt sinh €) cos(kt cosh¢) = - / dk k=45~ [sin (ktef) — sin(kte—¢)]
0 0

= -;—F(—'l:CdS) cosh [i—w(—l - 'iCdS):l [(tef)¥as — (te~¢)ias]

= F( 1CdS) sinh (CdSﬂ') tidas sin(Cdsﬁ) )

and then the integration over ¢,

[t sinlGagsinicasé] = 56— Gas) = 5(cn + as)}

one finally obtains

M) (Chi Cas, 5) = tT5 4 [(—ich F1)F tgi} pHidas—1

C )T'(—iCas) sinh (Cds ) cosh (CdTSW)

x{8(¢n — Cas) — (¢ + Cas)} -

Note that
$Fin+1 [(__,L'Ch ¥ 1) ¥ t%] $ti€as—1 — :Fi(CdS + Ch)t'*"i((dsquh)

vanishes where one of the two delta functions §({» + {4s) is nonzero; therefore, Eq. (A14) becomes

F(szS) cosh (Cdsﬂ) ¢Fica+l [(—iCh FLF tg—t] t1 /-00 d¢ sin[¢r€]
0
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M) (i Cas, 8) = C%f;r(icds)r(—icds) sinh(Casm)5(Cas F Cas)

- %Ea(cds — (#as)) - (A16)
= (£4)6(Cas — (£Cas)) -

From the well-known relation I'(z)['(1 — ) = n/sin(wz), it follows that I'(iz)I'(—iz) = 7/(z sinh[rz]), hence the last
line.
Similarly, we evaluate

M) (3 as,a) = F(ZCds)(szs) sinh [Cdsﬂ]
xtFintl [(—i(h F1)F t%] tt A = d¢ sin[(né] (A17)
x /0 ” dk kicas—1 sin[kt sinh £] sin[kt cosh¢] .
Integrating over k, we obtain

/ dk k~%as~1gin(kt sinh ) sin(kt cosh¢) =

0

/ dk k~%4s = cos(kte ™€) — cos(ktet?)]
0

Il

N = N

F(-i(‘ds) cosh (E) [(te—5)+i(ds _ (te+E)+iCds]

(=%)I'(—iCas) cosh ( Cds) ¢+i¢as sin(Casé) (A18)

so that we have

M) (Crias, ) = ZC:IC;:S (- szs)I‘(+szs)cosh( Cds) sinh (W_C;E)

x¢Filnt1 [(—z‘(h FUF t%] t+i<d5_lg{5(Ch — Cas) — 6(¢n + Cas)} (A19)

= $55 Gas — ()] = (£)6(Cas — [£G4])

Therefore, for { > 0,
A (Q) = +[+AP (+¢) + AP (+0)],
(A20)
AT () = —[+AP(=¢) + AD (=) -

‘We may summarize this result in a more compact and more intuitive way as follows. In terms of the mode functions,
as one passes from region II to region I, one has (for ( > 0)

ic— eti¢T o sinfCE] e
o 1cosh[’r] = (%) sinh[¢] A

—ilT

gtic-1. € "

cosh|[7] —0,

(A21)
e+i(‘r
cosh[7]

iy €% sin[C€] ¢
7 1cosh['r] = (=2) 1nh[£] .

—i¢—1

o — 0,

We finally point out that these matching conditions are generally applicable to curved space and nonvanishing mass.
It is the behavior of the leading singularities at the light cone that determine the matching conditions; therefore,
introducing mass and spacetime curvature gives subdominant effects.
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