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We investigate (2+1)-dimensional Hamiltonian lattice gauge theory using a class of Hamiltoiiians
having exactly known vacuum states. These theories are shown to have a wide range of possible
classical continuum limits which difFer from that of the standard Kogut-Susskind Hamiltonian.
This conclusion is at variance with some previously published results. We examine the quantum
continuum behavior of these theories by both analytic and numerical methods including plaquette
space integration and standard Monte Carlo techniques. String tension and variational estimates for
the J = 0++ glueball spectra are presented for SU(3). We find that in spite of the wide range of
classical behavior predicted, these theories correspond to only two distinct quantum systems in the
weak coupling limit. One of these quantum limits gives string tensions and glueball states which show
scaling in weak coupling which agrees with the perturbative prediction for the (2+1)-dimensional
problem.

PACS number(s): 11.15.Ha

I. INTRODUCTION

Our current understanding of the strong force gives
us a picture of fermion fields interacting via gauge G.elds
generated by an underlying local SU(3), i, symmetry.
Since the physical hadrons are observed to be color sin-
glets, this picture requires exact color confinement. We
also know that strong interaction processes involving
large momentum transfer are characterized by nearly &ee
hadronic constituents. The current belief is that non-
Abelian gauge theories such as SU(3), ~, simultaneously
possess the features of asymptotic freedom for short dis-
tance phenomena and exact color confinement. Clarifica-
tion of the low energy behavior of SU(3), ~, gauge theory
requires a nonperturbative approach and is surely one of
the most fundamental problems in the field of strong in-
teraction physics.

Truly accurate lattice calculations of glueball masses
without dynamical fermions is an essential first step to-
ward the long range goal of describing completely the
hadronic spectrum from QCD. Wilson's [1] nonpertur-
bative formulation of gauge theory on a space-time lat-
tice was developed as a means of controlling ultraviolet
divergences inherent in QCD. Truncation of the lattice
then yields a theory having a finite number of degrees of
&eedom making direct computer simulation of the sys-
tem feasible. Soon afterward, an alternative Hamilto-
nian formulation of the problem was given by Kogut and
Susskind [2]. In this canonical form of the theory, phys-
ical observables such as glueball masses and string ten-
sion appear directly as eigenvalues, and in addition, the
gluon degrees of &eedom reside on the links of a three-
dimensional space lattice instead of the four-dimensional
Euclidean space-time lattice used in Wilson's approach.

A potentially important feature of the lattice Hamilto-
nian is that it may not be unique. The common wisdom
is that it must be locally gauge invariant and possess
a classical continuum limit in accord with the contin-
uum gauge theory it approximates. Beyond these rather
general constraints, the precise form of the Hamiltonian
is not determined, and this &eedom can be used to fix
the vacuum wave function, resulting in a theory having
a Hamiltonian modified relative to the standard Kogut-
Susskind (KS) form [3,4]. This is the approach we have
adopted here. It represents a potentially important ad-
vance in the Hamiltonian formulation of lattice gauge
theory since it avoids the inherent computational com-
plexity and limited numerical accuracy of either dynami-
cally evolving the exact vacuum state using Monte Carlo
techniques [5], or introducing into the formalism an ap-
proximate variational ansatz for the vacuum [5—9]. With
an exact vacuum in hand, variational estimates of the
glueball mass spectra become rigorous upper bounds be-
cause the vacuum energy is precisely known.

In this paper, we investigate a class of (2+1)-
dimensional lattice Hamiltonians for the SU(N) gauge
theory which have an independent-plaquette vacuum
structure. Achieving a theory with this exact vacuum in-
volves adding a term LH to the KS Hamiltonian. First
we examine in detail the classical continuum limits of
these theories and describe how they difFer from the KS
form, keeping in mind that we regard the KS Hamiltonian
as a valid discrete representation of the continuum theory
based largely on this same classical correspondence. Next
we present results for the SU(3) string tension and low-
lying 0++ mass spectrum using exact integration as well
as standard Monte Carlo methods, looking for windows
of asymptotic scaling behavior as an indication that the
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modified theory has a continuum limit consistent with
the continuum gauge theory it claims to represent.

The theories we consider have been reported on previ-
ously by Shuohong, Weihong, and Jinming (SWJ) [3,4].
We reexamine this material for the following reasons.
First, we present a correct analysis of the classical con-
tinuum limits of these theories, whereas the analogous
results reported by SW3 were erroneous. Furthermore,
SW3 did not give a detailed account of how they ar-
rived at their results; here we give the details (see the
Appendix). Second is the discussion of universality in
lattice gauge theory. Because SWJ incorrectly evaluated
the classical behavior, their subsequent conclusion that
the scaling seen in their string tension and mass gap sup-
ports universality is also in error. In the context of our
correct classical limits, we describe the relationship be-
tween the classical and quantum systems in the contin-
uum limit. Finally, we think it is important to clarify the
situation with regard to the (2+1)-dimensional [(2+1)D]
problem, establishing a set of reliable results, as a prelude
to presenting our results for the more physically relevant
(3+1)D problem (results to be presented elsewhere).

Two objections to the present approach are sometimes
raised. The first asserts that the exact vacuum approach
is flawed because the vacuum expectation value of LH
does not approach zero in the continuum limit. We dis-
agree that this is necessarily a problem and point out
that if similar criteria were applied to the KS Hamilto-
nian itself, namely, that vacuum fluctuations away from
continuum gauge theory must vanish in the continuum
limit, it could also be labeled flawed and undeserving of
further study. The KS theory has only a classical cor-
respondence to continuum gauge theory. We refer the
reader to the introductory remarks of Ref. [4].

The second concern is that the exact vacuum lacks
long range magnetic correlations [7,10] and that this pre-
cludes the possibility of a proper continuum limit for the
modified theory. We think the literature contains ample
evidence to the contrary. Consider the key role played by
the independent-plaquette component of the vacuum in
the (2+1)D KS theory. Several variational calculations
have been reported which very clearly support the notion
of a vacuum dominated by long range magnetic disorder
even well into the scaling region [5—9]. While this simple
picture cannot be correct in the extreme weak coupling
limit, it does seem to capture the main features of the
true KS vacuum in regions where scaling is observed and
is thought to be everywhere exact as a long wavelength
representation [11—13]. This allows one to argue that at
least in the near-weak coupling regime, LH represents a
small adjustment of the KS dynamics which ensures an
independent-plaquette vacuum. This is exactly what we
want. Finally we note that in the (3+1)D problem, the
version we are most interested in, Bianchi identities en-
sure that the plaquettes are no longer independent and
the "problem" we have just discussed no longer exists.

To further motivate the present approach, we have also
obtained the SU(2) string tension using our formalism
which we will now briefly compare with previously pub-
lished results obtained by more conventional means. Te-
per [14,15] has recently obtained P~o = 1.336+0.01 (see

reference for notation) for SU(2) string tension withiii
the D = 3 Euclidean theory. This compares very well
with our result of 1.30 +0.1 (approximate error estimate)
for this same quantity. Using a one- and two-plaquette
varational ansatz for the KS vacuum, Arisue et al. [6]
obtained P~o = 1.61 for the independent-plaquette vac-
uum and 1.38 for the two-plaquette vacuum. These val-
ues are eyeball estimates from their Fig. 5 in the scal-
ing region near P = 1.86. Cornparision of our result
with these variational results clearly suggests that our
exact local vacuum formalism is doing more than a one-
plaquette ansatz does within the KS theory. We are very
encouraged by this result and proceed to further assess
the strengths and weaknesses of this potentially impor-
tant approach.

The paper is organized as follows. In Sec. II and the
Append. ix, we discuss the classical continuum limits of
a family of lattice Hamiltonians having exactly known
vacuum states. In Sec. III, we discusses string tension
for the present theory by examining exact results for the
plaquette expectation value. In Sec. IV, we describe the
variational approach to the 0++ glueball spectra and in
Sec. V we give the specifics of the Monte Carlo simula-
tions. An examination of our numerical results appears
in Sec. VI and finally, Sec. VII summarizes the main
points and discuss prospects for future investigation.

II. LATTICE HAMILTONIANS %'ITH EXACT
VACUUM STATES

The Kogut-Susskind [2] form of the lattice Hamiltoniaii
for SU(N) gauge theory can be derived in a straightfor-
ward way &om Wilson's lattice action using the standard
canonical prescription for obtaining a Hamiltonian &om
a Lagrangian [16]. The result is

2

HKs = EPEE + —) [2N —Tr(U„+Ut)] . (1)
p

Here, g is the lattice coupling constant, a is the lattice
spacing, / labels the links upon which gauge degrees of
freedom [SU(N) rotations] reside and serve to join neigh-
boring lattice sites, o. is a color label, E& are color-electric
Geld operators representing the variables conguate to the
gauge (link) variables, p labels the plaquettes, and finally,

Up are plaquette variables. A plaquette is defined as the
path-ordered product of link variables, U~, obtained by
traversing a closed square loop in the lattice having one
link to a side. Sums over repeated indices are assumed
throughout this paper.

Being conjugate variables, the link degrees of freedom
and the color-electric Geld operators satisfy equal time
commutation relations with respect to each other: i.e. ,

[EP, U(] = b)) U( and [EP, U~, ] = 8(( U( . (2)—tA
2

We can see that E& acts as a difFerential operator on the
variable U~ with respect to the parameters of the SU(N)
rotation. It follows then that the first term of Eq. (1)



322 GEORGE M. FRICHTER AND D. ROBSON 52

is a sum of the kinetic energies possessed by the link
variables, and the second is a sum over potential terms
which depend on the relative orientation of the gauge
degrees of freedom through couplings provided by the
plaquet tes.

In the limit of small lattice spacing, HKs agrees with
the classical Hamiltonian for the continuum SU(K) gauge
theory. In three space dimensions the result is very fa-
miliar:

HKs: — (E E +& & )&'~.'2

Agreement of the classical limit is usually regarded as
a reasonable minimum condition that a lattice approx-
imation should satisfy. However, we are ultimately in-
terested in whether the quantum dynamics generated by
various lattice approximations such as Eq. (1) can yield
the known results &om the continuum theory. Thus, we
look to the scaling behavior of the string tension and
glueball masses emerging in the weak coupling limit of
our lattice calculations for a more meaningful indication
of whether a particular lattice formulation is capable of
producing physical results or not.

To what extent then is the classical continuum limit
indicative of the quantum continuum behavior? This is
the question of universality in lattice gauge theory. We
will demonstrate that a particular class of lattice Hamil-
tonian whose members have a wide variety of possible
classical limits, correspond to quantum systems which
have only two distinct weak coupling limits. One of these
weak coupling limits appears to be the physical one and
is in agreement with perturbative predictions from the
continuum gauge theory.

The Hamiltonians we will examine have the desirable
feature that their vacuum states are exact for all values
of the lattice coupling, thereby making the calculation of
vacuum expectation values of various lattice operators,

I

which are needed for the evaluation of string tension and
variational estimates of glueball masses, a relatively easy
task. An exact vacuum can be achieved by adding a term,
LH, to the basic KS Hamiltonian,

H = HKS+ LH. (4)

H = EI E—
I

— g Tr(U„+Ut ) + AH .

We will choose LH such that the modified Hamiltonian
is gauge invariant, Hermitian, and positive definite.

We will now look for a form for LH which renders a
particular vacuum state exact. Consider a vacuum of the
form

where' IO) is the product of individual link ground states
defined by EP IO) = 0. In this paper, the form we consider
for B is

R = ) (pi A„+p2A„),

with

A„=Tr(U„+Ut) .

Here, Pi and P2 are as yet undetermined functions of the
lattice coupling. If H is positive definite and HI@p)
OI4'p), then I@p) is assured of being the vacuum. Using
this condition to determine LH, one finds

At this point, it is convenient to redefine the energy scale
by subtracting the constant, ultraviolet divergent part of
the magnetic term in Eq. (1). Also, in 2+1 dimensions,
one finds that the lattice coupling is related to the di-
mensionless gauge coupling, g, by g = ae . We then
have

1
CHIC ) = (E, E, R—) —— (E, R)(E, R)—+ ) A„!I@p).

p

Thus, H has the same classical continuum limit as the KS theory if

2 2

AH = ——, (Ei EPR) ——(EPR)(EPR) + ) A~: 0. (10)

We view this condition as a guide in searching for the-
ories which yield the same physics as the standard KS
form, keeping in mind that we are really interested in
the quantum behavior of the resulting systems. In fact,
one of the results of the present work is that theories
need not share classical limits to give identical physical
results. In the Appendix we look for Pi and P2 such that
Eq. (10) is true. We find that it cannot be satisfied for
the (2+1)D problem but that AH can at least be made
finite by imposing the constraint

pi + 42Vp2 =
2C~g4 '

I

along with the condition that P2 diverges no faster than—2a

p2& 0(0, ). (12)

These conditions eliminate divergences in LH as the lat-
tice spacing vanishes. However, as we discuss in that
section, they are not enough to fix the classical limit of
AH. One must further specify how Pi and P2 individu-
ally behave as the lattice coupling and hence the lattice
spacing are taken to zero. If we relax the latter condi-
tion and only enforce Eq. (11), then we have shown in
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the Appendix that the resulting Hamiltonians may differ
&om the KS theory by a divergent amount.

In the next section, we will numerically examine some
theories which satisfy Eqs. (11)and (12). Specifically, we
put Pi ——2&, +b and P2 —

&~ [2&, —6] and consider

the continuum limits for fixed values of L and b. Figure
1 indicates the relationships among the variables we have
introduced thus far for the case b = 0. In the Appendix,
we find the classical limit of our modified Hamiltonian to
be independent of b,

a-+0
'2 iE E B B id

4 ) 8C2 e4
d x[(V'xB ). (V'xB )]. (13)

So, the magnetic component of the resulting Hamilto-
nian is modified relative to the KS form by an amount
which depends on the relative strengths of the Pi and P2
terms through the parameter X. In particular, the criti-
cal value A' = —

3 marks a sign change in the magnetic
contribution to the Hamiltonian. We also see a contribu-
tion which is independent of the P's so long as Eq. (11)
is satisfied.

In spite of the widely diverse classical continuum be-
haviors for these theories, we will now argue (and later
demonstrate numerically) that Eq. (11) alone is sufficient
to ensure only two possible weak coupling limits for the
corresponding quantum lattice systems.

Consider the continuum limit of the vacuum state den-
sity 40 ——e . This limit will determine the continuum
behavior of observables such as the string tension as the
lattice cutoff is removed. From Eqs. (7) and (11), we
can see that as the lattice coupling is taken to zero, the
extrema of R will dominate integrals over the plaquette
degrees of freedom (stationary phase condition). In the
case of SU(3), there are a total of 10 important turn-
ing points for R which derive from the extrema of Ap.
These 10 correspond to just three distinct values for Ap,
namely, A„=6, A„=—2, and Ap: 3 Which one

P2

slope=-4N slope=-N

FIG. 1. Relationships among variables used to specify the
Hamiltonian. To simplify the picture we consider here the
case 6 = 0. The two darker grey areas indicate regions with
distinct weak coupling (( —+ oo) limits for the quantum sys-
tem. For example, A' ) — and A' ( — gives +6 and —3
resectively for the vacuum expectation of A„asthe lattice
cutofF is removed.

I

"wins" in the limit of weak coupling simply depends on
which density is greater, 42o(A„=6), ills(A„= —2), or
illo2(A& ——3). One can easily verify using Eq. (16) be-
low that the extreme values, Ap = 6 or Ap = —3, always
dominate the integration. Finally, we note that there
exists an additional extremum of R occurring whenever
A„=—Pi/2P2. This condition yields the finite result,
R =

2 g A„,which is irrelevant in the continuum limit.p
Thus we find only one phase change occuring at the

crossover point between the two dominant stationary so-
lutions,

R(A„=6) = R(A„=—3),
A+~P2 = 0,

or in terms of L and b,

4 1X+ 2bC~g 3'
where the critical value L, = —

3 is given by the limit
of weak coupling (g ~ 0) and corresponds to the sign
change in the magnetic part of the Hamiltonian seen in
Eq. (13). We see then that A; separates two distinct
regions of quantum behavior. For example, when L (
Z„the vacuum expectation value (A„)oapproaches —3
as the lattice approximation is removed whereas L ) L
gives a limit in agreement with the classical value of +6
[see Eq. (A6)]. In the next section, we present numerical
results which are in complete agreement with the above
analysis.

So, here is the situation. Each value of E gives a family
of lattice Hamiltonians, corresponding to different values
of b, which share a unique classical limit as well as a
unique limit for the associated quantum system. This
supports the concept of universality in the sense that
all Hamiltonians we have studied which share the same
classical limit also yield identical physics. However, the
mapping between classical and quantum limits is not one-
to-one. Classical theories corresponding to different val-
ues of L map onto only two distinct quantum systems in
the weak coupling limit. The quantum limit obtained in
a particular case corresponds directly to the sign of the
magnetic contribution to the Hamiltonian in the classical
limit. Thus we see that many different classical Hamil-
tonians correspond to the same quantum system. The
relative strength of the electric and magnetic parts of
the classical Hamiltonian plays no part in the continuum
limit of the quantum system; only the sign matters.

We now express Eq. (7) in terms of the parameters
L' and b to be used in the subsequent sections. Also,
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for the remainder of this paper, we will work exclusively
with SU(3) gauge theory. If we define the lattice coupling

1parameter, ( = ~, ,

8 12 ") q 12
]++27' t 1 —Z l t' 1

p

(i6)

Before proceeding with the numerical results, we
should point out differences between conclusions reached
in this section and the Appendix and those arrived at
previously by other authors [3,4] working with the same
Hamiltonians and proposed vacuum states used here.
The condition given by Eq. (11) is not the same as ei-
ther of the two conditions suggested in the work of Ref.
[3] except for the special case of P2 ——0. In this special
case their conditions on a.2 (our Pi) given by their Eqs.
(2.16) and (2.17) are inconsistent, i.e. , n2 ——(2&,)

and
o.2 ——0, respectively. We believe their constraints to be

I

erroneous except for their specia case ofB =o. A

th = . Indeed in this latter case we do re-witu o.1 ——
~2& 4~. n

produce their calculations for the mass gap (their Fig. 8)
and string tension (their Fig. 10). The correct treatment
f th lassical continuum limit is presente in the Ap-

ltspendix and is well verified numerically here in the resu s
presented in the next section.

III. SU(3) STRING TENSION

We are interested in evaluating the quantity

f A„@(dU()
(17)j4'(dU, )

Since the Jacobian Q for the change of variables (dU~ ) ~
g(dU&) is unity for the (2+1)D problem and the inte-
grand is explicitly a function of Up, the expectation value
above reduces to an integral over a single-plaquette vari-
able,

f A„exp(g [
~ (Z+ ', A„)+2b(1 —i'2Ap)]Ay)dUpp 4 12 P 12

J'exp(~~[ ~ (Z + A~) + 2b(1 ——A„)]A„)dU„p

where we have used Eq. (16). For SU(3), these two inte-
grals can be reduced to two dimensions using Up in diag-
onal form and evaluated directly for various fixed values

Figure 2 shows a portion of the surface (Az)o(Z, ()
with b = 0 and cl.early shows an approach to a dis-

as suggested in the discussion leading to Eq. (15). For
rV ) L, the theory is consistent with the classically pre-
dicted limit of +6, while for L ( L, the limit —3 is
seen. Similar results occur for nonzero values of 6 as pic-
tured in Figs. 3 and 4 where the results for 6 = +1 are

I

pictured. Again, A' = —
3 emerges as a critical point sep-

arating two domains of convergence in the limit of weak
coupling.

In 2+1 dimensions, the string tension as obtained from
the area law behavior of Wilson loops can be shown to be
a function of (Az)o alone [6,17,18]. A sufBcient condition
for this result to hold is that the vacuum factorizes into
pieces associated with each plaquette as it clearly does in
this case. One Ands that the expectation value for a loop
enclosing an area m measured in units o a is given by
the mth power of the fundamental plaquette. We then
have

Vacuum Expectation of Ap: b=p Vacuum Expectation of Ap: b=-1

6- 6-

4 4

2&
A
C?.

V p

A

V p

2+ 2+

-4o
2

04

-4)
2

0.4

-o.s -o.s

FIG. 2. Vacuum expectation value of the plaquette, (Ai, ) o,
as a function of 4' and the lattice coupling, ( with b = 0. In

k l, L' = —— marks the boundary between twoweak coup zng, = —
3 m

domains of convergence.

FIG. 3. Vacuum expectation value of the plaquette, (A„)0,
as a function of X and the lattice coupling, ( with b = —l.
In weak coupling rV = ——marks the boundary between twocoup xng,
domains of convergence.
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6-

4-

A

V p

-4o
2

Vacuum Expectation of Ap: b=1

0.4

Eq. (19) that only the theories corresponding to A' ) X,
give meaningful string tension results.

We evaluate the integrals for the string tension calcu-
lation suggested by Eq. (21) using a Monte Carlo simu-
lation on a finite 2D space lattice. In the results section,
we then compare string tension obtained in this way with
the "exact" results as a test of our implementation of the
statistical integration technique and of the quadratic fi
ting approach to the string tension. This is of interest
since in a subsequent paper, we will report results for
the (3+1)D problem where comparisons with exact re-
sults are not possible as they are here.

-O.s
IV. VARIATIONAL ESTIMATE OF SCALAR

GLUEBALL SPECTRUM

FIG. 4. Vacuum expectation value of the plaquette, (A„)p,
as a function of X and the lattice coupling, ( with b = l. In
weak coupling, A' = —— marks the boundary between two
domains of convergence.

Since the eigenvalues of H in the continuum limit cor-
respond to physical observables only when gauge invari-
ant states are used, we begin by projecting a set of gauge
invariant basis states orthogonal to the vacuum state:

2 ((A„)pla K= ——lnl
3 q 6

(19) where

The factor —appears because the area law coming from3
~ ~

spacelike Wilson loops corresponds to an octet (adgomt
representation) color source and sink rather than the
triplet (fundamental representation) q-q potential that
we really want [19].

In addition to the approach described above, we em-
ploy a more general method of extracting the area law
behavior which is also applicable to the more complex
(3+1)D problem. Here we calculate the string tension
directly from the expectation values of a sequence of in-
creasingly larger square Wilson loops. When the loops
are large (compared to a correlation length on the lat-
tice), we expect the behavior to be dominated by area
and perimeter laws:

(22)

It is easy to demonstrate that the trace of any product of
link variables constructed by traversing a closed path in
the lattice is gauge invariant and is thus a potential basis
function. As there are infinitely many candidates for P, ,
an attempt must be made to choose a small subset of
these which sufIiciently spans the space occupied by the
low-lying excitations of the theory. Obviously, the most
efficient choice would be an orthogonal set of basis states.
As there appears to be no easy way to choose such a basis
beforehand, we will work with a nonorthogonal basis and
variationally minimize the excited state energies (M) by
solving the generalized eigenvalue problem,

exp( —A —zKa I —Ca2I), (20)
2aM

det H — 0 = 0
g2

(23)

where I indicates an I x I loop and for fixed values of the
lattice coupling, A, K, and C are constants. The factor
— appears as in Eq. (19). So, a quadratic least squares3
fit to the data,

with the definition of the Hermitian matrices

~v —= , (&'l~l&~) = —([EP,&,'l [&P—, &,])
g

o,, —= W, ly, ) = (y!y,), —(&!),(&,) (24)
—in($1) —A+ Ka I + Ca2I, —

2
(21)

gives A, sa K, and 2aC for various values of (.
The asymptotic scaling behavior obtained from a per-

turbative expansion of the renormalization group func-
tion for the SU(3) theory in 2+1 dimensions is a(
constant [20]. So, we will look for constant weak cou-
pling behavior for lattice quantities such as string tension
and glueball masses which are measured in units of the
lattice spacing as an indication of consistency with the
continuum theory.

Thus, we can see just from the results in Figs. 2—4 and

J O(U)) @~~(U()(dU( )
f 4' (U )(dU, ) (25)

to evaluate. Evaluation of these matrix elements can be
simplified in the same way as described for (A~)p in the

Apart &om the factor —,, the frst matrix is just the
Hamiltonian evaluated in the chosen basis and tiie secon d
matrix gives the overlaps among the basis states and is a
measure of the nonorthogonality of the basis. Thus, for
a basis containing n states, there are n + n integrals of
the form
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previous section. However, we use the less efficient Monte
Carlo approach since we are also interested in the (3+1)D
problem where the integrals can only be evaluated sta-
tistically.

The variational basis we choose consists of all square
loops having up to seven links to a side. They can be
expressed as (o(U, )), = ~) o(U„

i=1
(28)

number of sweeps required to suFiciently approach the
desired distribution.

Monte Carlo estimates of the expectation values are
then simple ensemble averages:

1 ) ReTr(UI, ), (26)
where N = 84000 in our case, and the estimate of the
statistical error, cr&, is calculated as the variance of esti-
mates obtained from the 20 subensembles.

where the lattice has L links to a side and UIi denotes
the path-ordered product of link variables obtained by
traversing the perimeter of an I x I square loop lo-
cated at lattice position i,. In the weak coupling (con-
tinuum) limit, where the rotational symmetries of con-
tinuous space are restored, this basis produces estimates
of the J = 0++ glueball spectrum.

V. MONTE CARLO SIMULATION

Monte Carlo calculations were performed using a 21
lattice having periodic boundary conditions [18,21]. This
lattice size is large enough to give finite size effects for
the largest loops in our basis which are negligible com-
pared to the statistical fluctuations in our Monte Carlo
estimates. We determined this by repeating most of the
computations presented in this paper with smaller 14
and 7 lattices. Differences between the 21 and 14 re-
sults were well within statistical noise. It was only with
the 7 lattice that large finite size effects were seen. Thus,
we believe that the lattice used here is a very good ap-
proximation to an infinite one for the basis under consid-
eration.

We looked at theories corresponding to the four pa-
rameter values, X = 0.5, 1.0, 1.5, and 2.0 with b = 0 in
each case. For each L we calculated the matrix elements
of Eqs. (24) for 16 values of the coupling constant dis-
tributed over the range 0.30 & ( & 2.00. We employed
a multihit Metropolis algorithm to generate an ensem-
ble of quasi-independent lattice configurations, (Ui;} dis-
tributed according to the probability density:

VI. RESULTS

Vacuum expectation values of the square loops in our
variational basis as functions of the lattice coupling ( are
displayed in Fig. 5 for A' = 0.5, 1.0, 1.5, and 2.0 with
6 = 0. In the strong coupling limit, where ( -+ 0, the
link variables can be expected to uncouple and distribute
themselves uniformly over the SU(3) manifold. Our ba-
sis states, which are products of the links, must obey
this same distribution and therefore have zero trace on
average. The figure shows that the expectation values
do approach zero in this limit. In weak coupling, where

oo and the correlation length diverges (a —+ 0),
neighboring links should become increasingly correlated.
In this limit, the normalized traces of Eq. (26) approach
unity for all I. The figure shows how, as the correla-
tion length increases, so do the loop expectation values.
Our basis states are becoming more and more alike and
the off-diagonal elements of the overlap matrix continue
to grow in size as the lattice spacing shrinks. If ( were
taken large enough, numerical singularity of the overlap
matrix would eventually occur.

At a given value of the lattice coupling, Fig. 5 demon-
strates that the links become more highly correlated as
X increases. So the approach to continuum behavior of

I I

so]id

dot X=1.0

~'(«)
J' @',(Ui)(de} (27)

0.6—

During the Metropolis sweeps of the lattice, each link was
updated (hit) three times. The probability for accepting
a link update was maintained near the value 0.5 by dy-
namically adjusting the step [SU(3) rotation] size. Thus,
after each sweep, the probability for a link to remain
unchanged is only 0.5 = 0.125, increasing the indepen-
dence of subsequent lattice configurations compared to a
single hit approach. For each value of (, thermalization
of a starting lattice configuration was followed by the
generation of an ensemble of 84000 lattice configurations
partitioned into 20 subensembles of equal size. Typically,
the starting lattice was taken from a prior simulation at
a nearby value of the coupling in order to reduce the

(Ixl)
0.4—

0.2—

0-
0.2 0.4 0.6 0.8

I I I I

1.2 1,4 1.6 1.8 2

FIG. 5. Monte Carlo results for the vacuum expectation
values of the seven Wilson loop operators de6ning the varia-
tional basis. Different curve types correspond to four different
values of A'.
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VII. SUMMARY
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FIG. 10. The fourth lowest eigenstate and its ratio with
respect to string tension as a function of the lattice coupling
for X = 0.5, 1.0, 1.5, and 2.0.

smaller values of (. For ( ) 1.4, basis truncation causes
deviation from scaling since the decreasing lattice spacing
implies that progressively larger loops must be included
in the variational basis in order to accurately represent
the glueballs. The mass-to-string tension ratio curves are
similar to the mass curves except that the differences in
the scaling region among the four A' values is enhanced
by the slower convergence of the string tension for small

Results for the second lowest eigenstate are very sim-
ilar to those obtained for the mass gap except that the
scaling windows extend only to about ( = 1.0. This is
to be expected since excited states should be physically
larger than the ground state (as in other familiar bound
state problems such as the hydrogen atom) and should
then sufFer &om the limitations of the basis truncation at
smaller values of ( than in the ground state case. In fact,
for A' = 0.5, the second eigenstate fails to scale at all.
An approach to scaling can be seen for the third eigen-
state in the region 0.6 & ( & 0.8 for the three Z values
larger than 0.5. Finally, the fourth eigenstate seems to be
beyond what our limited basis can accurately represent.

Examining Figs. 9 and 10 reveals an interesting trade
ofF with regard to choosing the "best" value for the pa-
rameter L. It is due to the fact that the variational basis
is difFerent for difFerent values of X. Recall that the set
of projectors, P;, are the same in. every case but that the
basis consists of the parts which are orthogonal to the
vacuum which is a function of L. So, the question then
becomes which X will give the best basis for representing
the glueballs. Our results show that although larger L
produces better scaling in the sense that it occurs over
a larger window in (, one appears to pay for this by
getting somewhat poorer variational estimates of the ex-
cited state energies. For example, the fourth eigenstate
shows approximately a 10' difFerence between the ener-
gies coming &om the theories corresponding to X = 0.5
and A' = 2.0. The lowest eigenstate seems to be unaf-
fected by the modification of the basis for di8'erent X;
that is, the theories agree on the size of the mass gap.
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APPENDIX: CLASSICAL CONTINUUM LIMIT

In this appendix we examine the (2+1)D classical con-
tinuum limit of the vacuum-fixing term AH given in
Eq. (10):

2 2

AH = ——(Et EPR) ——(Et R)(E, R) + ) Ap,

(A1)

where the form of R is defined by Eq. (7). Using Eqs. (7),
(8), and (2) one can easily verify that

Ei R =) (P, +2P, A„)(Et-A„) (A2)

Ep Et R = ) [(pi + 2p2A„)(Et Et A„)
pal

+2p2(Et &~)(Et &~)] (A3)

The results obtained here show that there is a class
of lattice Hamiltonians for SU(3) gauge theory which, in
spite of having a range of different classical limits, have
the same scaling limit for the J = 0++ glueball masses
and string tension. This universality holds provided that
the vacuum expectation value of a plaquette also has the
correct limit, which in the present calculations occurs for
L ) ——.Calculations using plaquette space integration
[22] show that similar conclusions hold for SU(2) as well
as for SU(3) so we anticipate it is true for all N.

Due to an error, previous results in this field [3] did
not show true universality in 2+1-dimensions, nor was
it realized that there is a continuous class of Hamiltoni-
ans (i.e. , any value of Z ) —s) which yields universality.
The present work allows us to set the stage for (3+1)-
dimensional lattice calculations with the knowledge that
this class of lattice Hamiltonians in 3+1 will have the
same classical continuum limit as the Kogut-Susskind
Hamiltonian. The latter is already known to have the
desired classical .contiinium limit as @CD. Calculations
are in progress using Monte Carlo techniques in 3+1 di-
mensions for SU(3) and will be reported on later.
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where g &&
is a sum restricted to plaquettes sharing the

link /. AH can be separated into the three terms

�

+Hi —2e CN ) ~
pl + 2p2A„—C, , ~

A„.(A5)
2Civa e rp

AHi ———) ) Cm(pi + 2p2A„)A„—2 2 ) A„,
l pal p

AH2 ———) ) 2p2(EI A„)(EpA„),
l pal

The function Ap has a well-known continuum limit which
is obtained by making a Taylor series expansion of the
link functions and collecting like powers of the lattice
spacing. The result is

e
AHs ———) ) (Pi + 2Pz Ai, ) (EPAi, )

l pal
(A4)

A; 2N ——e a Gi2(x)G, 2(x) + O(a ) . (A6)

The eight gauge field tensors associated with a plaquette
in the 12 plane at lattice location z are defined as

where C~ ——4A A = 2~ in the expression for LH~
is the Casimir invariant. We will now take each of these
terms in turn and examine the behavior as a ~ 0.

Gi2(x) = B,A2 (x) —BzA, (z) —ef ~~A~i(x)A~2(x) .

(A7)

1. AH~

Since Tr Up is invariant under cyclic permutations
of the four link variables from which Up is con-
structed, the double sum over any function of this trace,
P& P && f(TrU&), is just four times the sum over pla-
quettes, 4P f(TrU&) AHi .of Eqs. (A4) can then be
expressed as a simple plaquette sum:

Here, A, (x) denote the two spatial components of the
N —1 gauge potentials, and f ~~ are structure constants
defined via commutation relations among the SU(N)
group generators:

(A A

2' 2) 2
(A8)

Using Eq. (A6) together with g a2 ~ J' d2x, the leading
terms in LH~ are

2e2C

, , —&2e'a'G12(*)G12(*) + O(a')
I2C~a c

(A9)

1
Pi+4NP2 =

2C~a2e4 ' (A10)

All terms greater than O(a ) can be eliminated by choos-
ing the parameters Pi aiid P2 such that

d'&Gi2(*) Gi. (&) + O(a')
2

= (1 —Z) f d'z —8 . B
2

(A12)

which gives

AHi ——P2
~

4NC~a e d 2:Gi2(z)Gi2(z) + O(a ) ~

(A11)

Notice first the above constraint does not determine the
a dependence of Pi and P2. The only "additional" re-
striction on the form of the P's is that the left-hand side
of Eq. (A10) should remain always positive so that the
lattice coupling is real. We see then that the classical
limit of our Hamiltonian is not fixed by Eq. (A10) alone;
one must further specify how Pi and P2 individually de-
pend on a. The possibilities fall into three catagories.
First if P2 ( O(a ), then AHi vanishes. This can be
realized by choosing Pz ——const, for example. Second, in
the event that P2 ) O(a ), b,Hi is divergent for small
a. Finally, when P2 is exactly of order a, b,Hi has a
finite nonzero limit which depends on the precise form
chosen. As an example we may put Pi ——2&, , and

P2 = s~& ... in which case the classical limit for AHi
becomes

2. WHg

Since Tr(EPA„)g Tr(EPA„)in general for l g l' C p,
we can not directly make the replacement P& P„&&-+

4g as we did in the analysis of AHi. Instead, we let
p

Ug, U2, U3, and U4 be the four links which define a par-
ticular plaquette and define

Upg ——Ug U2U3 U4,t

Up2 ——U2U3 U4 Ug

Up3 —U3U2 U~ U4,|
Up4 ——U4U, U, U, . (A13)

We write the color-magnetic Geld as a vector to make
clear the connection with the more familiar case of three
space dimensions. In (2+1)D, B has only one compo-
nent. We see that X g 1 implies a modification of the
magnetic part of the Hamiltonian relative to the standard
Kogut-Susskind form. Later in this section, we discuss
the implications of this result.
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Now the double sum in AHz from Eqs. (A4) can be ex-
pressed as an unrestricted sum over plaquettes:

involve G2q ———Gq2. In the final step above we used the
Anormalization of the generators, Tr( 2 2 ) =

2 . The
leading term of Eq. (A14) can now be written

(A14)

QH2 —e p2 ) ) (+jea Gi2)
p i=1

= —4e'a'P, d'xGi2(x) G„(x), (A16)

where we have also used the definition of A„and Eqs. (2).
When a is small the trace appearing in Eq. (A14) can be
expressed

which, compared to Eq. (All), is proportional to the
limit for LH~,

Tr (U„,—Ut,.) I

= Tr +2iea G, 2 + O(as)
)

1
LHq as a —+0,

NCN
1 AH—i —SU(3)
4

(A17)

(~.a-')
= +2iea Gi2Tr + O(a )

( 2 2

= +iea G, 2 + O(a ), (A15)

where the + sign depends on the sense of rotation in the
definition of U„;.In Eqs. (A13), U~i and U„2involve Gi2
whereas Up3 and Up4 circulate in the opposite sense and

I

Finally, consider LH3. In order to decide its limit, let
p' and p" be the two plaquettes which share a common
link l. Furthermore, we define Up and Up such that jt,

'

is the first link occuring in the product of four. That is,
U„=U~U U UI, , and similarly for Up . The expression
for AHs appearing in Eqs. (A4) then becomes

e (A (A= —) (4+2@2&~)T
I

(&~ —U") I+(&i+2&~A )T
I

(U~" —U' ) Ig2 " " j (A18)

Using the result of Eq. (A15) we have

Tr (Up —Ut, ) I

= iea Gi2(x') + O(a )P ) (A19)

Tr
I

(U„—Ut„)
I
= iea G2i(x") + O(a ) .

) (A20)

The relative ordering of the tensor indices in the two expressions above (12 vs 21) occurs because p' and p" are defined
such that they have opposite rotational sense. AH3 can now be written as

e4a4
):((&i+ 4~&2) [G12(x') + G;;(x")]+ O(a'))'

l

).([G (*)+G '( )]+O( )) (A21)

where in the second step we have used Eq. (A10). In
the continuum limit, x" = x'+ dx and the two field ten-
sors appearing in the curly brackets must have a relative
minus sign between them &om antisymmetry. It follows
then that this sum is just the spatial derivative with the
appropriate power of a. Futhermore, the sum over lattice
links can be replaced by an area integral together with
a sum over the two spatial coordinates. That is, we can
use g& a -+ jd2x P, The result is

d'x([~'GV2(x)]'+ P.Gi2(x)]'78CN2e4

d x[(V' x B ) . (|7 x R )] . (A22)
N

As in the case of LHq, we have written the vector form
for B even though in the current formulation it has
only one component. The most significant feature of this
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result is that for any choice of the P's subject to the
constraint given in Eq. (A10), AIIs makes the same con-
tribution to the Hamiltonian.

4. Result

P2 & O(a ) must be satisfied. An interesting choice
which obeys these conditions was given in terms of the
parameter rV. With this choice we find that the magnetic
term is modified relative to the Kogut-Susskind form in
a way which depends on X:

In 2+1 dimensions, the modified Hamiltonian under
consideration has a classical continuum limit which dif-
fers &om the standard Kogut-Susskind limit in the fol-
lowing way. Recall that the modified Hamiltonian is
gi~~~ by ~ = ~KS —&~~ —&~2 —&~3 ~

the preceeding analysis of these three terms, the classi-
cal limit for this Hamiltonian is dependent on the ex-
act form chosen for the P's. If we decide that we want
a finite limit, then Eq. (A10) along with the condition

(A23)

where Q is shorthand for the 2'-independent result for
EH3 given by Eq. (A22) . We see that the critical value
rV = —

3 marks the boundary between two regions where
the magnetic contributions come in with opposite signs.
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