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Geometry of chaos in the two-center problem in general relativity
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The now-famous Majumdar-Papapetrou exact solution of the Einstein-Maxwell equations de-
scribes, in general, N static, maximally charged black holes balanced under mutual gravitational
and electrostatic interaction. When N = 2, this solution de6nes the two-black-hole spacetime,
and the relativistic two-center problem is the problem of geodesic motion on this static background.
Contopoulos and a number of other workers have recently discovered through numerical experiments
that, in contrast with the Newtonian two-center problem, where the dynamics is completely inte-
grable, relativistic null-geodesic motion on the two-black-hole spacetime exhibits chaotic behavior.
Here I identify the geometric sources of this chaotic dynamics by Srst reducing the problem to that
of geodesic motion on a negatively curved (Riemannian) surface.

PACS number(s): 95.10.Fh, 04.20.Jb, 04.40.Nr

I. MAJUMDAR-PAPAPETROU SOLUTION

The general Reissner-Nordstrom metric
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for a charged black hole of mass M and charge Q takes a
particularly simple form when the black hole is extremal
with IQI = M:
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In the isatropic coordinates r—:r —M, Eq. (1) can be
written suggestively as

(2)

where

&S)q= dr +r (dez+sin edgP)

denotes the Bat Euclidean metric. The metric function
1 + M/r appearing in Eq. (2) has the form of a har-
monic function in Euclidean space, and, miraculously,
when 1+M/r is replaced with a inore general harmonic
function the metric Eq. (2) still remains a solution to the
Einstein-Maxwell equations [1,2]. More precisely, as first
discovered by Majumdar and Papapetrou, the metric

9= —U dt +U (d2: +dy +dz)
and the electromagnetic potential A. given by

A=+ —dt
1
U (4)

are a solution to the source-kee Einstein-Maxwell equa-
tions as long as the function U = U(x, y, z) satisfies
I aplace's equation in Bat space:
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Note that this solution is static (8/Bt is a timelike Killing
vector), but in general has no other symmetries.

It was first realized by Hartle and Hawking [3] that,
with the choice

N

U(r) = 1+ )
i=i

for the potential U(x, y, z), the Majumdar-Papapetrou
solution represents N extremal black holes, where the
ith black hole, stationary at the fixed position r = r;,
has mass M, and charge IQ, I

= M~. All charges Q, have
the same sign given by the sign chosen in Eq. (4), which
ensures that the holes remain in equilibrium, balanced
under mutual gravitational attraction and electrostatic
repulsion. The apparent singularity in U(2;, y, z) [and
therefore in the metric Eq. (3)] at the positions r" = r; is
the usual coordinate singularity associated with static co-
ordinates at an event horizon. Indeed, the surface area of
a small coordinate sphere (t = canst, Ir r";

I
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r = r; approaches the surface area of the corresponding
horizon:
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and the metric can be extended analytically into the in-
teriors of the black holes (into "negative ~r —r;~") using
Kruskal-like coordinates. As in the single-black-hole case
(the extremal Reissner-Nordstrom solution), the interiors
of the black holes house true physical singularities where
spacetime curvature blows up.

II. CHAOS IN THE TWO-BLACK-HOLE
SPACETIME

When N = 2, the spacetime given by Eqs. (6) and
(3) represents a relativistic analogue to the two-center
configuration in Newtonian gravity, in which the Newto-
nian gravitational Geld is generated by two point masses
at fixed positions (i.e. , the mutual gravitational interac-
tion of the masses is ignored). Numerical investigations
of null geodesic motion on this two-black-hole spacetime
by Contopoulos and co-workers [4] have revealed that
the geodesics exhibit chaotic behavior in the vicinity of
the two centers. More specifically, Contopoulos and co-
workers study null geodesics whose spatial motion is con-
fined to a two-dimensional symmetry plane; assuming the
black holes are positioned along the z axis, this plane is
typically the surface (x = 0} (see Fig. 1). Numerical in-
tegration of the null geodesic equations then reveals that
for geodesics that approach the black holes &om infinity,
it is essentially impossible to predict whether the orbit
will plunge into the first hole or the second one, or es-
cape back out to infinity; in other words the qualitative
behavior of the orbits near the black holes exhibits ef-
fectively stochastic features. This places the relativistic
two-center motion in surprising contrast with the corre-
sponding Newtonian problem (i.e. , the motion of a mas-
sive test body in the gravitational field of two fixed cen-
ters) where the dynamics is known to be completely in-
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FIG. 1. Contopou1os's (and also this paper's) analysis of
the two-black-hole null-geodesic Qow is con6ned to those null
geodesics which lie in a two-dimensional surface of symmetry
such as the yz plane {x= Oj.

tegrable (a classical result that goes back to the work of
Jacobi and I iouville).

In this paper I will argue that the chaotic behavior of
the null geodesic flow has its roots in the spatial geometry
of the two-black-hole spacetime, and I will do so by first
showing that the dynamics of this flow can be reduced
to that of ordinary geodesics on a negatively curved Rie-
mannian surface.

III. GEOMETRIC ANALYSIS OF THE
TWO-BLACK-HOLE NULL GEODESIC FLOW

I will rely on the well-known "Fermat's principle" in
its relativistic formulation [5]. Fermat's principle states
that if M = R x Z is a static spacetime with the metric

g = gpp dt + h

where Z is a three-manifold, and gpp & 0 is a smooth
function and & )h is a Riemannian metric on E (both
independent of t), then the null geodesics of (M, g) when
projected onto Z are precisely the Riemannian geodesics
of the three-geometry

—goo
= 02(dT' ~ dy'+ dz'),

where

O=U = ~1+)- fr r,i)—(10)

In the two-black-hole spacetime, I can assume without
loss of generality that the holes are positioned along the z
axis at ri ——(0, 0, 1) and rz ——(0, 0, —1) (see Fig. 1). It is
obvious that any two-plane containing the symmetry (z)
axis is a totally geodesic submanifold of Z. As I will focus
on null geodesics which lie (spatially) in such a symmetry
plane, which I can assume to be the yz plane (x = 0}
as in Fig. 1, by Fermat s principle the null geodesic flow
I need to study is equivalent to the geodesic flow on the
two-dimensional Riemannian surface (8, h), where 8 =
R2 $ ((0, 1), (0, —1)},and

E
' —goo)

'

and, furthermore, the aKne parameter (i.e. , the arc
length) along the projected geodesics in [Z, ~ )h/( —goo)]
is precisely the static time coordinate t measured along
the null geodesics in (M, g). In words that would have
sounded familiar to Fermat, the principle states that light
follows the path of shortest (or extremal) travel time be-
tween two given points in three-space.

In the multiple-black-hole solution given by Eqs. (3)
and (6), Fermat's principle shows that null geodesic flow
in the asymptotically flat exterior region (outside the
event horizons of the black holes) is equivalent to the
Riemannian geodesic flow of the three-geometry (Z, h),
with the three-manifold Z given by Z = R g (N points},
and with the Riemannian metric 6 on Z given by
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h= 0 (dy +dz ),

Iy'+( -1)' dy'+( +1)'~

Note that the geodesic flow of (8, h) corresponds, in the
original spacetime, only to the null geodesic flow in the
exterior of the black holes; null geodesic motion in the
interior regions is not covered by this correspondence.
This point will become clearer after a closer look at the
topology and large-scale geometry of (8, h).

A. Global geometry of the Riemannian surface
(B,h)

Look closely at the behavior of the metric h near the
centers, e.g. , near r = rq ——(0, 1). Introducing Euclidean
polar coordinates (R, 8) centered around rq ——(0, 1) (i.e. ,R:—~r —rq~), I can write the conformal factor 0 in the
vicinity of rq as

~Z

l

I
I

FIG. 2. The geometry of the Riemannian manifold (8, h)
in the large. Note that this is not the actual geometry of the
surface (z = 0) in the physical metric g on the two-black-hole
spacetime, but, rather, it is the physical geometry with an ex-
tra conformal factor introduced in accordance with Fermat's
principle. In particular, only the asymptotic region r" —+ oo
corresponds to the usual asymptotic region in the physical
spacetime; the asymptotic regions r ~ r, exist because of the
singular behavior of the static time coordinate t at the event
horizons of the black holes. Accordingly, a null geodesic in
the two-black-hole spacetime falls into the ith black hole if
and only if the corresponding Riemannian geodesic in (8, h)
escapes into the asymptotic region r —+ r, .

and similarly I can write

h = ~1+ + +O(R)
~

(dR +R de). (14)
2 R

Now introduce a new radial coordinate p—:Mq /R.2

Then Eq. (14) becomes
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A similar analysis can be carried out in the vicinity of the
other center r = r2 with the same conclusion, namely,
that what looks like a singularity at r = rq (and simi-
larly near the other center) is in fact an entire asymptot-
ically flat Euclidean region squeezed into a small neigh-
borhood of the "point" rz —(0, 1) in the coordinate sys-
tem (y, z). The global geometry of the surface (8, h) is
then as depicted in Fig. 2, with three asymptotically flat
regions, one at r ~ oo, and two others at each of the
centers r + rq and r + r2. As a corollary, the sur-
face (8, h) is geodesically complete. This is expected,
since by Fermat's principle the affine parameter (i.e. , arc
length) along the geodesics of (8, h) is the static time co-
ordinate t measured along the null geodesics of the two-
black-hole spacetime, and static time diverges to infinity
at the event horizons of the black holes. In other words,
a null geodesic in the two-black-hole spacetime falls into
the ith black hole if and only if the corresponding Rie-
mannian geodesic in (8, h) escapes into the asymptotic
region r + r",.

B. Local geometry of the Riemannian surface (8, h)

The intrinsic geometry of a two-dimensional Rieman-
nian manifold in the Smal/ is determined completely by
the Gaussian curvature K (which is one-half the scalar
curvature R) . With the metric written in the conformally
flat form Eq. (11), K is given by

K = — b, (ln 0)
1=„,n' (n-'), „„+(n-'~... -n„'-n,*),

(17)
where A denotes the scalar Laplacian in the flat metric
dy + dz . It is straightforward to compute K for the
surface (8, h) by simply substituting 0 from Eq. (12) in
Eq. (17). The result is a complicated expression, not par-
ticularly illuminating in its analytic form (which there-
fore I will not bother to give). A plot of the curvature
K as a function of the coordinates y, z is given in Fig. 3
(where I chose unit masses Mq ——M2 ——1). It is apparent
that K is strictly negative throughout 8 (and this is true
for all masses Mq, M2 ) 0). Both far away from and
near the centers (where geometry is asymptotically flat)
K approaches zero from below as expected (see Fig. 2).

IV. CAN CHAOS IN THE TWO-BLACK-HOLE
SPACETIME BE EXPLAINED SOLELY BY THE
NEGATIVELY CURVED GEOMETRY OF (S,h)?

In a Riemannian manifold of arbitrary dimension n,
negative sectional curvature causes neighboring geodesics
to diverge exponentially [6,7]. Recall the derivation of
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is bounded from above by a negative number, Eqs. (20)
and (21) imply that p (as an orbit in the geodesic flow)
has positive Iiapunov exponents. Obviously, exponen-
tial instability of orbits and positive I iapunov exponents
are sufBcient conditions for the presence of "sensitive de-
pendence on initial conditions, " the key ingredient of
chaos. But are these criteria sufhcient to demonstrate
that chaotic behavior is indeed present?

To investigate this question, let me briefi. y consider
two examples from Newtonian gravitation. Recall that
in classical mechanics, for a Hamiltonian system with I a-
grangian function

L = —) a~sq~q —V(q'),

FIG. 3. The Gaussian curvature K of the Riemannian sur-
face (8, h) as a function of the coordinates (y, z). The masses
are chosen to be Mz ——M2 ——1 for this plot, but the qualita-
tive features of K are identical for all positive masses. In par-
ticular, K is strictly negative throughout 8, and approaches
zero in all three asymptotic regions, i.e., both as r ~ oo and
asr~r;, i=1, 2.

this well-known result: If Z denotes a vector field along
the geodesic p, I ie transported by a congruence of neigh-
boring geodesics, then

V .V'~. Z = B~.zp, ,

where Bgy denotes the curvature operator %~V'y-
&y&~ —&p ~j. Along 7, an infinitesimal neighboring
geodesic can then be defined abstractly as any solution of
the "Jacobi equation, " a difFerential equation along p de-
rived from Eq. (18). In a parallel-propagated basis (Ei,)
along p such that E = p„Jacobi's equation is

g~ = E —V(q') ) a~s dq' (3 dq" (22)

(Hamilton- Jacobi-Maupertius-. . principle; see [6]). Ac-
cordingly, in mathematical analogy with relativistic grav-
itation, so also in Newtonian gravity test-particle dynam-
ics has a geometric description in terms of geodesic mo-
tion. In particular, motion in the Kepler and Newtonian
two-center problems can both be described in terms of
geodesics on a two-dimensional Riemannian surface, and
this description can be put in exactly the same form as in
Eqs. (11) and (12), except, of course, in the Kepler case
the conformal factor 0 takes the form

0= /E+ —
/") (23)

and in the Newtonian two-center problem it has the form

motion on a constant-energy (—:constant-Hamiltonian)
surface {II= E) is equivalent to geodesic motion on
a Riemannian manifold, namely, on the submanifold
(V(q') ( E) of configuration space equipped with the
Riemannian metric

= —B „~Zds

1/2

lr —r2I)
(24)

Z
8s (2o)

Assuming K ( 0, and assuming the aKne parameter s is
small compared to ~K/(dK/ds) ~, o~, Eq. (20) has generic
solutions of the form

Z(s) A(s)exp
~ f g ICds' ~—

S

+B(s)exp
~

— Q—K ds'
~

(21)

where A(s) and H(s) are slowly varying amplitudes. It
is clear that negative Gaussian curvature K results in
an exponentially diverging Z(s) in general. When K(s)

where s is the azine parameter. For a two-dimensional
Riemannian manifold with Gaussian (= sectional) curva-
ture K = Rq2q2, and with Z = Z, Eq. (19) becomes

Plots of the Gaussian curvature of the metric g@
[Eq. (22)] for the (planar) Kepler and Newtonian two-
center problems are shown in Fig. 4. In both plots, E is
chosen to be E = —0.1 (E is chosen negative so that the
geodesic flow describes the motion of bound orbits), and
the masses are M = Mi ——M2 ——1. There are no sur-
prises: As both systems are completely integrable with
stable closed orbits, one would not expect negative curva-
ture to be the dominant geometric feature. Indeed, in the
Kepler case curvature is strictly positive, and in the two-
center case it is mostly positive, with a small neighbor-
hood of negative curvature in the vicinity of the centers;
this small region of negative K corresponds to directional
instabilities the orbits have while passing in between the
two centers of attraction. [Note that in contrast with the
black-hole surface, the center(s) in the Newtonian case
are genuine singularities of the metric g~, however, these
are not curvature singularities (K remains bounded as
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FIG. 4. No surprises in Newtonian grav-
ity for the connection between negative cur-
vature and chaotic geodesic motion: With
completely integrable geodesic Hows, Gaus-
sian curvature of the metric ga [Eq. (22}] is
positive for both the Kepler problem (plot on
the left, strictly positive K) and the Newto-
nian two-center problem (plot on the right,
K positive except in a small neighborhood of
the centers).

r -+ r;), but rather conical singularities with a mass-
independent angle deficit vr. ]

So far the association between negative Gaussian cur-
vature on the one hand and chaotic behavior of the
geodesic flow on the other appears to hold within the
context of the three examples I discussed. Consider, how-
ever, one more example, this time the geodesic flow on the
Riemannian surface 8 with only one extremal (Reissner-
Nordstrom) black hole, in other words with metric h
given by Eq. (11) where 0 = (1+M/r) The G.aussian
curvature K of the resulting geometry is plotted in Fig. 5
(with M = 1). As in the two-black-hole case (Fig. 3),
K is strictly negative everywhere. But the geodesic flow
on this surface is a completely integrable system (angu-
lar momentum provides the second integral of motion).
Clearly, then, negative curvature (sensitive dependence
on initial conditions) is not sufficient for chaos: In fact,
the unique closed (unstable) geodesic in the geometry of
Fig. 5 has strictly positive Liapunov exponents as an orbit

in the flow, and so even the presence of positive Liapunov
exponents does not always imply chaotic behavior.

As others have done before, I would like to argue in
this paper against the widespread practice in the physics
literature of identifying chaos with merely the presence
of positive Liapunov exponents. This is especially im-
portant in relativity (where there is no canonical choice
for dynamical time) since whether or not a Liapunov
exponent is positive depends crucially on the nature of
the time parameter used in defining the exponent. In
the next section I will describe a precise formulation for
"chaos" (due to Willard [8]) which I believe is particu-
larly useful in relativity since it does not depend sensi-
tively on the choice of time. In the section after that
(Sec. VI), I will demonstrate that null geodesic fiow in
the two-black-hole spacetime is chaotic according to this
formulation.

V. PRECISE FORMULATION OF CHAOS

—0. 0

-0

FIG. 5. The Riemannian surface 8 with the metric corre-
sponding to the null geodesic Sow of a single extremal Reiss-
ner-Nordstrom black hole has strictly negative Gaussian cur-
vature, and the Liapunov exponent of its (unique) closed
geodesic is positive. But there is no trace of chaos here:
With angular momentum as the second integral of motion,
the geodesic Sow of this surface is a completely integrable
Hamiltonian system.

Central to our intuitive understanding of chaotic be-
havior is the notion of "sensitive dependence on initial
conditions": Long-time prediction of motion in the phase
space of a chaotic system is impossible since small initial
perturbations of the orbits grow arbitrarily large as the
system evolves in time. This, of course, is a vague idea
in need of a precise mathematical formulation, and there
exist various such formulations, the concept of Liapunov
exponents being one of them. However, the exact con-
tent of our intuitive notion of sensitive dependence is
not fully captured by the more precise concept of pos-
itive Liapunov exponents. For example, the phase flow
(x = x, x E IR ) has positive Liapunov exponents along
all its orbits, but, clearly, this is not a chaotic system,
and more complicated "counterexamples" with positive
exponents can be found in which to discern that motion
is nonchaotic would not be so easy. In order to conclude,
on the basis of the presence of positive Liapunov expo-
nents, that chaos is present, it is apparently necessary
to make sure that the divergence of nearby orbits does
not occur simply because these orbits escape to "infin-
ity" under time evolution. What is needed to address
this point is a mathematical formulation slightly more
sophisticated than the concept of Liapunov exponents.

Here, then, is my favorite "definition" of chaos,
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adopted &om [8]: Restrict attention, for definiteness, to
phase spaces M with metrizable topology. A dynamical
system (M, pi) is chaotic if it contains a "chaotic invari-
ant subset, " that is, a subset A C M such that (Cl) A is
compact, and invariant under pi, i.e. , &pi(A) C A 'A 6 R,
(C2) A has sensitive dependence on initial conditions,
and (C3) A is topologically transitive.

The precise meaning of condition (C2) (sensitive de-
pendence on initial conditions) is the following: Fix a
distance function p on W compatible with M's topol-
ogy. Condition (C2) holds if there exists a fixed 8 & 0
such that for all x p A and for every neighborhood U & A
of x open in A, a point y E U and a t ) 0 can be found
such that

p[«(*) ~i(~)]»

In other words, given any point x p A, no matter how
small a neighborhood U of x I choose I can always find
points y 9 U A A whose orbits eventually diverge away
&om that of x under the flow pq. Since A is compact,
this notion of sensitive dependence on initial conditions
is independent of the choice of p. Topological transitivity
of A [condition (C3)] means the following: For every open
U, V C A there exists a t C R such that pq(U) 9 V g g.

Because the problem I study in this paper involves
chaos "localized" in a bounded region of an asymptot-
ically flat geometry (i.e. , in the vicinity of the black
holes), I will need to use a slightly generalized version of
the above definition; my generalization is designed to be
adapted to the essentially time-asymmetric nature of the
problem (i.e., null geodesics approaching the black-hole
region &om in6nity and plunging into the holes after ex-
hibiting chaotic behavior). Namely, call a subset A C M
a "chaotic future-invariant set" if (FCl) A is compact,
and future invariant under yi, i.e. , rpt, (A) c A Vt ) 0,
(FC2) A has sensitive dependence on initial conditions
(defined as before), and (FC3) A is topologically future
transitive.

Note that topological transitivity of A as de6ned above
[condition (C3)] ensures essentially that the flow is topo-
logically "mixing"; this condition is designed to rule out
situations in which A can be decomposed into multiple
compact invariant sets. Clearly, topological transitivity
would be an inappropriately strong condition to impose
on a subset which is only future invariant. Therefore, I
modify this condition so as to demand that the flow on
A is mixing only in the future direction; more precisely,
I define A to be topologically future transitive if there
exists a time T ) 0 such that for every pair of open sub-
sets U, V C pz (A) times t ) 0 and s & 0 can be found
such that pi(U) A p, (V) P g. Clearly, a chaotic invari-
ant set is also trivially a chaotic future-invariant set. The
definition of a chaotic system can now be generalized to
include any dynamical system which contains a chaotic
future-invariant subset.

Notice that this de6nition for chaos makes no reference
to Liapunov exponents; in fact, the rate of divergence of
nearby orbits is not constrained in any way by the pre-
cise notion of sensitive dependence on initial conditions.
This fact makes the de6nition especially interesting for

applications in general relativity: Sensitive dependence
as de6ned above holds for one choice of time function if
and only if it holds for any other, as long as two choices
of time are always related by a monotone-increasing dif-
feomorphism &om the real axis R onto R.

Of course, in general a mathematical definition is use-
ful only if it is the subject of theorems, and there do ex-
ist theorems which demonstrate that many of the usual
properties of chaotic systems can be derived &om the
above conditions (Cl)—(C3) [or (FCl)—(FC3)]; I will not
discuss these results here, but direct the reader to the lit-
erature, especially as listed in [8]. Instead I will turn now
to the demonstration that the geodesic flow on the two-
surface (8, h) (which, as I discussed in Sec. III, is equiva-
lent to the null geodesic flow of the two-black-hole space-
time) is chaotic according to the formulation of chaos I
just described. It is important to note here that other
studies (see [9,10] and references therein) have carried
out this demonstration by searching for various more di-
rect signatures of chaos in the two-black-hole geodesic
How; for instance, the existence of hyperbolic cycles and
transverse homoclinic orbits in this How is discussed in
[9], and the presence of positive Liapunov exponents is
explored in [10].

VI. "PROOF" OF CHAOS IN THE
T%'0-BLACK-HOLE NULL GEODESIC PLOW

The geodesic flow on the Riemannian surface (8, k)
can be described as a Hamiltonian dynamical system,
with phase space M = the unit cotangent bundle of 8,
i.e.,

m = r, *8 —= {(x,p) cv."8 [[)p~[ =n'p. p, =1),

and with the Hamiltonian function H(x, p) = zh ~p pi, .
I will denote the geodesic flow on T& 8 by the usual sym-
bol pi. I showed in Sec. III that (8, h) has strictly neg-
ative Gaussian curvature, and. recalled in Sec. IV that
negative curvature causes exponential divergence of the
orbits in the geodesic flow. Now, if the surface 8 were
compact, I could then simply de6ne my invariant set A
to be the entire phase space M = T&8: So chosen,
A is compact when 8 is, and because of the negatively
curved geometry of (8, h), A has a sensitive dependence
on initial conditions, i.e. , satisfies condition (C2) as for-
mulated in the previous section. It is not diFicult to show
also that A is topologically transitive under the geodesic
flow; therefore, if 8 were compact, all conditions (Cl)—
(C3) for a chaotic invariant subset would be satisfied by
this simple choice of A; i.e., the entire phase space would
be a chaotic invariant set. Indeed, it is well known that
geodesic Rows of compact manifolds with negative sec-
tional curvature are chaotic. (These flows in fact satisfy
every criteria ever invented for chaos: They have pos-
itive Liapunov exponents, positive entropy, are mixing,
are K flows, . . .. See [7] for an extensive but readable
analysis of this classical problem. ) The noncompactness
of the two-black-hole Riemannian surface (8, h) is then
the main diFiculty I need to overcome in demonstrating
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I'; = (m & T;8
)
r [ye(m)] ; r; as t m oo}, (26)

and I' is the set of all points which escape to the asymp-
totically Hat region r = oc as t m oo, i.e.,

the existence of a chaotic (future-)invariant subset in the
(noncompact) phase space Ti 8.

I will now construct a closed subset A C T&8 which
I claim is a chaotic future invariant set for the geodesic
Qow. That A is compact and future invariant will be ev-
ident from its construction; however, I will not be able
to prove that A satisfies conditions (FC2) and (FC3).
To prove these conditions, it would be sufhcient to com-
bine the negatively curved geometry of (8, Ix) with the
intricate topological structure that A appears to have;
however, I cannot prove that A indeed has this intricate
structure. As is usually the case with studies of chaotic
behavior, the evidence for this structure is exclusively nu-
merical. Some of this numerical evidence I will present
here, and more of it can be found in the literature, e.g. ,
in [4] and [10].

First define subsets I'q, I'2, and I' of the phase space
T&*8 as follows: I', is the set of all points in T&*8 which
fall into the ith black hole as t —+ oo, i.e.,

FIG. 6. Construction of the compact set D & 8 used in
defining the compact future-invariant subset A & Ti*8 [see
Eq. (29)]. The circles C and. C; are chosen large enough so that
any geodesic crossing them in the outward direction never
comes back (it escapes to the corresponding asymptotic infin-
ity). The subset D is the compact connected region bounded
by the three circles.

the unique connected component of 8 $ (C U Ci U C2) such
that OD = C U Cq U C2. Then put

A = 2 nTD.
So constructed, A is clearly both compact (a closed sub-
set of a compact set) and future invariant. I claim thatI':—(m c T,'8

~

r"
[&pt (m)] oo as tM oo}'

Since these subsets consist of points (x,p) such that the
geodesic starting at x with initial tangent vector p even-
tually escapes to one of the three asymptotically Hat re-
gioxxs of (8, h) (see Fig. 2), it is clear that both the I'; and
I' are open subsets in Ti*8. Also (and this will be impor-
tant below), it is clear that I', I'i, and I'2 are mutually
disjoint subsets, i.e. , —4,

y 0

I' n I'; = I', n I'2 ——I .

Now define 4 as the closed subset

4 = complement (I' U I'i U I'2) = (I' U I'i U I'2); (28)

L is the set of all points which do not escape to any
asymptotic region as t ~ oo, i.e., the set of all future-
imprisoned (e.g. , periodic or quasiperiodic) orbits of the
geodesic flow. This is obviously a future-invariant sub-
set, but it is not necessarily compact (unless all impris-
oned orbits are closed geodesics, which is not the case
as numerical studies show). To cut A down to a com-
pact size, introduce a compact subset D C 8 as follows
(see Fig. 6): Draw a circle C in the asymptotically fiat
region r ~ oo which encloses both black holes, and draw
circles C~ and C2 in. the asymptotic regions r —+ r~ and
r ~ r~ which enclose the black holes 1 and 2, respec-
tively. Choose these circles large enough so that if n,
denotes the outward normal to C and C;, a geodesic p
which crosses any one of the circles in the outward direc-
tion [i.e., with Ix(p„n)& 0] escapes to the corresponding
infinity (and thus never crosses C or C; again) . By asymp-
totic Batness, it is clear that such circles C and C; can be
found (see Fig. 6). Now let D c 8 be the compact region.
bounded by the circles, in other words, define D to be

--2 —4 —2

, y 0

—4 —2

FIG. 7. Closed {or almost closed) orbits in the geodesic
How on (8, h). The top four plots are drawn with unit masses
Mq ——Mq ——1, and the two plots at the bottom of the fig-
ure are drawn with masses Mq ——2 and Mq ——1. As the
orbits get more coxnplicated (and therefore their periods be-
come longer), numerical instabilities set in as soon as or before
the full shape of the orbit becomes apparent (as happens in
the middle two plots). Recall that all these orbits are unstable
because of the negatively curved geometry of (8, h).
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this A C T~ 8 is a chaotic future-invariant subset for the
geodesic Bow on 7"&*8.

As I mentioned above, I am not able to prove that A
satisfies conditions (FC2) and (FC3) of Sec. V. Neverthe-
less, a great deal of insight into the structure of A can be
obtained by numerically integrating the geodesic equa-
tions on (8, h). Extensive numerical studies of this kind
have been reported in [4] and [10]. Although I will base
the following observations on my own minimal investiga-
tion of the (numerical) structure of A, these observations
are supported by the more extensive numerical evidence
already published in the literature.

Because of the exponential instability of all orbits in
the geodesic flow, it is clear that a direct computer proof
of the existence of a future-imprisoned orbit (lying in A)
is impossible: Any real orbit in the computer will even-
tually diverge away &om A because of numerical insta-
bilities, even if initially it lies in A. So it might appear
at Grst that by relying on numerical integration it is im-
possible to even prove that A is nonempty. This is not
the case, however; numerical integration does yield an
indirect proof that orbits which lie in A exist. More pre-
cisely, consider those orbits whose starting points are on
the z axis and whose initial (unit) tangent vectors are en-
tirely in the y direction. [See Fig. 7; all orbits plotted in
Fig. 7 are of this kind. Also, although the orbits plotted
in Fig. 7 are (mostly) with unit masses Mq ——M2 ——1 and
(some) with masses Mq ——2, M2 ——1, similar behavior
is observed with all positive choices of Mq, M2.] In the
following, I will not make any distinction between points
on the z axis and initial conditions for the orbits in Tz 8;
the initial-tangent-vector part of the initial conditions is
Gxed throughout to be a unit vector in the y direction.
Now, by numerically integrating these orbits into the fu-
ture, the following features can be observed: (i) Consider
any open interval of initial conditions (starting points) on

the z axis lying in the vicinity of the centers. No matter
how small this interval is, there are always points in it
which belong to I', I'q, and I'2. (ii) In any such interval,
between any two points that belong to a distinct pair of
the subsets I', I'q, and I 2, there exists a third point which
belongs to the subset other than the two in the pair.

Note that since I', I'q, and I'2 are open sets, both state-
ments (i) and (ii) are "stable" numerically, i.e. , they can
be verified with arbitrarily high-accuracy numerical cal-
culations. Already, statement (i), combined with the ob-
servation that I' and I'; are disjoint, proves that A is
nonempty: A connected open interval in R cannot be
the union of three disjoint open subsets; therefore, in
any interval of the kind described in (i) there must ex-
ist points which belong to A. As I remarked above, to
prove that A satisfies conditions (FC2) and (FC3) of Sec.
V, it is sufhcient to combine the exponential instability
of the geodesic Qow on T&8 with the everywhere-dense
topological structure of A, i.e., the structure of a Can-
tor set of periodic or quasiperiodic orbits, so that every
open neighborhood of any point m p A contains points
belonging to orbits in A diHerent &om the orbit which
passes through m. That A indeed has this structure is
strongly suggested by the numerical evidence discussed
here and more extensively in [4] and [10]. However, the
discovery of an analytical proof of this topological struc-
ture remains an open problem.
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