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Recent research has established that nonsymmetric gravitation theories such as Moffat's NGT
predict that a gravitational 6eld singles out an orthogonal pair of polarization states of light that
propagate with different phase velocities. We show that a much wider class of nonmetric theories
encompassed by the yg formalism predicts such violations of the Einstein equivalence principle.
This gravity-induced birefringence of space implies that propagation through a gravitational 6eld
can alter the polarization of light. We use data from polarization measurements of extragalactic
sources to constrain birefringence induced by the field of the Galaxy. Our new constraint is 10
times sharper than previous ones.
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I. INTRODUCTION

Gabriel et al. [1] recently established that members
of a certain class of nonmetric gravitation theories pre-
dict that space is anisotropic and bire&ingent. These
nonsymmetric theories, for which Moffat's nonsymmetric
gravitation theory (NGT) [2] is the prototype, have been
studied extensively as potentially viable alternatives to
general relativity, but they predict that a gravitational
field singles out an orthogonal pair of linear polarization
states of light which propagate through the field with
different phase velocities. The difference in phase veloc-
ities could, in principle, be measured in local test ex-
periments [1] and, so, violates the Einstein equivalence
principle. In practice, the sharpest constraints on the
magnitude of such gravity-induced bire&ingence will be
inferred &om limits on the cumulative effect that propa-
gation through a gravitational field has on the polariza-
tion of light. Gabriel et al. [3] consider the effect that
the Sun's field could induce and use measurements of
the polarization of solar spectral lines to impose sharp
new constraints on nonsymmetric gravitation theories.
Krisher [4] considers the effect the Galaxy's field could
induce and uses pulsar polarization observations to im-

pose a complementary constraint on NGT.
In this paper we show that the class of nonmetric grav-

itation theories which predict spatial anisotropy or bire-
&ingence is far more extensive than the class of non-
symmetric theories. Indeed, one Inust take pains to de-
fine a nonmetric coupling between the gravitational and
electromagnetic fields that does not induce anisotropy
and bire&ingence. Consequently, searching for effects of
propagation through a gravitational field on the polar-
ization of light provides tests of the Einstein equivalence
principle that have a power, generality, and significance
comparable to those of more familiar atomic anisotropy
(Hughes-Drever) tests [5] and Eotvos and gravitational

redshift tests [6]. Recent theoretical developments pro-
vide a strong motivation for precise new tests of the
Einstein equivalence principle. For example, interest
in scalar-tensor and multitensor gravitation theories has
been rekindled by the proliferation of scalar and tensor
fields in effective field theories derived &om string physics
and several threads of quantum gravity research suggest
that connection rather than metric may be fundamental.

The view that searching for evidence of gravity-induced
bire&ingence tests the Einstein equivalence principle is
not unprecedented. Ten years ago Ni [7] remarked that
nonmetric gravitation theories encompassed by his yg
formalism could predict bire&ingence of the type we
study. He also noted that pulsar polarization observa-
tions could constrain this possibility. Perhaps the sig-
nificance of these comments was overlooked at the time
because no gravitation theories predicting such bire&in-
gence were known and because the effective time reso-
lution of pulsar polarization observations is limited. In
any event, their significance is now clear. Theories like
NGT do predict gravity-induced bire&ingence and we use
galaxy polarization observations-to constrain this possi-
bility far more stringently than Ni or Krisher were able to
using pulsar polarization observations. Indeed, the linear
and circular polarization data for galaxies that we ana-
lyze have an effective time resolution that is more than
10 times that of Krisher's pulsar polarization data.

II. ELECTRODYNAMICS IN A BACKGROUND
GRAVITATIONAL FIELD

A theory of gravity does two things. It specifies a &ee,
though generally nonlinear, dynamics of the gravitational
field and it specifies the coupling between the gravita-
tional field and matter. The latter determines both how
matter generates and how it responds to gravity.
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b Z~+l.NG d x =0. (2)

The gravitational part of the Lagrangian density, l.G. , is
distinguished by the fact that it depends only on grav-
itational Gelds. Its variational derivative with respect
to these 6elds de6nes their dynamics. The variational
derivative with respect to the metric of general rela-
tivity s gravitational Lagrangian density, i/ —gB/16m, is

i/ —gg„„/16vr. The corresponding derivative of its non-
gravitational Lagrangian density is g gT„„/2 a—nd so the
form of l'.NG, which depends on both matter and gravita-
tional 6elds, specifies the way in which matter generates
gravity. Its reciprocal role of specifying the way in which
matter responds to a gravitational field follows &om the
action principle (2) on variation with respect to mat-
ter Gelds rather than gravitational ones. This yields the
matter equations of motion. In general, these need not
follow directly from the gravitational Geld equations as
they do in general relativity.

Experimental tests of the Einstein equivalence princi-
ple focus on the behavior of matter responding to a back-
ground gravitational 6eld. Their significance lies in the
way they constrain the form of l.NG and thus provide
an empirical foundation for one of gravitation physics'
fundamental components. Tests that reveal no viola-
tion of the Einstein equivalence principle force the form
of the nongravitational Lagrangian density toward ones
that admit a metric representation, a representation in
which a single metric tensor field couples universally [8]
to all matter.

The experimental tests of the Einstein equivalence
principle that we analyze in this paper involve the prop-
agation of polarized light through a background gravita-
tional field. We are, therefore, concerned with only that
part of the nongravitational Lagrangian density which
governs the dynamics of the electromagnetic field and we
base our analysis on a general model of this Lagrangian
density introduced by Ni [9]. One advantage of this ap-
proach is that the results of our analysis are easily spe-
cialized to yield the predictions of any theory of gravity
whose structure is encompassed by Ni's yg formalism.
The other advantage is that a broad consideration of con-
ceivable nonmetric couplings provides a context in which
to judge how diferent experimental tests of the Einstein
equivalence principle compete with and complement one
another and so to clarify the strengths and weaknesses of

In the case of general relativity these conceptually dis-
tinct components of gravitation physics are discernible in
the standard form of the Einstein 6eld equation

G„„=8~T„„.
The structure of the Einstein tensor, on the left-hand
side, speci6es the general relativistic dynamics of the
gravitational 6eld itself. The form of the stress-energy
tensor, on the right-hand side, specifies the way in which
matter acts as a source of gravity.

These same aspects of general relativity and other
Lagrangian-based theories of gravity are even more
clearly discernible in the structure of the action principles
&oxn which their Geld equations follow:

the empirical foundation of one of the most fundamental
aspects of gravitation physics.

The structure of the yg formalism is consistent with
the basic tenets of the Dicke framework [6]. Spacetime
is a difFerentiable manifold and matter fields and phe-
nomenological gravitational potentials are tensor 6elds.
Given the apparent smoothness of space and time and
the view that physics should not depend in an essen-
tial way on a choice of coordinates, it is diKcult to fault
these axioms as a basis for phenomenology. Furthermore,
it is assumed that as gravity is "turned ofF" the non-
gravitational I agrangian density l'.NG reduces smoothly
to the corresponding special relativistic Lagrangian den-
sity. The most general Lagrangian density consistent
with these axioms and with assumptions of electromag-
netic gauge invariance, linearity of the electromagnetic
Geld equations, and absence of couplings to derivatives
of gravitational potentials is

where the electromagnetic 6eld is related to a four-
potential in the usual way, F p ——Ap —A p, and
where y ~~ is a tensor density that, provides a phe-
nomenological representation of the gravitational field.
Note the analogy between y ~~ and a macroscopic elec-
trodynamic constitutive tensor density.

To see how the phenomenological Geld y ~~~ is con-
structed &om a speci6c theory's scalar, vector and ten-
sor gravitational fields, the structure of the theory's elec-
tromagnetic Lagrangian density can be matched to that
of ZKM in Eq. (3). In metric theories of gravity it
is constructed &om the metric tensor alone, y ~~~

—,'v' —g(g 'g~' —g 'g~')
Notice that y ~~ inherits symmetries analogous to

those of the Riemann tensor &om the antisymmetry of
F p and &om the symmetrical way in which it appears in
Eq. (3). Consequently, y ~'i~ has 21 independent com-
ponents. Ni says that his formalism has 21 nonmetric
degrees of &eedom because, in general, one cannot ex-
ploit the formalism's covariance to transform away any
of these independent component potentials. The &ee-
dom to redefine coordinates is exhausted by putting the
formalism's g p Geld into a standard form. This field rep-
resents the coupling between the gravitational 6eld and
scalar particles.

III. GEOMETRIC OPTICS IN A BACKGROUND
GRAVITATIONAL FIELD

In this paper we consider the propagation of light
through relatively weak gravitational 6elds that vary on
length and time scales that are far longer than the light's
wavelength and period, respectively. We therefore adapt
the coordinate system in which the Lagrangian density
(3) is represented to the weak-field limit and we employ
the methodology of geometric optics to analyze the light's
propagation.
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In a Lorentzian coordinate system the electromagnetic
Lagrangian density of special relativity has the form in

Eq. (3) with y»—:2 (q ~rl~ g—rl~~). Consequently,
in the weak-Geld limit we can 6nd quasi-Lorentzian co-
ordinate systems in which the field y ~~~ has the form

(4)

with Q»~ (( 1. Such a decomposition of g ~ l~ is
covariant with respect to Poincare transformations pro-
vided that boost velocities too close to unity are not al-
lowed. Note that this is a purely formal covariance. The
background gravitational Geld may well single out a pre-
ferred frame [6].

Geometric optics treats the propagation of locally
plane electromagnetic waves. The amplitude and phase
representations of such a wave,

E=A@e' ) B = Age' (5)

are characterized by the fact that derivatives of the vector
amplitudes AE and A~ are small compared to deriva-
tives of the rapidly varying phase function 4. Since we
are interested in the propagation of high-&equency elec-
tromagnetic radiation through a weak background gravi-
tational 6eld that varies slowly in space and time, deriva-
tives of the background 6eld are also small compared to
derivatives of 4. We base the analysis that follows on
the eikonal equation which determines local coordinate
velocities of wave propagation. This equation is derived
by inserting the representation (5) into the electromag-
netic field equations and ignoring all derivatives other
than those of the phase function. Propagation equations
for the vector amplitudes A@ and A~ and equations gov-
erning post-geometric-optic corrections can be derived by
taking systematic account of smaller derivatives but we
shall not need these equations here.

Neglecting derivatives of the slowly varying back-
ground field, the electromagnetic field equation that fol-
lows &om Eq. (3) is

g ~&'r, g p ——o. (6)

V E + terms proportional to Q and E or B = 0, (7)

BEV' x B — + terms proportional to QBt

and E or B = O. (8)

Defining electric and magnetic fields via F;0 = E; and
= ejl,lBl and einploying the decomposition (4) of

y ~~, this can be written somewhat more transparently
as

B=0, (10)

kxAEB—
and

k A~ ——0.

The latter of these implies that the magnetic 6eld of a
locally plane wave is transverse to the direction in which
the wave propagates. Since Eq. (7) becomes

k A@ = terms proportional to Q and A@ or A~,

(13)

the electric Geld is guaranteed to be purely transverse
only in the absence of gravity. To first order in the small
g i ~~ that represent the weak background gravitational
field, Eq. (13) expresses a wave's longitudinal electric
field component in terms of its dominant transverse 6eld
components. To this same order, O(g), Eqs. (11) and
(13) imply

(d
A@ = ——k x A~ + terms proportional to g and Als,

(14)

which expresses A@ in terms of the two independent com-
ponents of A~, and Eqs. (8), (11), and (14) imply the
eikonal equation

~

1 ——
~
A~ = terms proportional to Q and A~.k'p

Since the magnetic amplitude A~ has two independent
components and since ol/k is the coordinate phase veloc-
ity, finding the two independent polarization states that
propagate with well-de6ned phase velocities is a matter
of solving a two-dimensional eigenvalue problem. Note
that in the absence of gravity the right-hand side of Eq.
(15) vanishes, implying, as one expects, w/k = 1 regard-
less of polarization.

Before examining the explicit form of Eq. (15) it is
convenient to make a 3+1 decomposition of Q l ~~ into
a set of SO(3) tensor objects. We define

by virtue of the fact that E p and so E and B are derived
&om potentials in the usual way.

To derive the eikonal equation we insert the represen-
tation (5) of a locally plane wave into the field equations
(7)—(10) and neglect all derivatives other than those of
the rapidly varying phase function C. Let A:„denote the
gradient of this function, k„—:B„O = (84/Bt, V4) —=

(—ur, k), so that Eqs. (9) and (10) become

The electric and magnetic 6elds also satisfy gij gOiOj ij j lmgOilm1
2'

BBVxE+ =0,
Bt (9) aild ( j = —EilmejPC+lmPq

4
(16)
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t Ld 't 2'
(

1 ——
~
A~ = QA~ —8A~,k2) (17)

t' 2I
Aa = —8A~ + CA~.k'y

The coefficients A, 8, and C depend on location in space-
time and on the direction in which the wave propagates,
the z direction. This dependence is implicit in the ex-
pressions for A, 8, and C in terms of the values at the

~ I ~ I ~ t

event in question of the tensor components (' ~, (' ~,
~ I ~ I

and p' ~ in the (t, x', y', z') coordinate system:

(2 2'
2 2 1' ql'1'

8 (12 +( 22 11)+F12 (2O)

and

gl'1 + 2 1 2 q2'2' (21)

The matrix defining the structure of the right-hand sides
of Eqs. (17) and (18) is real valued and symmetric when

is real. Its eigenvalues are

+ -g(A —C)z+ 482.A+C 1

2 2
(22)

The corresponding eigenvectors define the polarization
states that propagate with well-defined coordinate phase
velocities c~ = 1 —

z A~ + O(kg ).
The efFects of a nonmetric background field on phys-

ical standards of length and time are such that a local
observer who uses rulers and clocks to measure veloci-
ties of light having the polarizations singled out by the
field will generally obtain results that differ &om the co-
ordinate velocities c+ and c at O(g). To that order,
however, the fractional difFerence between the velocities
that an observer at rest in the (t, x', y', z') coordinate

where e'~" is the Levi-Civita antisymmetric symbol. This
decomposition is covariant under rotation of the quasi-
Lorentzian coordinate system in which Q ~~~ is repre-
sented. It follows that the tensors ('~, p'~, and g'~ repre-
sent spatial anisotropy induced by the background gravi-
tational 6eld in a natural way. The symmetries of y ~~

and g ~~s imply that ('~ and g'~ are symmetric. Their
12 independent components combine with the nine of p'~
to account for the 21 nonmetric degrees of freedom of
the yg formalism. An analogous decomposition of y ~~

yields tensors e'~ = 8'~ + ('~, y'~ = P~ + ('~, and p'~.
Consider the propagation of light in the neighborhood

of some event in spacetime. We exploit the covariance of
our decomposition of Q ~~s to rotate from the original
quasi-Lorentzian (t, x, y, z) coordinate system in which
the background gravitational field is represented to a set
of (t, x', y', z') coordinates in which the light propagates
in the z' direction. In this new coordinate system A~
has only x' and y' components so Eq. (15) reduces to the
system of two equations:

system does measure will be the same as the factional
difference between c+ and c . We let bc/c denote the
magnitude of this dimensionless local observable:

—= —Q(A —C) ' + 482 + O(Q').
bc 1
c 2

(23)

D4 = w —dt+0 (24)

where, since the local value of bc/c is explicitly O(kg),
the integration runs along the unperturbed ray that runs
straight through the quasi-Lorentzian coordinate system
with unit speed &om source to receiver. The integrand in

A practical way to measure or to impose an upper limit
on this magnitude is to search for the effect such bire-
&ingence has on the polarization of light that propagates
through the background gravitational field.

We use Stokes parameters based on the linear polariza-
tion states singled out by the background 6eld to charac-
terize the polarization of light that propagates through a
local observer's laboratory. The intensity I and the de-
grees of polarization q/I, U/I, and V/I provide a partic-
ularly convenient representation of the light's state. We
may think of the light as an incoherent superposition of
appropriate intensities of unpolarized light, linearly po-
larized light with q/I = +1, and elliptically polarized
light with (U2 + V2)~~z/I = kl. Propagation through
the observer's laboratory only affects the state of the last
of these components.

The unpolarized component is itself an incoherent su-
perposition of equal amplitudes of the basis polarization
states while the linearly polarized component consists
purely of one or the other of the basis polarization states.
The shift in the relative phase of waves in the basis states
that accumulates as these waves propagate with different
phase velocity has no efFect on the polarization of either
of these components. On the other hand, the elliptically
polarized component is a coherent superposition of equal
amplitudes of the basis states so its polarization is sen-
sitive to the relative phase of these waves. Indeed, the
relative phase determines this component's U/I and V/I
degrees of polarization, V/U = tan(C+ —C ). As light
propagates during a coordinate time interval dt this rel-
ative phase shifts by u(bc/c)dt, where u is the light's
angular &equency. It is this shift that can affect light's
polarization.

We piece together the cumulative efFect of propagation
through a background gravitational Geld on a signal's
polarization &om such local effects. This is particularly
easy to do when the orientation of the basis polarization
states singled out by the background 6eld is 6xed along
light rays, as is the case for light propagating through
the essentially static, spherically symmetric background
fields that we consider in the next section. A ray thread-
ing through a spherically symmetric field lies in a plane
and, for the 6elds we consider, there is a 6xed orientation
between this plane and the A~ amplitudes of the polar-
ization states singled out by the 6elds. In such cases the
relative phase shift that accumulates between waves in
the basis states is simply
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Eq. (24) is the local value of b'cjc for the ray's direction.
One consequence of the relative phase shift (24) is

that a signal whose elliptically polarized component has
V/U = 0 when emitted will have some degree of circular
polarization when it is received. The degree of circular
polarization received is proportional to a small accumu-
lated shift:

V/U = b,4. (25)

We base our interpretation of Galaxy polarization data
in the next section on this expression.

We have seen that a nonmetric background Beld in-
duces birefringence if and only if (A —C) or 8 in Eq. (23)
is nonzero for some direction of wave propagation at some
event in spacetime. Before we turn to the derivation of
empirical limits on such bire&ingence let us consider how
such limits constrain the form of the coupling between
gravitational and electromagnetic fields.

Note that the expressions (A —C) and 8 involve only
the symmetric, trace-free parts of the tensors ('~, ('~, and

This is most easily appreciated by writing (A —C)
and 8 in terms of the spherical components of these ten-
sors. In terms of components in the (t, z', y', z') coordi-
nate system they are

[(4 +& ')+2~(» -~ ')(2) (2) (2) (2)

6

~(((2) + q(2) )] (26)

and

[(4 —
& ')+2(» +~ 2)

1 . (2) (2) (2) (2)

6

+~(q(2) ((2) )] (27)

Only t = 2 components appear. Expressions for (A —C)
and 8 in terms of components in the original (t, x, y, z)
coordinate system follow &om the transformation law for
spherical tensor components [10]: for example,

g(&) ~(&) (y g y)g(&) (28)

IV. GRAVITY-INDUCED BIREFRINGENCE
AND THE POLARIZATION OF GALAXIES

The preceding analysis examined nonmetric couplings
between the gravitational and electromagnetic fields and

where P, 8, and g are the Euler angles specifying the ro-
tation from (t, x, y, z) to (t, z', y', z'). From the form of
this transformation law and of Eqs. (26) and (27) we con-
clude that the absence of gravity-induced bire&ingence
implies ( + ( = 0 and p = 0 and so that observa-(2) (2) (2)

tions imposing limits on the strength of gravity-induced
bire&ingence constrain ten of the yg formalism's 21 non-
metric degrees of &eedom. This conclusion and the ex-
pression (23) for bcjc are in accord with remarks of Ni

[7] for which the preceding analysis provides a detailed
justiBcation.

established which single out pairs of linear polarization
states that propagate through a gravitational Beld with
difFerent phase velocities. Using Stokes parameters based
on those states, we found that such gravity-induced bire-
&ingence causes U-polarized radiation to develop a de-
gree of circular polarization as it propagates.

Here, we interpret polarization measurements of extra-
galactic sources cataloged by Weiler and De Pater [ll] in
light of this prediction and derive a precise new constraint
on the strength of bire&ingence that could be induced by
the Galaxy's gravitational Beld. Note that even a cursory
examination of the data indicates that such bire&ingence
cannot be strong. If it were, one would expect to mea-
sure substantial circular and linear polarization of ra-
diation &om extragalactic sources with about the same
likelihood. This is not the case. Measurements reveal
signiBcant circular polarization of radiation &om extra-
galactic sources only rarely while they &equently reveal
substantial linear polarization.

As a first approximation, we treat the Galaxy's grav-
itational Beld as static and spherically symmetric. This
is not unreasonable, especially if one accepts the exis-
tence of a substantial dark-matter halo. Note that the
assumed spherical symmetry does not preclude the detec-
tion of gravity-induced bire&ingence. Radiation reaching
the Earth &om an extragalactic source generally does not
propagate radially through the Galaxy's Beld because the
Earth lies 10 kpc from the Galaxy's center. A ray along
which such radiation travels lies in a plane deBned by the
locations of the source, the Earth and the center of the
Galaxy.

At each point along a ray the only direction that the
Galaxy's spherical field can single out is the radial one.
We, therefore, Bnd it useful to introduce at each of these
points a local quasi-Lorentzian (t, x, y, z) coordinate sys-
tem oriented so that its z axis is radial and its x axis lies
in the ray's plane. We do so because the representation
of the spherical tensors introduced in the preceding sec-
tion is simple in these local systems. Specifically, (

, and p are nonzero only for m = 0. The nonzero(~) (2)

components depend only on the radial coordinate of the
point along the ray.

At each of these points we can rotate the local
(t, x, y, z) coordinate system about its y axis through an
angle 8 to obtain a local (t, x', y', z') coordinate system
in which the ray runs in the z' direction. Equation (23)
expresses the local value of Sc/c for points on the ray in
terms of (A —C) and 8 which are, in turn, expressed in

terms of the local (t, x', y', z') components (+~2), , g+z, , and

p+z, by Eqs. (26) and (27). Since the Euler angles of the
rotation from (t, x, y, z) to (t, x', y', z') are P = 0, 0 and
@ = 0, the transformation law (28) implies

42 =»n (~)&0
(2) ~ 2 (2)

with the same relationship holding between I,'+2, and (0(2) (2)

and between p+2, and po . For any sphencally symmet-(2) (2)

ric gravitational Geld, we conclude that hc/c is propor-
tional to the square of the sine of the angle by which a
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ray's direction differs from the radial one.
The orientations of the A~ amplitudes of the polar-

ization states singled out along a ray are determined by
the relative magnitudes of the (t, x, y, z) components $o ),

and po . The form of Eqs. (26) and (27) and the
transformation law (29) imply that 8 is proportional to
po(

) while (A —C) is proportional to ((o(
) + go(

) ). In the
event that (A —C) g 0 and 8 = 0, Eqs. (17) and (18)
imply that for the polarization states singled out by the
Galaxy's field A~ will lie in and perpendicular to the
ray's plane. On the other hand, when (A —C) = 0 and
8 g 0, Eqs. (17) and (18) imply the A~ singled out will
be oriented at 45 to either side of the normal to the
ray's plane. Cases such as these, in which the polariza-
tion states singled out by a background field are 6xed
along rays, are special. Generally, their orientations will

change along a ray as the relative magnitudes of $o

o, and 'Yo vary.(2) (2)

The effect that propagation through the Galaxy's grav-
itational 6eld has on the polarization of light from extra-
galactic sources clearly depends on the global structure
of that gravitational field. We choose to compute the
efFect for a NGT model of the Galaxy's field studied by
Krisher [4] so that we can compare the precision of the
constraint we impose on gravity-induced birefringence
with the one he imposed. This NGT field has $o = 0,

= L (r), and pol
) ——0, where the function I2(r)

speci6es the structure of the antisymmetric tensor part
of the Galaxy's nonsymmetric Geld. The fact that only
go(

) is nonzero is a consequence of the nonmetric coupling
between the nonsymmetric 6eld and the electromagnetic
6eld having been tuned to satisfy constraints imposed
by other tests of the Einstein equivalence principle [12].
Since only ('o is nonzero, the orientations of the basis
polarization states singled out by the Galactic field are
6xed along rays with their magnetic amplitudes lying in
and perpendicular to ray planes. Consequently, Eq. (24)
gives the relative phase shift that accumulates between
waves in these polarization states as they propagate. We
have bc/c = 2L2 sin (8), which is consistent with the
results of Gabriel et aL [1,3] since they denote L2 by A.

In Krisher's model the antisymmetric part of the
Galaxy's nonsymmetric gravitational field is generated
by a uniform density, spherical halo of weakly interact-
ing particles. Its radius, R, is 25 kpc. The function L2(r)
is proportional to the halo's net NGT charge, l . We have
L2 = l4/r4 for radii greater than R and L2 = l4r2/Rs for
smaller radii. The NGT charge, l, can be expressed in
terms of a coupling constant f2 and the density of halo
particles, n, which Krisher takes to be 0.1 per cubic
centimeter. Specifically, /2 = (4nR3/3)n, f2.

The geometry of a ray that runs from an extragalactic
source to the Earth is shown in Fig. 1. The spherical
symmetry of the Galaxy's Geld implies an axial symmetry
of the relative phase shift (24). It depends only on the
angle P. The 10 kpc distance between the Earth and
the Galaxy's center is denoted by d. The ray's impact
parameter is b = dsin(P). To compute the phase shift
(24), we parametrize the rays so that the point r = b,

e

b

which may lie on an extension of the ray, corresponds
to t = 0 and we suppose that the ray starts &om r =
oo at t = —oo. It follows that the ray encounters the
halo's surface at t = t~ = —(R2 —b )i~2 and the Earth
at t = t@ = —dcos(P). Note that r2 = (b2 + t2) and
sin (8) = b /(b + t2) along the ray.

From these facts and the expressions for L2 inside and
outside the halo we conclude that

(ul4 '" 62dt

(b2 2)3

(ul4 t 3t
8 (b' + t')' 2b'(b2 + t2)

+

3 ft)+ arctan ~—
2b3 gb)

&R

(30)

and

~l462 ~ ~l462
b,4;„= dt = (t@ —t~). (31)

Equation (30) corrects a misprint in Krisher s expres-
sion for 44 „&. More seriously, Krisher's numerical esti-
mate of L4,„q indicates that t~ rather than t~ was used
as an upper limit of integration. This contribution to

FIG. 1. Points G, E, and S depict the locations of the
Galaxy's center, the Earth, and an extragalactic source. A
halo of radius R = 25 kpc surrounds the galaxy. The Earth
lies at a distance d = 10 kpc from G. Light from the source
S propagates to the Earth along the ray SE. The relative
phase shift that accumulates depends only on the angle P or,
equivalently, on the impact parameter b = dsin(P). At each
point P of SE we denote the angle between SE and the radial
line GP by 8(P)



3174 MARK P. HAUGAN AND THIERRY F. KAUFFMANN 52

0.006 0.4

0.005

0.004

0.2

~o
0
&o00 &&

0
0

-4..

80

0.003 —0.2

0.002 —0.4

0.001 —0.6

0
0 z/4 7t/2 3z/4

—0.8
20 30 40 50 60 70 80 90

FIG. 2. The function of P depicted by the solid curve is
proportional to the relative phase delay. It is the sum of
the internal and external contributions F;„t(P) and P,„t(P)
defined in the text and denoted here by dotted and dashed
curves respectively.

FIG. 3. Plot of V/U versus P for 5 GHz data from the
Weiler —De Pater catalog [11].The apparent clustering of data
is a consequence of including data taken at diferent times for
some sources.

A4 was, therefore, significantly overestimated. In Fig.
2 we plot conveniently normalized functions E,„t(P) and
E;„t,(P) defined by A4; = (wl /d )I";.

Data from the catalog of Weiler and De Pater impose
a sharp new limit on the amplitude of A4(P) and so on
the magnitudes of l and f,

From the position of a source in the sky and a bit of
geometry we obtain both the angle P for the source and
the orientation of the polarization states singled out for
it by the Galaxy's Geld. We use this latter information to
express the source's catalogued polarization in terms of
Stokes parameters based on the polarization states sin-
gled out. Since the relative phase shift LC converts U
polarized light to V polarized light, we calculate V/U
for sources with accurately measured U/I and V/I and
for which the U/I degree of polarization is substantial,
accounting for more than half of the observed linear po-
larization. The substantial U/I degree of polarization
means that a given relative phase shift will induce a rel-
atively large V/I and it also assures that V/U will be
a well-behaved indicator of AC via Eq. (25) where we
make the conservative assumption that a nonzero aver-
age of V/U for sources in an interval around P represents
the effect of the phase shift A4'(P). Figure 3 is a plot
of the V/U as a function of P for data taken at 5 GHz,
the highest frequency included in the Weiler —De Pater
catalog. The average of V/U for these sources is consis-
tent with zero. We estimate limits imposed by this data
by noting that 0.12 is the sample standard deviation of
V/U for the 5GHz data having P & 60 . Equation (25)

imposes this as a limit on the mean of A4 for P in this
range. This limit and the expression in terms of f, for
the mean of A4(P) in the range from 60' to 90 implies
f, ( 1.4 x 10 cm . When the means and sample
standard deviations of V/U for lower-frequency data are
accounted for this constraint is sharpened slightly:

f, (13x10 cm. (32)

This limit is more than 10 times tighter than the
one Krisher derives, once his overestimate of the exte-
rior contribution to L4 is corrected for. This increase
in precision is easily understood. Krisher argued that
NGT-induced bire&ingence would afFect the polarization
structure of pulses from pulsars in the Large and Small
Magellenic Clouds and reckoned that an efFect would have
been noticed if the arrival times of pulse components in
the polarization states singled out by the Galaxy's Geld
were shifted relative to each other by as much as a mil-
lisecond. In our case, we use a kind of interferometry
to discern a much smaller relative time delay. The high-
est frequency data that we analyze imposes a limit of
0.12 rad on the relative phase shift between the polar-
ization states singled out by the Galaxy's Geld. We are,
therefore, resolving a fraction 0.12/2vr of a cycle at the
5 GHz observation frequency. This corresponds to a rel-
ative time delay of 4 x 10 '2 s. Our time resolution is,
therefore, more than 10 times Krisher's. Since, as Kr-
isher remarks, constraints on the magnitudes of l or f
are proportional to the square root of the time interval
resolved, the precision of our constraint (32) is accounted
for.
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V. SUMMARY AND CONCLUSIONS

The local isotropy of space is one consequence of the
Einstein equivalence principle. Atomic physics experi-
ments of Hughes-Drever-type [5] are the classic tests of
this prediction. In this paper we have shown that search-
ing for effects of propagation through a gravitational field
on the polarization of light provides a precise, qualita-
tively difFerent test for spatial anisotropy, specifically spa-
tial anisotropy that induces a birefringence of space. In
the context of the yg formalism such anisotropy is asso-
ciated with 10 of 21 nonmetric degrees of freedom.

The signi6cance of any test of the Einstein equiva-
lence principle lies in the constraint it imposes on the
form of the coupling between gravitational and matter
fields. Constraints on gravity-induced birekingence force
the structure of the electromagnetic Lagrangian density
(3) towards the form having

That the phenomenological symmetric tensor potential
g i and scalar potential P can represent the yg formal-
ism's remaining eleven nonmetric degrees of freedom is
clear upon counting components. The fact that this La-
grangian density predicts no birefringence in the geomet-

ric optics limit is clear from the metric form of the cou-
pling between g ~ and the electromagnetic field and &om
the identification of P as the poi part of Q l~ . Note,
however, that Carroll and Field [13] have shown that at
post-geometric-optics order the P coupling does induce
a dispersive optical activity which they have constrained
using Galaxy polarization data.

Two features are primarily responsible for the pre-
cision of Einstein equivalence principle tests based on
the interpretation of polarization data for extragalac-
tic sources. First, they focus on global consequences of
Einstein equivalence principle violations. They constrain
shifts in relative phase that accumulate from minute lo-
cal effects rather than seeking the local efFects directly.
Second, they are interferometric in character. Their sen-
sitivity to accumulated phase shifts comes from exploit-
ing the coherence inherent in polarized light. Note that
the sharp new constraint on NGT derived above is far
beyond the reach of local Hughes-Drever experiments, as
indicated by an estimate analogous to one that Gabriel
et al. [1] make of local anisotropy induced by the Sun' s
field in NGT.

Sharper tests of the Einstein equivalence principle are
all but certain to result from surveys of extragalactic
sources that yield linear and circular polarization mea-
surements at frequencies higher than the 5 GHz limit of
the veiler —De Pater catalog.
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