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Improved perturbative +CD analysis of the pion-photon transition form factor
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We reexamine the transition form factor in vr coupling to p'p' in the framework of a perturbative
+CD approach based on the modified factorization formula. Sudakov suppression is less important
here than in other exclusive channels and can be used to check the hard-scat tering approach of
Brodsky and Lepage in this process.
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I. INTRODUCTION

The study of exclusive processes provides an interest-
ing check of the hard-scattering approach in the frame-
work of perturbative QCD [1—3] based on the factoriza-
tion formula. The validity of this approach in the energy
range of a few GeV has been questioned by some au-
thors [4,5] who claim that the main contribution comes
from the end-point regions of x (the fractional momen-
tum of the valence quark in the parton model) where the
running coupling constant o,, becomes large; thus, the
perturbative expansion is illegal.

However, other authors [6,7] have shown that the per-
turbative calculation remains valid if the Sudakov cor-
rection, for soft-gluon exchange, is taken into account.
They have calculated explicitly the Sudakov effects and
proposed a modified factorization formula. The gluonic
radiative corrections have to be summed up into an expo-
nential factor exp( —S). This Sudakov form factor selects
components of the hadronic wave function with small
values of b (the transverse separation 'between valence
quarks in configuration space) and makes the perturba-
tive calculation more self-consistent.

Previous calculations of exclusive processes may be
reexamined with this new approach. Many interesting
channels have indeed been investigated recently [8—14].
'With Sudakov suppression, the predictions of the factor-
ization formula are somewhat smaller than the available
experimental data [15—18]. An important, though deli-
cate, application of Sudakov effects is the prediction of
the nucleon's magnetic form factor [9,13].

One of the successful applications of the hard-
scattering approach concerns the determination of the
meson-photon transition form factor. Brodsky and Lep-
age (BL) [2] have proposed a simple interpolation formula
for F ~(Q )b2etween its asymptotic expression (Q2
oo) and the current-algebra prediction (Q2 ~ 0). Notice
that the asymptotic behavior was predicted by various
authors [19].

Recently, it was shown [20] that pseudoscalar-meson
production by two off shell photons can be used to
check this standard QCD approach versus the vector-
dominance model.

II. SUDAKOV EFFECTS IN THE
PION-PHOTON TRANSITION FORM FACTOR

The transition form factor, in reactions where the me-
son is produced by one on-shell and one off-shell photon,
reads [2)

+-~(Q') = ~, dx ' ' [1+O(n„m /Q2)] .
x(1 —x)

Let us notice that (i) this form factor has no dependence
on n, (Q ) in leading order, and (ii) the mass corrections
O(m2/Q2) are important only at low Q .

Using the asymptotic distribution amplitude

one gets

= ~3f x(1 —x), (2)

I' ~(Q ) = asQ -+oo. (3)

Interpolating between this expression and the current-
algebra result at Q2 = 0, Brodsky and Lepage predict

I" ~(Q ) 0.27
i
1+

i
GeV( Q'5

(4)

where A = 8m f; with the value f 93 MeV of the
pion decay constant, one gets, for the mass scale param-
eter, A 0.83 GeV.

The meson-photon transition form factor (with only
one photon off shell) has been investigated within the
modified hard-scattering approach including both trans-
verse momentum effects and Sudakov corrections [21].
The experimental data [17,18] seem to favor the asymp-
totic wave function; the Chernyak-Zhitnitsky (CZ) one
gives a too large result in that case.

In this paper we follow the approach of the authors of
Ref. [21] in order to study the transition form factor in
vr coupling to p*p*. In Sec. II, we shall discuss in detail
the Sudakov effects in the a-p* transition form factor; in
Sec. III, we shall summarize our results and present our
conclusion.
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The transition form factor for the vr p*p* vertex is ob-
tained, in leading order, as

F ~ (Q, Q' ) =
3

&.*(*)
xQ2 + (1 —z) Q'2 '

(Q2 Q,2) 2f Q —Q' —2Q Q' 1 (Q /Q' )
2 I2 3

as Q and/or Q' -+ oo . (6)
I

assuming Q and/or Q' )) m, and taking account of
the symmetry (due to invariance under charge conjuga-
tion) of P (x) in z, 1 —x.

Using again the asymptotic distribution amplitude,
one here obtains [20]

Applying again the Brodsky-I epage interpolation pro-
cedure, one is led to the expression [which appears as a
generalization of formula (4)]

X2
F ~. (Q, Q' ) = 0.27 1+

~

GeV
A2)

with

2 &2 3

Q —Q' —2Q'Q" ln(Q'/Q")
'

Now, using the modified factorization formula [6,7], we
reexpress Eq. (5) in transverse configuration space:

+-~ ~ (Q' Q") = d2b-
4 (x, b) TII (x, b, Q, Q') exp[ —S(x, b, Qp)],4'

where the two-dimensional vector b (of modulus b) represents the transverse separation between quark and antiquark
in configuration space. It is the Fourier conjugate of kz, the relative transverse momentum of the quarks. In
momentum space the hard-scattering amplitude reads

1 1
' (1 —x)Q'+ xQ" ~ k' xQ'+ (1 —x)Q" + k'

where C = (e„—e&)/~2 is the charge factor of the quarks; the Fourier transform of TII is given by

TJI(z, b, Q, Q ) = C Kp(V (1 —z)Q + zQ b)
2~6

Ko is the modified Bessel function of order zero.
The Sudakov exponent S(x, b, Qp) in (9) is expressed as

S(x, b, Qp) = s(x, b, Qo) + s(1 —x, b, Qo) ——ln
4 In(t/AqcD)

p n 1 q~D
(12)

where Pp —— ll —2nf /3 (nf = 3 is the number of
quark flavors); we assume AQCD: 200 MeV, while
t = max (V (1 —x)Q2 + zQ'2, 1/b) is the largest mass
scale in TH.

The expression of s((, b, Qp) with ( = x, 1 —x is given
in detail in [7,9]. The parameter Qp is chosen to be

2Qo = —(q —q')

where q and q' are the four-momenta of the two oÃ-shell
photons. In the perturbative (PQCD) approach, the pion
is assumed to be on shell; thus,

Q' = Q'+Q" .

Following [7], we set exp( —S) to unity in the small-b re-
gion; when b increases, exp( —S) decreases and vanishes
as b ~ 1/AqgD.

The authors of Refs. [11,21] have proposed to in-
clude both the Sudakov corrections and the intrinsic
transverse-momentum dependence of the hadronic wave
function in this new approach. Following this assump-

tion, we write the wave function as

4 (x, b) = "
p(z) Z (Qz(1 —x) b),

2 3

with the normalization condition f p(z)dz = 1.
The Fourier transform E of the k~-dependent part of

the wave function is assumed to be a simple Gaussian;
using Z(0) = 4vr, it reads

P(gx(1 —z) b) = 4m exp[ —x(1 —x)b /(4a )] . (16)

We also assume that the transverse size parameter a
takes the value of 0.861 GeV for the asymptotic wave
function pl, l

——6x(l —x) and of 0.673 GeV for the
CZ one, pcz = 30x(1 —x)(2x —1)'.

III. NUMERICAL RESULTS AND CONCLUSION

We display in Fig. 1, for various values of Q', the
variation of the transition form factor vs Q, using the
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FIG. 1. Pion-photon transition form factor vs Q . With
Sudakov corrections and transverse momentum efFects,
Q' = 0 (solid line), Q' = 1 GeV (long-dash dotted—
line), and Q' = 5 GeV (long-dashed line). The dotted,
short-dashed, and short —dash-dotted lines are the correspond-
ing curves obtained by applying the interpolation formula. In
both procedures the asymptotic wave function is used.

asymptotic wave function and taking account of Sudakov
corrections and transverse momentum effects. For Q'2 =
0, our results are in agreement with those obtained by
the authors of Ref. [21]; like them, we check that the CZ
wave function should be discarded since it does not 6t
the existing experimental data.

A comparison between the interpolation formula and
the modified hard. -scattering approach is displayed in
Fig. 2 for the configuration where Q2 = Q'2. Let us no-
tice that the modified (dashed) curve remains practically
independent of the particular distribution amplitude con-
sidered.

While the interpolation procedure is, of course, not
unique, the inclusion of Sudakov corrections leads to an
unambiguous procedure; in addition, there is no need of
scales other than Aq~o.

As we show in Fig. 1 the transition form factor includ-
ing Sudakov efFects is extremely similar to that obtained
by applying the interpolation procedure in the manner
of Brodsky and Lepage, even in the case of two o8'-shell
photons [formula (7)]. It is difficult to find a precise ex-
planation for that similarity. At least the fact that the
Sudakov suppression is less brutal than in other processes
can be explained by the fact that the form factor has no
dependence on o., in leading order and that the propa-
gator in the hard-scattering amplitude TH is always oQ'

shell in the end-point regions for finite values of Q2 and
&2

FIG. 2. Pion-photon transition form factor vs Q in the
configuration where Q = Q', with Sudakov corrections and
transverse momentum effects (dashed line) and using the in-

terpolation formula (solid line).

An interesting kinematic configuration is the symmet-
ric one, when Q = Q' . With Sudakov corrections and
transverse momentum e8'ects, the independence of the
form factor with respect to the distribution amplitude
chosen, which was already noticed in Ref. [20], remains
basically preserved, as already noticed above. It results
in the type of experiment using this configuration being
really a test of the hard-scattering approach rather than
of a particular distribution amplitude.

In order to check the feasibility of measurements of the
form factors considered, using e+e colliding beams, we
have computed the cross sections of the reaction e+e
e+e vr with a c.m. energy of 10 GeV (chosen to be that
of a RB factory) and an integrated luminosity jLdt =
104 cm 2. For Q2;„= 1 GeV2 (defining Q2,.„as the
minimal value of both Q and Q' ), one expects about
310 events with these assumptions.

Our study can easily be extended to other pseudoscalar
mesons, i.e., g or g'. Pseudoscalar-meson production in
p*p* collisions, using e+e colliding beams, is an inter-
esting channel for checking the improved hard-scattering
approach of exclusive processes, based on the modified
factorization formula.
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